A SUM CONNECTED WITH QUADRATIC RESIDUES

L. CARLITZ

1. Let p be a prime > 2 and m an arbitrary positive integer; define

(1.1) Sm=r27::,’(—1)’""(%)(’;’),

where (7/p) is the Legendre symbol. We consider the problem of finding the
highest power of p dividing S,.. A little more generally, if we put

(1.2) Sn(a) = é(—l)"‘"(rgg)( ")

where @ is an arbitrary integer, we seek the highest power of p dividing Su(a).
Clearly S = Su(0), and Sm(a) = Sn(b) when a=5 (mod p).
In the first place it follows from (1.2) that Su(a) satisfies the recurrence

(1.3) Smii(a) = 4Sn(a) = Sm(a +1) — Swula),
where it is understood that 4 applies only to a. Repeated application of (1.3)
gives

(1.4) Smir(a) = 4Spla@) = (=17 (7 ) Swla+s).
s=0 S

We may also write (1.3) in the form
(1.5) Sm(a“}"l):Smil(a)‘i“Sm(a);

which implies

(1.6) Suatr) =33 (") Snista).

s=0

In particular for » =, (1.6) becomes

(1.7) S (2 ) Smista) =0,

s=1 S

2. It follows from
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(-jr)—) =7?"Y% (mod p)

that (%)____;,,ﬁ"(p—nlz (mod p™%)
for arbitrary #n 0. Consequently (1.2) becomes
(2.1) Smla) = ﬁo( — 1 )4 @P I (mod p.

We recall that for arbitrary positive &

m

1 m-rf M k
(2.2) P N Dt (v [CRR)
is an integer (for a=0, (2.2) is a Stirling number of the second kind). If now
E,(m) denotes the highest power of p dividing m!, it is clear from (2.1) that
(2.3) Sm(a) =0 (mod p™™).

In view of the definition of E,(m), (2.3) may be restated in the following
way: Sm(a)/m! is integral (mod p).

3. It may be possible to improve (2.3). We make use of the following
familiar formula for Gauss sums (see for example [2, Th. 215]):

dud, S 7s 7 =il
3.1) §($)e =(5)G,, (e = &2™P),
where

Cwlisy o p% (p=1 (mod 4))
(3.2) Gy = z}(p) = {ip‘” (p=3 (mod 4)).

Note that (3.1) is valid for all ». It follows that

m p=1
GpSmla) = E( - 1)m-r§ (-;*)e‘”a)s

so that
s S\ as; s m
(3.3) GoSula) = 3 (5 )&= D)™

Clearly (3.3) implies

(3.4) GpSm(@) =0 (mod (e —1)"),
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where we are now operating in.the cyclotomic field k(e). Since in this field we

have
(3.5) (p) =(e~1)"74
(3.2) and (3.4) yield

(3.6) Sm(a) =0 (mod (e—1)""7V72),
Define the integer & by means of
(3.7) (h=1)(p~1) <m~ 3 (p=1) £ h(p=1).

Since Sn(a) is a rational integer, it follows from (3.6) and (3.7) that
(3.8) Sm(@) =0 (mod p"),
which again is valid for all a.

We recall that

_{m m _m .
Ex(m) =[5 |+ [ Ge ]+ .o < )
hence using (3.7) we may verify that h = E,(m) so that (3.8) implies (2.3).

In particular for
1
-2~(p—1) <m£p-1,

k=1 while E,(m)=0. The difference %~ Ep(m) may indeed be arbitrarily
large; for example if

pk—l-—%(p—1)<mépk—1,

we find that

so that k— Ep(m) = k.
4. Returning to (3.3) we consider the particular case

(4.1) m—%—(p—l)=h(p—1);
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for such m the value of & computed by means of (3.7) will coincide with the,
value of  in (4.1). Now (3.3) implies

@2) (e~ D" GpSular = 5 (5) = (£Z1)"

We shall compute the residue of the right member (mod ¢—1). Since

it is evident that (4.2) becomes

(43)  (e=1)"GpSmla) = ) (%)Sm _ ”"(g)swm

s=1
= -1 (mode—1).
Next we replace (3.5) by the more exact statement

(4.4) p=(e=1)?"" (mod (e~1)?),

which is easily proved. Also if p=2k+1, the identity (see for example [3,
p. 1761)

= S(s+1) * -2(2s-1)
?s = I;I(l—e )
implies
p-1
(4.5) Gp= 20155’5(—1)’?(5—1)’*1@! (mod (e—1)*").
Using (4.4) and (4.5), (4.3) becomes

(4.6) 75 Sm(a) = — (= 1)¥/E!  (mod p).

Hence for m satisfying (4.1) the exponent % furnishes the highest power of p
dividing Sw(a) and the residue of p™*Sx(a) satisfies (4.6). Note also that the

right member of (4.6) is independent of a.

