ON META-ABELIAN FIELDS OF A CERTAIN TYPE

YOSHIOMI FURUTA

Let k be an algebraic number field of finite degree, and l a rational prime (including 2); k and l being fixed throughout this paper. For any power l^{n} of l, denote by ζ_{n} an arbitrarily fixed primitive l^{n}-th root of unity, and put $k_{n}=k\left(\zeta_{n}\right)$. Let r be the maximal rational integer such that $\zeta_{r} \in k$ i.e. $k_{r}=k$ and $k_{r+1} \neq k$.
S. Kuroda [7] shows that the decomposition law of rational primes in some absolute non-abelian normal extension is determined by the rational 2^{2}-th power residue symbol of Dirichlet, to which A. Fröhlich [1] gives a more general apprehension. L. Rédei defined in [8] a new symbol, which he called "bedingtes Artinsches Symbol" (restricted Artin symbol), and he established in [9] a theory concerning Pell's equations by means of this symbol.

In the present paper, we define in $\S 1$ the "restricted l^{n}-th power residue symbol", which is related to the restricted Artin symbol in the same manner as the ordinary power residue symbol to the ordinary Artin symbol. The restricted l^{n}-th power residue symbol is a generalization of Dirichlet's symbol mentioned above. So we investigate some meta-abelian extensions over k, for which the decomposition law of prime ideals of k is given by means of the restricted l^{n}-th power residue symbol. More precisely, let A / k be an abelian extension over k and $\mathscr{\Omega} / A$ a kummerian extension of A obtained by adjoining to A the $l^{n_{i}}$-th roots ω_{i} of numbers a_{i} in $k(i=1, \ldots, t)$. We call a normal subfied M of \Re a k-meta-abelian l-field over k, or simply k-meta-aeblian, if M contains all the $l^{n_{i}}$-th roots of unity. Then the decomposition law of prime ideals of k in a k-meta-abelian l-field is determined. This result is a generalization of that of Kuroda [7] concerning P-meta-abelian 2 -field over P, P being the rational number field.

The writer would like to express his gratituede to Prof. S. Kuroda and Dr. T. Kubota for their valuable advices.

§ 1. Preliminaries

For a prime ideal \mathfrak{p} of k prime to $l{ }^{1)}$ a number a of k prime to p, and a rational integer n, the restricted l^{n}-th power residue symbol $\left[\frac{a}{p}\right]_{n}$ is defined recursively as follows:

For $n \leqq 0$ we set $\left[\frac{a}{p}\right]_{n}=1 .{ }^{2 \prime} \quad$ For $n \geqslant 1$ and $r>0$ the symbol $\left[\frac{a}{p}\right]_{n}$ is defined only when $\left[\frac{a}{\mathfrak{p}}\right]_{n-r}=1$, and, if this condition is fulfilled, we put $\left[\frac{a}{\mathfrak{p}}\right]_{n}$
 $l^{n} \mid N p^{p}-1$ (we denote here by N, as well hereafter, the absolute norm). For $n \geqslant 1$ and $r=0$ the symbol $\left[\frac{a}{\mathfrak{p}}\right]_{n}$ is defined only when $a^{\left(\Delta p^{p}-1\right) / h^{n}} \equiv 1(\bmod . \mathfrak{p})$, and in this case we put $\left[\frac{a}{p}\right]_{n}=1$. Since all the l^{r}-th roots of unity are incongruent each other mod. \mathfrak{p} owing to $\zeta_{r} \in k$, the symbol $\left[\frac{a}{\mathfrak{p}}\right]_{n}$ is uniquely defined. For an ideal m of k prime both to a and l with the prime ideal decomposition $\mathfrak{m}=\mathfrak{p}_{1}^{l_{1}} \ldots \mathfrak{p}_{t}^{l_{t}}$, we set $\left[\frac{a}{m}\right]_{n}=\left[\begin{array}{c}a \\ \mathfrak{p}_{1}^{\prime}\end{array}\right]_{n}^{l_{1}} \ldots\left[\frac{a}{\mathfrak{p}_{t}}\right]_{n}^{l_{t}}$, when each $\left[\frac{a}{\mathfrak{p}_{i}}\right]_{n}(i=1, \ldots, t)$ is defined.

