ON META-ABELIAN FIELDS OF
A CERTAIN TYPE

YOSHIOMI FURUTA

Let % be an algebraic number field of finite degree, and / a rational prime
(including 2); k and [/ being fixed throughout this paper. For any power [”
of /, denote by ¢, an arbitrarily fixed primitive !”-th root of unity, and put
kn = k(¢s). Let 7 be the maximal rational integer such that ;€% ie. & = &
and k,+1% k.

S. Kuroda [7] shows that the decomposition law of rational primes in
some absolute non-abelian normal extension is determined by the rational 2°-th
power residue symbol of Dirichlet, to which A. Frshlich [1] gives a more
general apprehension. L. Rédei defined in [8] a new symbol, which he called
“bedingtes Artinsches Symbol” (restricted Artin symbol), and he established
in [9] a theory concerning Pell’s equations by means of this symbol.

In the present paper, we define in § 1 the “restricted {"-th power residue
symbol”, which is related to the restricted Artin symbol in the same manner
as the ordinary power residue symbol to the ordinary Artin symbol. The
restricted /”-th power residue symbol is a generalization of Dirichlet’s symbol
mentioned above. So we investigate some meta-abelian extensions over k, for
which the decomposition law of prime ideals of 2 is given by means of the
restricted I”-th power residue symbol. More precisely, let A/k be an abelian
extension over & and /A a kummerian extension of A obtained by adjoining
to A the I"™-th roots w; of numbers @; in 2 (i=1, ...,¢). We call a normal
subfied M of & a k-meta-abelian l-field over k, or simply k-meta-aeblian, if M
contains all the I™-th roots of unity. Then the decomposition law of prime
ideals of % in a k-meta-abelian /-field is determined. This result is a generalization
of that of Kuroda [7] concerning P-meta-abelian 2-field over P, P being the
rational number field.
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§ 1. Preliminaries

For a prime ideal p of % prime to /,” a number a of 2 prime to b, and a
rational integer #, the restricted 1™-th power residue symbol [—g—] is defined
-In

recursively as follows:
For n<0 we set [_a_] =12 For #>1 and >0 the symbol [_a_] is de- -
P Jn p Jn

fined only when [_a_] =1, and, if this condition is fulfilled, we put [ﬁ»]
b dp-r p Jda

=¢* where ™" = ¢2 (mod. p), p being the smallest natural number with

I"| Ny* — 1 (we denote here by N, as well hereafter, the absolute norm). For

n>1 and 7 =0 the symbol [%] is defined only when &~V =1 (mod. p),
n

%-l =1. Since all the I"-th roots of unity are incon-
-'n

and in this case we put [
gruent each other mod. p owing to {,Ek, the symbol [—ap—] is uniquely defined.
n
For an ideal m of & prime both to @ and / with the prime ideal decomposition
- A S
—ph It _g_ = a al a ) =
m=p'...0f, we set [ m ]”—[pl _L. . [ D, when each [Di- ]n(z 1,...,%
is defined.
Now, from the definition follows immediately

a

LemMA 1. We have <T)1” = [—g—l Jor 1 £t < 7, where the left-hand-side

is the ordinary I-th power residue symbol mod. b in k.

LemmMma 2.  Let 2 be a normal extension over k; b a prime ideal in k, not
ramified in 2; and P a prime divisor of b in 2. Let further ' and 1" be the
degrees® of p with respect to 2n/k, and to kn/k, respectively. If a number
a in k satisfies [-g—)n_r =1 in Q, then putting r = 1'/f", we have

[g1-LeT:

D Throughout this paper we always assume that p is prime to L

2 The symbol [%]n is defined for <=0 only for the sake of simplifying the
definion.

% By the degree of a prime ideal p of £ with respect to a normal extension Q/k we
mean, as usual, the number f such that No/x$=p/, § being a prime divisor of p in Q,
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where the left- and right-hand-sides are the restricted 1"-th power residue symbol
in 2, and in k, respectively.

Proof. For n=<0, (1) is clear. For n =1 we have %] = (%, where x
-n

is determined by a“®*™""=¢f (mod. PB), /1 being the degree of B with respect
to 2,/2. Since both sides of the congruence are numbers of k, @+ V%" =¢*
(mod. p). Putting Nos$ = 1", we have /' =fif.. Putting further Np”" =1+ s1",
(NP = 1)/ 1" = (Ny" = 1)/ 1" = (N ) = /1" = (14 sI") = 1)/ 1" = s«
= r (N = 1)/I" (mod. si"). Since a™ = @™ ™' =1 (mod. »), by definition,
a(“‘B/"””"Ea““'*”l"l”"'.—t[%]; (mod. p), which proves (1).

