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In [0],1} the writer proved some theorems of Hasse type for two orthogonal

groups which operate on the same vector space. In this paper, we shall further

generalize those results in two directions. One is to consider the propositions

of that type for two orthogonal groups which operate respectively on two vector

spaces whose dimensions are different from each other, and the other is to deal

with some conspicuous subgroups of an orthogonal group simultaneously which

play important roles in the structure theory for orthogonal groups. For this

reason, the present paper consists of three steps §1, §2 and §3 which give the

generalizations in the above sense of the results in the corresponding sections

of CO].

§ 1 is of purely algebraic nature and the ground field K may be an arbi-

trary field of characteristic =̂  2. The fundamental statement (Theorem 1) shows

that the possibility of imbedding (in a certain sense) a group in another group

is equivalent to the representability (in a certain sense) of a form by another

form each of which corresponds to one of those groups respectively. In § 2,

we investigate, in the case where K is a locally compactly valued field, local

properties of the groups and forms. These are summarized in Theorem 2. It

is remarkable that though the Clifford algebras are used explicitely to charac-

terize the usual representability of forms over our K, the imbedding of groups,

which is the same thing as the similar representability of forms, may be charac-

terized by the indices of forms which are a much simpler notion than the

Clifford algebras. Lastly, in § 3 where we assume that K is a field of algebraic

numbers or a field of algebraic functions of one variable over a finite field of

characteristic =*F 2, we first prove theorems of Hasse type for the representabili-

ties of forms (Theorem 3, 4), which are essentially reduced to the fundamental

theorem of algebras over our K. Then, we may immediately transfer Theorem

4 to that for groups (Theorem 7). Here, we observe some examples of the
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x> Numbers in brackets refer to the References at the end of the paper.
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fact that 'a property 77 of an object O(K) follows from the fact that the object

Op(K), which is obtained naturally from O(K) by transition to K$ from K, has

a weaker property 77' than 77 for every place p in K9 (Theorem 6, 8 etc.). It

seems interesting to the writer that such facts are, in the present case, based

on Theorem 5 which is stated by making use of the indices of forms.

The writer wishes to express his thanks to Mr. T. Tamagawa who gave

him a suggestion on the arithmetic of algebras.

§ 1. Preliminaries

Let if be a field of characteristic ±? 2, and let V and W be finite dimen-

sional vector spaces over K. Suppose that there is a semi-linear mapping Θ of

W into V. Let / be a symmetric bilinear form on V. We denote by θf a form

on W which is defined as follows:

Θf(x, y) ••= {f{θx, Θy))*'1 for x, y e W,

where β is the automorphism of K associated with Θ. It is easily verified that

thus obtained θf is again symmetric bilinear. Now, let Φ be another semi-linear

mapping of the third space U into W with the associated automorphism ψ of

K, then the mapping θ ° Φ of U into V is a semi-linear mapping with the auto-

morphism ψθ, and it follows at once that (Θ ° Φ)f= Φ(θf) for the form / on F.

Particularly if θ is a semi-linear isomorphism between W and V, then we have

d(θf) ~~ Λ/) 9" 1 and p(θf) = v(f) for a nondegenerate form / on V, where d(f)

is the discriminant of the form/2) relative to some basis of V and v(f) is the

index of/.3)

Now suppose that two nondegenerate forms / and g are given on the

spaces V and W respectively. We say that / semi-similarly represents g : f % g9

if g- λ θf for some semi-linear injection θ of W into V and for some λ e ϋΓ*.4)

If the injection θ is linear, we say that / similarly represents g: / S g, and,

furthermore, if the scalar λ = 1, then we say simply that / represents g: f~ g.

Particularly if V and W have the same dimensionalities, we take away the

arrows in the above notations and say that / and g are semi-similar '* f°*> g9

similar : f°og and congruent : f ~* g respectively.