Now, from the definition follows immediately
Lemma 1. We have $\left(\frac{a}{p}\right)_{t^{t}}=\left[\frac{a}{p}\right]_{t}$ for $1 \leqq t \leqq r$, where the left-hand-side is the ordinary l^{t}-th power residue symbol mod. \mathfrak{p} in k.

Lemma 2. Let Ω be a normal extension over $k ; p$ a prime ideal in k, not ramified in Ω; and \mathfrak{P} a prime divisor of \mathfrak{p} in Ω. Let further f^{\prime} and $f^{\prime \prime}$ be the degrees ${ }^{3)}$ of p with respect to Ω_{n} / k, and to k_{n} / k, respectively. If a number a in k satisfies $\left[\frac{a}{p}\right]_{n-r}=1$ in Ω, then putting $\kappa=f^{\prime} / f^{\prime \prime}$, we have

$$
\begin{equation*}
\left[\frac{a}{\mathfrak{P}}\right]_{n}=\left[-\frac{a}{b}\right]_{n}^{k}, \tag{1}
\end{equation*}
$$

[^0]where the left- and right-hand-sides are the restricted l^{n}-th power residue symbol in Ω, and in k, respectively.

Proof. For $n \leqq 0$, (1) is clear. For $n \geqq 1$ we have $\left[\frac{a}{\mathfrak{P}_{\mathcal{B}}}\right]_{n}=\zeta_{x}^{r}$, where x is determined by $a^{\left(\mathrm{ND} t_{1}-1\right) / n} \equiv \zeta_{r}^{x}$ (mod. $\left.\mathfrak{P}\right), f_{1}$ being the degree of \mathfrak{P} with respect to Ω_{n} / Ω. Since both sides of the congruence are numbers of $k, a^{\left(., p \rho_{1}-1\right) / l^{n}} \equiv \zeta_{r}^{x}$ (mod. \mathfrak{p}). Putting $N_{Q / k} \mathfrak{k}=p^{f_{2}}$, we have $f^{\prime}=f_{1} f_{2}$. Putting further $N p^{f^{\prime \prime}}=1+s l^{n}$, $\left(N \Re^{f_{1}}-1\right) / l^{n}=\left(N p^{f^{\prime}}-1\right) / l^{n}=\left(\left(N p^{f^{\prime \prime}}\right)^{\kappa}-1\right) / l^{n}=\left(\left(1+s l^{n}\right)^{\kappa}-1\right) / l^{n} \equiv s \kappa$ $=\kappa\left(N p^{f^{\prime \prime}}-1\right) / l^{n}\left(\bmod . s l^{n}\right)$. Since $a^{s l^{\prime n}}=a^{v p p^{\prime \prime}-1} \equiv 1(\bmod . p)$, by definition, $a^{\left(N \mathfrak{F} f_{1}-1\right) / l^{n}} \equiv a^{\kappa\left(N p j^{\prime \prime}-1\right) / l^{n}} \equiv\left[\frac{a}{\mathfrak{p}}\right]_{n}^{\kappa}$ (mod. p), which proves (1).

Now, if $\%$ is a character of the Galois group of an abelian extension A / k, we call simply $\%$ a character of A / k, and set $\%(\mathrm{~m})=\%\left(\binom{A / k}{\mathrm{~m}}\right)$, where $\binom{A / k}{\mathrm{~m}}$ is the Artin symbol.