Now, if 7 is a character of the Galois group of an abelian extension A/k,
we .call simply X a character of A/k, and set Z(m) = /(( Alk )), where

( Jya m

m ) is the Artin symbol.

Let A, B and G be subgroups of an abelian group &; and A a subgroup
of BE. We call % an [I"-subgroup of BE, if for any aE A there exist bEB and
c€ 6 such that @¢=bc and »" €.

Now let A and B be two abelian extensions over %2; A and ¥ their Galois
groups; and @ and ¥ their character groups, respectively. Then the Galois
group & of AB/k is isomorphic to a subgroup of the direct product of A and
%, and the isomorphism is given by s - (44, gp), Where s E€ &, 04 = rest ipac

and op =rest.up.po. By setting
(2) ¢p(o) = ¢(o4)¢(an) for ce0, ¢V,

we can imbed @ and ¥ in the character group X of @. If we define the
homomorphism ¢ of @x ¥ (direct”) onto X by
(3) (@ x¢)=¢y for o X pEOXY

the character group X of @ is induced from @ x ¥ by the homomorphism ..
Furthermore the character group of AB/VB is induced from @ by the isomorphism
A= ks Of O/ONT=OV/Y, ie.

(4) (Aesn?) (@) = ¢(a4)

where a4 = rest n. @ for a€G(AB/B).

#) Throughout this paper the notation x means the direct product.
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LemMma 3. Notations being as above, if X is an I"-subgroup of ® x ¥, then
X! =:1X)) is an I"-subgroup of O¥. If X{ is an I"-subgroup of OV, then there
exists an I -subgroup X: of OX¥ such that (X;) = X;.

Proof. (i) Let Xi be an ["-subgroup of ® x¥. Let further 1% =¢¢e X7,
ced, eVl =), =Xy EX:, ¢1E0, y €¥; and «(¢;) = ¢¢,.  Then
«(¢) = ¢¢; " and by the assumption ¢} € X;. Hence 7* = ¢¢ = (¢¢,) (¢eid),
ce e D, g¢te ¥ and (¢¢)) € X, Therefore X;* = «(X)) is an I”-subgroup
of 0¥.

(ii) Conversely, let X;* be an I”-subgroup of #%. If we denote by X the
group consisting of all ¢ X ¢ € @ x ¥ such that ¢ € X7 and ¢ € X, then
obiousely «(X;) = X{, and X is an {"-subgroup of @ x ¥.

§ 2. Fundamental lemma

Let K=kn (o1, . .., o), where w; is an [™-th root of i€k (i=1, ... ,1)
and # = max(#n;, . .., 7); A an abelian extension over k containing k.; 0
and ¥ the character groups of A/k, and of K/k, respectively; and X = 0¥
the character group of AK/k. in the sense of (3). If we define ¢; by

(5) oila) = wi/w; for every a G (K/ky),

the character group ¥ of K/k, is generated by all such ¢; (=1, ..., 8.
Let U, be a representative of cE®(k./k) in G(AK/k). Put U;'al,=a’
for a€@G(AK/ky), and 7’ (a) = 1(a®) for 1€ X. If I=¢¢, ¢ €0, ¢ €7, then

we have
(6) () = ¢’ (a)

since 7°(a) = ¢(a®) = ¢(a@)¢(ak) = ¢(as)¢’(ax). On the other hand we may
write o¥° = w;b;, , for some &;, ,E ks, because (0¥°/wi)"=a?"/a; =1. By com-

Ugal

paring o} vo

and 0f’°, we see ¢ila®) = ¢i(a)"®, hence ¢*(a) = &(a)' for any
¢oe¥. Let I* be the order of ¢, and ¢ an integer determined by ¢, =¢5. Then

we have

(7) ¢°(a) = ¢ (a).

Jre

Put m = p~ 7, and assume m>0. Then (£, )° = ¢ for any o€ ®(ka/k). Hence
we have
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(8) c—-1=0 (mod. I") for any o€ Oky/k).

It is clear that (8) holds for m £ 0. Now, again assume m>0. Then since
ol

£, €k for any positive integer x < m, there exists ¢ € ®(k,/k) such that (&)’

% ¢ for any positive integer x <m. Hence if ;1> 7,
(9) c—1%0 (mod. I"™") for some o€ G(k./'k).
Now we prove the following fundamental

LemMA 4. Notations A, K, ©. W and X being as above, let M be a subfield
of AK over kn, and X, the subgroup of the character group X = O% of AK/kn
corresponding to M. 1If M is a k-meta-abelian 1-field over k, then X, is an I'-

subgroup of DV, and conversely.

Proof. By the assumption, AKX DO M D k., therefore in order that M is a
k-meta-abelian I-field over %, it is necessary and sufficient that M is normal
over k. Put = G(AK/M).