2 ) We often use simply the word 'form' for 'nondegenerate symmetric bilinear form.'
3> See the footnotes 15) in [0].
4> Semi-linear injection of W into V means the isomorphism of W into V. K* is the

set of all non-zero elements in K.
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PROPOSITION 1. Let f and g be nondegenerate symmetric bilinear forms on

the spaces V and W respectively- Then, in order to have f^g (f^gorf^g)

it is necessary and sufficient that there exists a form h on a suitable space U

such that f^gΛ h (/oo g + h or f — g+h).δ)

Proof. Suppose that there exists a form h on a space U such that f

Then, there is a semi-linear isomorphism Θ between W x U and V and an ele-

ment λ e K* such that g+h = λ* Θf. Let Θf be the restriction of θ to W(θ'(w)

=zΘ(w,0), wE W). Then, Θf is clearly a semi-linear injection of W into V

such that g-λ Θff. Thus, we have f % g. Conversely, suppose that f % g.

Then, there is a semi-linear injection Θ' of W into V and an element λ EΞ K*

such that g = λ Θff. It is clear that the image space β'(W) is non-isotropic

in V. Therefore we get an orthogonal decomposition, V=6'(W) ®U. Let β"

be the semi-linear automorphism of U with the same associated automorphism

as Θf. Using this Θn, we put h = λ β'J/* on F and define a mapping Θ of PF x £/

into V by putting θ(w, u) = β'(w) + 6"(w), w & W, uEU. Then, it follows

immediately that Θ is a semi-linear isomorphism between TF x £/ and V and

λ Θf = g + h. Thus, we get f^g + h. By specializing the conditions on (9 and

λ, we get at once the propositions for the similar representability and the re-

presentability of forms.

PROPOSITION 2. Let f and g be forms on the spaces V and W respectively.

If f semi-similarly represents g : / % g, then, we have 0 = v(f) — v(g) = dim V

- dim W.

Proof. Let Θ be the semi-linear injection of W into V such that g= λ Θf,

λ 6Ξ Hf*. Then, Θ(PF) is non-isotropic in V and we have g~λ &fx, where fι

is the restriction of / to Θ(W). Since g^fi, we have vig) = z^(/i) ̂  ^(/) . This

proves the first inequality. To prove the second inequality, it is sufficient to

show that v{f)-v{fi)^άϊmV-ά\mWu Wι = Θ(W). Let V=W^W2 (or-

thogonal decomposition) and let/2 be the restriction of/ to W2. First, assume

that z>(/i) = 0, and suppose that v(f) > dim PF2. Let f / C F b e a totally isotropic

subspace of dimension v{f), and uι (i = 1, . . . , v(f)) be its some basis. Ac-

cording to the above orthogonal decomposition, we set m = w\ + eί f, ^ £• FΓi,

5) ^H-Λ is the form on TΓ x Z7 defined by (g+h)((wi,ui), (11% m)) = g{wi, 102) +Λ(«i, «2)
for u;< e TF, «* ε ί / / = l , 2 .
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w2i& W z, i=l, . . ., v{f). Since v(f) > dim W2, there is a nontrivial linear
w/)

relation ΣU/^/ = 0. On the other hand, as m is a basis of U, we get u - "ΣiλiUi
i = ί

-"Σλiiv] ^ 0 G Wi. Since w e U9 it follows that /i(w, u) = 0. This contradicts

the assumption that z/(/Ί) = 0. Next, suppose that *(/i) =̂  0, and let PFi = W[ ® Wϊ

be the orthogonal decomposition of Wi such that v(fi) = vifί), v(fΊ') = 0, where

/ί and /{' are the restrictions of / to Wί and PFί' respectively. Applying the

first case to the space W" ® W2, we have v(f" +/2) ^ dim W2. Since i>(/)

= v(f[) Λ-vifi +f2) - v(fi) -f v{fι J\-f2), we also have the second inequality for

this case.