Let $\mathfrak{N}, \mathfrak{B}$ and \mathfrak{C} be subgroups of an abelian group \mathbb{G}; and \mathfrak{N} a subgroup of $\mathfrak{B C}$. We call \mathfrak{N} an l^{r}-subgroup of $\mathfrak{B C}$, if for any $a \in \mathfrak{N}$ there exist $b \in \mathfrak{N}$ and

Now let A and B be two abelian extensions over $k ; \mathfrak{Y}$ and \mathfrak{B} their Galois groups; and \mathscr{D} and Ψ their character groups, respectively. Then the Galois group \mathscr{G} of $A B / k$ is isomorphic to a subgroup of the direct product of $\because($ and \mathfrak{B}, and the isomorphism is given by $\sigma \rightarrow\left(\sigma_{A}, \sigma_{B}\right)$, where $\sigma \in \mathbb{B}, \sigma_{A}=$ rest ${ }_{A B \rightarrow A} \sigma$ and $\sigma_{B}=$ rest $_{A B \rightarrow B} \sigma$. By setting

$$
\begin{equation*}
\varphi \psi(\sigma)=\varphi\left(\sigma_{A}\right) \psi\left(\sigma_{B}\right) \quad \text { for } \varphi \in \mathbb{D}, \psi \in \Psi, \tag{2}
\end{equation*}
$$

we can imbed \mathscr{D} and Ψ in the character group X of \mathscr{G}. If we define the homomorphism : of $\Phi \times \Psi$ (direct ${ }^{\text {t) }}$) onto X by

$$
\begin{equation*}
\ell(\varphi \times \psi)=\varphi \psi \quad \text { for } \varphi \times \psi \in \emptyset \times \Psi \tag{3}
\end{equation*}
$$

the character group X of \mathscr{B} is induced from $\mathscr{D} \times \Psi$ by the homomorphism $:$ Furthermore the character group of $\mathfrak{G B} \mathcal{B} / \mathcal{B}$ is induced from \mathscr{D} by the isomorphism $\lambda=\lambda_{k \rightarrow B}$ of $\mathscr{\Phi} / \Phi \cap \Psi \cong \Phi \Psi / \Psi$, i.e.

$$
\begin{equation*}
\left(\lambda_{k \rightarrow B} \varphi\right)(\bar{\alpha})=\varphi\left(\alpha_{A}\right) \tag{4}
\end{equation*}
$$

where $\alpha_{A}=\operatorname{rest}_{A B \rightarrow \mathrm{~A}} \bar{\alpha}$ for $\bar{\alpha} \in(B)(A B / B)$.

[^1]Lemma 3. Notations being as above, if X_{1} is an l^{r}-subgroup of $\Phi \times \Psi$, then $X_{1}^{*}=!\left(X_{1}\right)$ is an l^{r}-subgroup of \mathscr{D}. If X_{1}^{*} is an l^{r}-subgroup of DY, then there exists an l^{r}-subgroup X_{1} of $\mathscr{Q} \times \Psi$ such that $!\left(X_{1}\right)=X_{1}^{*}$.

Proof. (i) Let X_{1} be an l^{r}-subgroup of $\mathscr{\square} \times \Psi$. Let further $\%^{*}=\stackrel{\varsigma}{ } \boldsymbol{\psi} \in X_{1}^{*}$, $\varphi \in \mathscr{D}, \psi \in \Psi: \%^{*}=c(\%), \%=\varphi_{1} \times \psi_{1} \in X_{1}, \varphi_{1} \in \mathscr{D}, \psi_{1} \in \Psi ;$ and $\iota\left(\varphi_{1}\right)=\varphi \varphi_{0}$. Then : $\left(\psi_{1}\right)=\psi \varphi_{0}^{-1}$ and by the assumption $\varphi_{1}^{l^{r}} \in X_{1}$. Hence $\%^{*}=\varphi \psi=\left(\varphi \varphi_{0}\right)\left(\psi \varphi_{0}^{-2}\right)$, $\stackrel{c}{0} 0 \in \mathscr{D}, \psi c_{0}^{-1} \in \Psi$ and $\left(c \varphi_{0}\right)^{l r} \in X_{1}^{*}$. Therefore $X_{1}^{*}=\iota\left(X_{1}\right)$ is an l^{r}-subgroup of $\mathscr{D} \Psi$.
(ii) Conversely, let X_{1}^{*} be an l^{r}-subgroup of \mathscr{D}. If we denote by X_{1} the group consisting of all $\varphi \times \psi \in \mathscr{D} \times \Psi$ such that $\varphi \psi \in X_{1}^{*}$ and $\varphi^{l r} \in X_{1}^{*}$, then obiousely $:\left(X_{1}\right)=X_{1}^{*}$, and X_{1} is an l^{\top}-subgroup of $\mathscr{D} \times \Psi$.