5. When m does not satisfy (4.1) it is more difficult to simplify the right
member of (4.2). Let

(5.1) (h-—l)(p-—l)<m—%~(p—1)_.<h(1>—1);

it is convenient to put
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(5.2) mtl=kp-1+ 5 (p~1) (1=15p-2).

Thus it is clear from (3.8) that the right member of (4.2) is divisible by
(e—1)" and we have

-1 3__ m
(5.3) (e—1)"”1"”GpSm(a)E(e—l)"g,:(%)s“(i_—%) (mod ¢ —1).

€

We accordingly seek the residue of

(5.4) Tl = 2 (5)e(21)" (mod (=1,

Clearly we may put

Twla) = Ao+ Ale—1) + ... + Ale—1),
where the A’s are rational integers; it follows from (3.8) that A= ... = A/
=0 (mod p) and may therefore be ignored. Thus in the expansion of the right
member of (5.4) we need only retain the term in (e—1). Now we have

((1 +9;)S - 1)"‘ = x‘”’é( - ( ” )(1+s>’s,

so that

(1+x)”s((1+’;}j“ 1)m: x“mr},;:’( _ 1)m—r< 7;1 )(1+x)(a+r)s

m

=>( - 1)m—r< 7;’! )mi’_\:)d<(a ‘}'7’)S> oo

r=0 t=0 t

Hence by the above remark we get

(5.5 (e=1"Tw@ = 35 (5) B -0 (7)) (mod <1,

To further simplify this result note that the inner sum in the right member is
the m-th difference of a polynomial in a of degree m +/; thus only terms of
degree = m make any contribution. Now for a term of degree f, where
m<t<=m+l, we get

p-1

sY & (p-1)/2+1
2 )st=20s ,
S(5)¢=2

s=1

and in view of (5.2) this sum vanishes (mod p) unless #=m+1 in which case
the sum= —1. Thus (5.5) becomes
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(5.6) (e=1)"Tla) = =107 (7 )@+ )™ (mod e=1),

(m+l)‘

Finally as in the proof of (4.6), we may simplify the left member of (5.3).
Thus using (5.4) and (5.6) we obtain

m

-h . (“1)k 1 m-r{ M m+
(5.7) p7"Smla) = ~n T mEDT }_.( 1) (r)(a+r) " (mod p),

where p=2k+1 and & and [ are defined by (5.1) and (5.2). When m satisfies
(4.1) it is easily verified that (5.7) reduces to (4.6). Thus (5.7) holds for all

m. We may therefore state the following

TueorReM. Let p=2k+1 be a prime, a an arbitrary integer and m a positive

integer; define h and |l by means of
(h=1)(p-1) <m= £ (p=1D Sh(p=1), m+I=h(p=1)+ 5 (p-1.
Then Sm(a) satisfies (5.7). In particular when 1=0, (5.7) reduces to

-h _ (=1 _
(58) b Sm(a) = - B (mod j’) (1—0)

Comparison of (5.7) with (2.1) leads to a rather curious congruence.

It should be remarked that the right member of (5.7) may be divisible
by p; thus we have not in all cases determined the highest power of p dividing
Sm’a). However when m=h(p—1)+ (p—1)/2, k is the correct exponent.

For small values of /, the right member of (5.7) can be reduced further
using known properties of Stirling numbers of the second kind (see for example
[1, §58] and [41) :

m

1 (M 1
Am+l,m= mrgo( _1)m r( e )1’"” .
We have in particular
A 1
m+1,m = —2*m(m+1),
Amiom = z—lim(mw}- D(m+2)3m+1),

Amitm = ‘Ilgmg(m+ 1*(m+2)(m +3).

On the other hand it is clear that (5.7) can be rewritten as
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-h _ (=" 1 K m 1\ mei-t
(59) ? Sm(a) = '*’k"’i‘" (7%‘_*_—1‘5“"(;7}-_‘_1) t—Zm< ¢ )a f:mrl,i
mod »).
Thus for example, when a =0, (5.9) yields
(-1 m
- o (I=1
e ) (=DF mBm+1) _
P7"Sm= L 94 (1=2)
(-=1)* m*(m+1)
- k! - “/4’78'”' - (l: 3)0

6. When p =3 it is easily proved that

_ oy 2m+ta
6.1 sutar < | 7O o even

(=3)m-bi, (m odd),

where ¢ = —2 for 3/m, c= +1 for 3+m. It is easily verified that (6.1) is in
agreement with the general results above.

In conclusion a word may be said about the sum

m

(6.2) Rala) = 23(759)(7)-
fm=mpt+m,r=rp+7r,0=2m<p,0=7<p,
(7)< (")) mot .

so that (6.2) becomes

Ru(a) = 2(&;1)( 7:1 )( 7;’: ) =2"Ru(a). (mod p).

Thus to find the residue (mod p) of Rn(a) it suffices to consider the case

0= m <p. However it is not evident how to find the residue in this case.
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