(i) Suppose that A is normal over %, ie. £’ =9 for any o= Glkn/k).
Then, by (6), ¢c»& X, implies ¢¢°€ X,, hence ¢"¢" '€ X;. Let [* be the order
of ¢. If 4> 7 then by (7), (8) and (9), ¢"¢ ' =¢" = (¢!")" for some s € B
(kn/R), where (y,1) =1. Hence ¢/'&€X,. If p=v7, trivially ¢"€ X,. Therefore
X, is an ["-subgroup of O¥.

(ii) Conversely, suppose that X, is an {"-subgroup of ¢%. Let 7€ Xo, then
there exist c=® and ¢ ¥ such that 7/ =¢¢ and ¢! € X,. On the other hand
by (6) %’ =«y” for any s €& (ks/k), and, by (7) and (8), ¢° = ¢, wherec —~1=0
(mod. 7). Hence 7’ =¢y¢’€ X,. Therefore ’ =9 for any =& (£,/k). Thus

the lemma is proved.

§ 3. Theorems

Denote by {a} the cyclic group generated by a € &, and set {a}, = {a}/k\

N{a}. Let ¢ be a generating character of k,(w)/k,, o being an I"-th root of a.
If we denote by {¢} the character group of &.(w)/k., we see {a},=~{¢}. Thus,
denoting by [al, a generating class of {a},, we can identify [aJ. with ¢.

Let K=%ky (wy, . .., w), where w; is an I"-th root of a;ick (i=1, ... ,1)
and 7 = max(n, ... ,n); ¥ ={atnX...x {at}y,; A an abelian extension

over k with the character group @ Put X= @ x¥, Then the character group
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X* of AK/k, and the group X correspond each other by means of (2) and (3),

restricting @ to Ak./ks.. Therefore by lemma 3 and lemma 4 we have

THEOREM 1. Every k-meta-abelian I-field M over k corresponds to an
I-subgroup X, of 0 x ¥, where 0% is the restriction to Akn/kx of the character
group O of an abelian extension A/k and ¥ = {ai}n, X . . .lat}n, for ai €k and

Jfor natural numbers ni (i =1, ...,1); and conversely.

Notations being as in theorem 1, let p be a prime ideal of k& not ramified
in M/k; P a prime divisor of p in k,. If £y is the degree of p with respect
to k»/k, then by the translation theorem of the class field theory we have for
any integer x

(10) PH(PY) = (Mo) (B = ¢(NewsB) = ¢ (),
Aok, being as (4). For ¢ =¢f'x ... x¢t€ ¥, ¢i=Lal, (i=1,...,1), put
t
n=max(m, ...,n) and a = [1af""™. Put further K = knw, . . ., o), i
i=1
being an I™-th root of @; (i=1, ..., t), and ¢* = «(¢), ¢ being the homomorphism
of ¥ onto the character group of K/k., by means of (3). Then ¢*(B")
[ G nw_la . ,#TNYy
= (513" )In. Moreover by lemma 1 ¢*(P*) = [m ]n in By, If ¢"(P*) =1, then
by lemma 1 ¢*"(B*) =[—s§—] __=1, hence by lemma 2
" . —->q'»x— »q—-f
(1) ¢(SB)—[%J"_[DJ",
where the last is the symbol in 2 Now we define ¢(p*) by
n _| @ ¥
(12) (%) ‘[p],.’
and, for 7=¢x¢E 0 X ¥, 1(p*) by
(13) 1Y) = /()" (p).

THEOREM 2. Let M be a k-meta-abelian l-field over k corresponding by
theorem 1 to an I"-subgroup X, of ® X ¥. Then the degree of a prime ideal
of k, not ramified in M|k, is equal to f = fof, where fy and f, are the smallest
integers such that 1" Np"—1 and 7(»") =1 for all /€ X, respectively.

Proof. B being a prime divisor of p in, k., the degree of p with respect
to M/k is equal to the product of the degrees of p with respect to k./k and of
P to M/k.. Since the former is equal to f;, we have only to show that the
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degree of ¥ with respect to M/kn, i.e. the smallest number x such that 7 ()
=1 for all 7Ye Xy =X, is equal to /i. By theorem 1 and lemma 3, /'€ X'
implies 7* = ¢*¢* and ¢*" & X, for some ¢ € & and for some ¢ € ¥. On the
other hand, by (10), (11), (12), and (13) we see that 7*(P*) = 1 under the
condition ¢ () =1 if and only if Z(p*)=1. Furthermore, by (11) and (12)
¢ (P) =1 if and only if ¢ (p¥) =1. Whence the theorem follows immediately.
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