§ 2. Fundamental lemma

Let $K=k_{n}\left(\omega_{1}, \ldots, \omega_{t}\right)$, where ω_{i} is an $l^{n_{i}}$-th root of $a_{i} \in k(i=1, \ldots, t)$ and $n=\max \left(n_{1}, \ldots, n_{t}\right) ; \mathrm{A}$ an abelian extension over k containing $k_{n} ; \Phi$ and Ψ the character groups of A / k_{n} and of K / k_{n} respectively; and $X=\Phi \Psi$ the character group of $A K / k_{n}$ in the sense of (3). If we define ψ_{i} by

$$
\begin{equation*}
\psi_{i}(\alpha)=\omega_{i}^{\alpha} / \omega_{i} \quad \text { for every } \alpha \in \mathbb{B}\left(K / k_{n}\right), \tag{5}
\end{equation*}
$$

the character group Ψ of K / k_{n} is generated by all such $\psi_{i}(i=1, \ldots, t)$.
Let U_{σ} be a representative of $\sigma \in \mathscr{G}\left(k_{n} / k\right)$ in $\mathbb{G}(A K / k)$. Put $U_{\sigma}^{-1} \alpha U_{\sigma}=\alpha^{\sigma}$ for $\alpha \in \mathscr{B}\left(A K / k_{n}\right)$, and $\varkappa^{\top}(\alpha)=\%\left(\alpha^{\sigma}\right)$ for $\% \in X$. If $\%=\varphi \psi, \varphi \in \mathscr{D}, \psi \in \Psi$, then we have

$$
\begin{equation*}
\chi^{\rho}(\alpha)=\varphi \psi^{\rho}(\alpha) \tag{6}
\end{equation*}
$$

since $\chi^{\sigma}(\alpha)=\varphi \psi\left(\alpha^{\sigma}\right)=\varphi\left(\alpha_{A}^{\sigma}\right) \psi\left(\alpha_{K}^{\sigma}\right)=\varphi\left(\alpha_{A}\right) \psi^{\sigma}\left(\alpha_{K}\right)$. On the other hand we may write $\omega_{i}^{U_{\sigma}}=\omega_{i} b_{i, \sigma}$ for some $b_{i, ~} \in k_{n}$, because $\left(\omega_{i}^{U \sigma} / \omega_{i}\right)^{l_{i}}=a_{i}^{U \sigma} / a_{i}=1$. By comparing $\omega_{i}^{U_{\sigma} \alpha^{\sigma}}$ and $\omega_{i}^{\alpha U_{\sigma}}$, we see $\psi_{i}\left(\alpha^{\sigma}\right)=\psi_{i}(\alpha)^{l \sigma}$, hence $\psi^{\sigma}(\alpha)=\psi(\alpha)^{l \sigma}$ for any $\psi \in \Psi$. Let l^{μ} be the order of ψ, and c an integer determined by $\zeta_{\mu}^{\top}=\zeta_{\mu}^{c}$. Then we have

$$
\begin{equation*}
\psi^{o}(\alpha)=\psi^{c}(\alpha) \tag{7}
\end{equation*}
$$

Put $m=\mu-r$, and assume $m>0$. Then $\left(\zeta_{\mu}^{l m}\right)^{\sigma}=\zeta_{\mu}^{l m}$ for any $\sigma \in \mathbb{G}\left(k_{n} / k\right)$. Hence we have

$$
\begin{equation*}
c-1 \equiv 0\left(\bmod . l^{r}\right) \quad \text { for any } \sigma \in(\xi)\left(k_{n} / k\right) . \tag{8}
\end{equation*}
$$