Now, for a form / on a space V, we denote by O{V,f) the orthogonal

group of /, by O+(V,f) the rotation group of / and by Ω(V,f) the commutator

subgroup of O(V,f). Furthermore, we denote by Γ{V, f) any one of these three

types of groups. It is then clear that Γ(V, λf) = Γ( V,f) for any λ e K*. Let

W be another vector space and Θ be a semi-linear isomorphism between TF and

V. Let <7 be a linear automorphism of V. We define a linear automorphism

βa of W by putting

It is easy to see that <9<;τ = Θσ Θτ and σ leaves / invariant if and only if Θσ

leaves θf invariant. Moreover, observing that the group Ω(V9f) is generated

by the squares of the elements in O(F,/),6 ) we have Θ(Γ( V,f)) = Γ(PF? β/),

where the groups Γ's on both sides belong to the same type of that three

groups.n Assume that there are forms /, g on the spaces V, W respectively

such that / ^ g. By definition there exists a semi-linear injection Θ of W into

V such that g= λ Θf for some Λ e -fiΓ*. Applying the above consideration to

the form/i on ΘiW) which is the restriction of/to Θ(TF), we get Θ(Γ(Θ(W0,/i))

= Γ(W, g). Thus, we say that the group Γ(W, g) is semi-linearly imbedded in

nv,f) if

Θ(Γ(Θ(W),fi)) = ΠW,g)

for some semi-linear injection Θ of W into V. Particularly, if Γ( W, g) is semi-

linearly imbedded in Γ(V,f) with a linear injection Θ, we say simply that

Γ(W, g) is linearly imbedded in Γ(V,f). Using these terminologies, we get the

[1]. p. 23. Prop. 10.
We always use two -Γ's in this sense.
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following fundamental relation between forms and the corresponding groups.

THEOREM 1. Let V and W be vector spaces over a field K of characteristic

=̂  2, and let f and g be nondegenerate symmetric bilinear forms on V and W re-

spectively. Then, a group Γ( W, g) is semi-linearly (linearly) imbedded in a group

Γ(V,f) if and only if f semi-similarly (similarly) represents g : /

Proof. The sufficiency is already verified. Conversely, suppose that

Γ(W,g) is semi-linearly (linearly) imbedded in Γ(V,f). Then, there exists a

semi-linear (linear) injection Θ of W into V such that Θ(Γ(Θ(W), fi)) = Γ(W, g),

where fx is the restriction of / to Θ(W). Thus, we are reduced to the following

lemma.

LEMMA. Let & be a semi-linear (linear) isomorphism between W and V

such that Θ(Γ(V,f))^Γ(W,g), then it follows that f<~ g(foo g).

Proof of Lemma. Let dim V = n. If n = 1, there is nothing to say. For

n ^2, we devide the proof into several parts.

Case A. n ^ 3, K * GF(3). Since Θ(Γ(V,f)) = Γ(W, Θf) = Γ( W, g) and

Ω(W, Θf)CO+(W, Θf), it is sufficient to show that g=λ-Θf, λ£ΞK*, if

Ω(W, Θf) CO+(W,g). Let P be any non-isotropic plane in the sense of Θf.

Then, we have an orthogonal decomposition W= P® P ® ^ Let βi, e2 be some

orthogonal basis of P and let e3, . . . , en be some basis of P®^ We set

Θf(eu eι) = c, Θf(e2, e2) = d. Since K # GF(3), there exists ί G i ί * such that

t2 + d/c*0. By this t, set x = (f - d/c)l(f + die), y = 2tl(f + die). Then, it

follows that jy =̂= 0 and x2 + (d/c)y2 = 1. Relative to the above basis a (ί = l?

. . . , w) of FF, the matrix

Λ: -(d/c)y

y x

1

1 J

O+(W, Θf)

V This is a generalization of Lemma 1 in [0].
9) p®f means the conjugate space of P relative to Θ/.
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\Ω(W,θf)CO{W,g),

where ξ = x2 - (d/c)y2, y = 2xy. Since y # 0, it is easily seen that £ # 1. Since

τg = g9 we have

9 eϊ),

g{e2, ei) =g(τe2, = g( - ^i^ n)

Therefore

2, ft)=0,

- (d/c)-ηg(eu a) + (f - 1)^(^2, ft) = 0.