It is clear that (8) holds for $m \leqq 0$. Now, again assume $m>0$. Then since $\digamma_{; ~}^{l x} \notin k$ for any positive integer $x<m$, there exists $\sigma \in\left(\xi\left(k_{n} / k\right)\right.$ such that $\left(\zeta_{\mu}^{\mu}\right)^{\sigma}$ $\neq \zeta_{i}^{L^{x}}$ for any positive integer $x<m$. Hence if $a>r$,

$$
\begin{equation*}
c-1 \neq 0\left(\bmod . l^{r+1}\right) \quad \text { for some } \sigma \in(\xi)\left(k_{n i} / k\right) \text {. } \tag{9}
\end{equation*}
$$

Now we prove the following fundamental

Lemma 4. Notations A, K, D, Y and X being as above, let M be a subfield of $A K$ over k_{n}, and X_{0} the subgroup of the character group $X=\Phi \Psi$ of $A K / k_{n}$ corresponding to M. If M is a k-meta-abolian l-field over k, then X_{0} is an l^{r} subgroup of $D \Psi$, and conversely.

Proof. By the assumption, $A K \supset M \supset k_{n}$, therefore in order that M is a k-meta-abelian l-field over k, it is necessary and sufficient that M is normal over k. Put $\sqrt[5]{ }=\mathfrak{G}\left(A K_{i}^{\prime} M\right)$.
(i) Suppose that M is normal over k, i.e. $\mathscr{J}^{3}=5$ for any $\sigma \in \mathscr{G}\left(k_{n} / k\right)$. Then, by (6), $\varphi \psi \in X_{0}$ implies $\varphi \psi^{\sigma} \in X_{0}$, hence $\psi^{\beta} \psi^{-1} \in X_{0}$. Let l^{2} be the order of ψ. If $\mu>r$, then by (7), (8) and (9), $\psi^{\beta} \psi^{-1}=\psi^{c-1}=\left(\psi^{l^{\prime}}\right)^{y}$ for some $\sigma \in(\mathcal{B}$ $\left(k_{n} / k\right)$, where $(y, l)=1$. Hence $\psi^{\prime l^{\prime}} \in X_{0}$. If $\mu \leqq r$, trivially $\psi^{l^{\prime \prime}} \in X_{0}$. Therefore X_{3} is an l^{r}-subgroup of $\mathscr{D} \Psi$.
(ii) Conversely, suppose that X_{0} is an l^{r}-subgroup of $\mathscr{D} F$. Let $\% \in X_{0}$, then
 by (6) $\%^{s}=\varphi \psi^{3}$ for any $\sigma \in \mathscr{G}\left(k_{n} / k\right)$, and, by (7) and (8), $\psi^{s}=\psi^{c}$, where $c-1 \equiv 0$ (mod. l^{7}). Hence $\%^{3}=\mathscr{C} \psi^{\top} \in X_{0}$. Therefore $\mathscr{S}^{\top}=\mathfrak{F}$ for any $\sigma \in \mathscr{F}\left(k_{n}^{\prime} k\right)$. Thus the lemma is proved.

§ 3. Theorems

Denote by $\{a\}$ the cyclic group generated by $a \in k$, and set $\{a\}_{n}=\{a\} / k_{n}^{l n}$ $\cap\{a\}$. Let ψ be a generating character of $k_{n}(\omega) / k_{n}, \omega$ being an l^{n}-th root of a. If we denote by $\{\psi\}$ the character group of $k_{n}(\omega) / k_{n}$, we see $\{a\}_{n} \cong\{\psi\}$. Thus, denoting by $[a]_{n}$ a generating class of $\{a\}_{n}$, we can identify $[a]_{n}$ with ψ.

Let $K=k_{n}\left(\omega_{1}, \ldots, \omega_{t}\right)$, where ω_{i} is an $l^{n_{i}}$-th root of $a_{i} \in k(i=1, \ldots, t)$ and $n=\max \left(n_{1}, \ldots, n_{t}\right) ; \psi=\left\{a_{1}\right\}_{n_{1}} \times \ldots \times\left\{a_{t}\right\}_{n_{t}} ; A$ an abelian extension over k with the character group D. Put $X=\mathscr{D} \times \Psi$. Then the character group
X^{*} of $A K / k_{n}$ and the group X correspond each other by means of (2) and (3), restricting \mathscr{D} to $A k_{n} / k_{n}$. Therefore by lemma 3 and lemma 4 we have

Theorem 1. Every k-meta-abelian l-field M over k corresponds to an l^{r}-subgroup X_{0} of $\Phi^{*} \times \Psi$, where \emptyset^{*} is the restriction to $A k_{n} / k_{n}$ of the character group \mathscr{D} of an abelian extension A / k and $\Psi=\left\{a_{1}\right\}_{n_{1}} \times \ldots\left\{a_{t}\right\}_{n_{t}}$ for $a_{i} \in k$ and for natural numbers $n_{i}(i=1, \ldots, t)$; and conversely.

Notations being as in theorem 1 , let p be a prime ideal of k not ramified in $M / k ; \mathfrak{P}$ a prime divisor of \mathfrak{p} in k_{n}. If f_{0} is the degree of \mathfrak{p} with respect to k_{n} / k, then by the translation theorem of the class field theory we have for any integer x

$$
\begin{equation*}
\varphi^{*}\left(\mathfrak{P}^{x}\right)=\left(\lambda_{k \rightarrow k_{n}} \varphi\right)\left(\mathfrak{P}^{x}\right)=\varphi\left(N_{k_{n} / k} \mathfrak{B}^{x}\right)=\varphi\left(\mathfrak{p}^{f_{0} x}\right), \tag{10}
\end{equation*}
$$

$\lambda_{k \rightarrow k_{n}}$ being as (4). For $\psi=\psi_{1}^{x_{1}} \times \ldots \times \psi_{t}^{\chi_{t}} \in \Psi, \psi_{i}=\left[a_{i}\right]_{n_{i}}(i=1, \ldots, t)$, put $n=\max \left(n_{1}, \ldots, n_{t}\right)$ and $\dot{a}=\prod_{i=1}^{t} a_{i}^{x_{i} l^{n-n_{i}}} . \quad$ Put further $K=k_{n}\left(\omega_{1}, \ldots, \omega_{t}\right), \omega_{i}$ being an $l^{n_{i}}$ th root of $a_{i}(i=1, \ldots, t)$, and $\psi^{*}=\ell(\psi), \iota$ being the homomorphism of Ψ onto the character group of K / k_{n} by means of (3). Then $\psi^{*}\left(\mathfrak{P}^{x}\right)$ $=\left(\frac{a}{\mathfrak{P}^{x}}\right)_{l^{n}} \quad$ Moreover by lemma $1 \psi^{*}\left(\mathfrak{P}^{x}\right)=\left[\frac{a}{\mathfrak{P}}\right]_{n}^{x}$ in k_{n}. If $\psi^{* l^{r}}\left(\mathfrak{P}^{x}\right)=1$, then by lemma $1 \psi^{* i r}\left(\mathfrak{P}^{x}\right)=\left[\frac{a}{\mathfrak{P}}\right]_{n-r}^{x}=1$, hence by lemma 2

$$
\begin{equation*}
\psi^{*}\left(\mathfrak{P}^{x}\right)=\left[\frac{a}{\mathfrak{q}}\right]_{n}^{x}=\left[\frac{a}{\mathfrak{p}}\right]_{n}^{x}, \tag{11}
\end{equation*}
$$

where the last is the symbol in k. Now we define $\psi\left(\mathfrak{p}^{x}\right)$ by

$$
\begin{equation*}
\psi\left(\mathfrak{p}^{x}\right)=\left[\frac{\boldsymbol{a}}{\mathfrak{p}}\right]_{n}^{x}, \tag{12}
\end{equation*}
$$

and, for $\%=\varphi \times \psi \in \Phi \times \Psi, \chi\left(p^{x}\right)$ by

$$
\begin{equation*}
\chi\left(p^{x}\right)=\varphi^{f_{0} x}(p) \psi^{x}(p) . \tag{13}
\end{equation*}
$$

Theorem 2. Let M be a k-meta-abelian l-field over k corresponding by theorem 1 to an l^{r}-subgroup X_{0} of $\emptyset \times \Psi$. Then the degree of a prime ideal p of k, not ramified in M / k, is equal to $f=f_{0} f_{1}$ where f_{0} and f_{1} are the smallest integers such that $l^{n} \mid N p^{f_{0}}-1$ and $\%\left(p^{f_{1}}\right)=1$ for all $\% \in X_{0}$, respectively.

Proof. \mathfrak{P} being a prime divisor of \mathfrak{p} in. k_{n}, the degree of \mathfrak{p} with respect to M / k is equal to the product of the degrees of \mathfrak{p} with respect to k_{n} / k and of \mathfrak{B} to M / k_{n}. Since the former is equal to f_{0}, we have only to show that the
degree of \mathfrak{F} with respect to \dot{M} / k_{n}, i.e. the smallest number x such that $\%^{r}\left(\mathfrak{P}^{r}\right)$ $=1$ for all $\varkappa^{*} \in X_{0}^{*}=\iota\left(X_{0}\right)$ is equal to f_{1}. By theorem 1 and lemma $3, \chi^{*} \in X_{0}^{*}$ implies $\eta^{*}=\varphi^{*} \psi^{*}$ and $\psi^{* l^{r}} \in X_{0}^{*}$ for some $\varphi \in \mathscr{D}$ and for some $\psi \in \Psi$. On the other hand, by (10), (11), (12), and (13) we see that $\chi^{*}\left(\mathfrak{F}^{r}\right)=1$ under the condition $\psi^{* l^{r}}\left(\mathfrak{P}^{x}\right)=1$ if and only if $\psi\left(p^{x}\right)=1$. Furthermore, by (11) and (12) $\psi^{* / r}\left(\mathfrak{P}^{x}\right)=1$ if and only if $\psi^{r}\left(\mathfrak{p}^{r}\right)=1$. Whence the theorem follows immediately.

References

[1] A. Fröhlich, Non abelian laws of prime decomposition, Proc. Int. Congress Math. 1954, Amsterdam. pp. 20-21.
[2] A. Fröhlich, On fields of class two, Proc. London Math. Soc. (3), 4 (1954), pp. 235-256.
[3] Y. Furuta, A reciprocity law of the power residue symbol, J. Math. Soc. Japan, 10 (1958), pp. 46-54.
[4] W. H. Mills, The m-th power residue symbol, Amer. J. Math., 73 (1951), pp. 59-64.
[5] W. H. Mills, Reciprocity in algebraic number fields, ibid., pp. 65-77.
[6] H. Hasse, Invariante Kennzeichnung relativ-abelscher Zahlkörper mit vorgegebener Galois Gruppe über einem Teilkörper des Grundkörpers, Abh. Deutsch. Akad. Wiss. Berlin, 8 (1947).
[7] S. Kuroda, Über die Zerlegung rationaler Primzahlen in gewissen nicht-abelschen galoischen Körpern, J. Math. Soc. Japan, 3 (1951), pp. 148-156.
[8] L. Rédei, Bedingtes Artinsches Symbol mit Anwendung in der Klassenkörpertheorie, Acta Math. Acad. Sci. Hungaricae, 4 (1954), pp. 1-29.
[9] L. Rédei, Die 2-Ringklassengruppe des quadratischen Zahlkörpers und die Theorie der Pellschen Gleichung, ibid., pp. 31-85.

Mathematical Institute

Nagoya University

[^0]: ${ }^{1)}$ Throughout this paper we always assume that \mathfrak{p} is prime to l.
 ${ }^{2)}$ The symbol $\left[\frac{a}{p}\right]_{n}$ is defined for $n \leqq 0$ only for the sake of simplifying the definion.
 ${ }^{3}$) By the degree of a prime ideal \mathfrak{p} of k with respect to a normal extension Ω / k we mean, as usual, the number f such that $N_{\Omega / k} \mathfrak{\beta}=p^{f}, \mathfrak{P}$ being a prime divisor of \mathfrak{p} in Ω.

[^1]: 4) Throughout this paper the notation \times means the direct product.