But the determinant of the coefficients of these linear equations = (ξ — l)2-\-(d/c)-q2

= 2(1 - £) # 0. Thus, we get g(eu ei) = g(e2, ft) = 0 U ̂  3). This means that

p®/ Q pg^ Comparing the dimensions of the spaces on both sides, we have

p®f _ pg^ Now, let a # 0 be any non-isotropic vector ELWIΠ the sense of Θf.

Since /i ̂  3, there exists non-isotropic planes P, Pf in the sense of Θf (and

necessarily in the sense of g) such that <α> = PΓ\P'. Thus, <tf > Θ / = (P Π P θ Θ /

= P Θ / U P ' Θ / = P5' U P'g =(PΠ P')g = <«>^. Then, by the argument in Lemma

1 in [0], we have g= λ θf, λ e ̂ * .

Case B. w ̂  3, JKΓ = GF(3). It is known that the two finite groups O+( V,f)

and O+(FF, ̂ ) have different orders if/ and ^ are not congruent.10) Therefore

if / and g are not semi-similar (similar), there can not be any isomorphism Θ

between IF and V such that 6KO(F,/)) = 0{W, g) or Θ{O+(V,f)) = 0+{W, g).

Furthermore, since n ̂  3, i2( F,/) has index 2 in O+( V,f),n) and so Ω(V,f) and

^( W, g) can not be isomorphic each other if / and g are not semi-similar

(similar).

Case C. n = 2 and if is infinite. We shall show, as in Case A, that

g= λ Θf if i2( TF, 6>/) C O( PF, ̂ ) . Let eu e% be some orthogonal basis relative to

10> [2]. Chapt. VII. §§169-170.
u> [3]. p. 61. §41.
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Θf in PF. We may assume without loss of generality that the matrices of the

coefficients of Θf and g relative to the above basis are of types ί ,J and

b c

= (t2-d)/(t2 + d), y^2t/(f + d). Then,

c) respectively. By an element t e K* such that f ± d # 0, set

and

where ξ = x2 — dy2, y — 2xy. Comparing the (1,1)-components on both sides in

the following matric relation

'/? -dη\(\ b\(ξ -dη\_(l b\
\ η ξ )\b c)\-η ξ ) \b c)

we get ξ2 + 2bξii + C7ft = 1. Since ?2-fc// = l and ^=^0, it follows at once that

2bξ + (c — d)y = 0. Thus, observing that K contains infinitely many elements,

we get b = 0 and c -d : g=Θf.

Case D. n = 2, K = GF(q) (the finite field with q elements). We shall show

that the groups Γ(V,f) and Γ(W, g) have different orders if v(f) = 1 and v(g)

= 0. For / with v(f) = 1, there is a basis of V such that the matrix of the

coefficients of / is of type f-j 0 ) relative to it. The correspondence ί -/ J

<r>χ gives the isomorphism O+(V,f) = K*. Thus, we see that the order of

O+(V,f) is <jf-l. On the other hand, for g with v(g) = 0, let ( 1

 rf) be the

matrix of the coefficients of g relative to some orthogonal basis in W. Then,

the correspondence y ^)ox + v!-dy, with x2 + (iy2 = 1, gives the iso-

morphism O+{W, g) = NT where N is the group composed of all elements G L

= K(\l-d) with norm = l (relative to this quadratic extension). By Hubert's

lemma, we have N^L*/K*. Thus, the order of O+(W, g) is tf-fl. Therefore

our assertion is true for Γ=O or Γ=O+. Now, by the above correspondence,

we have K*IK*2 a? O+( V,f)/Ω{ V,f). Hence, the order of Ω(V,f) is (q-l)/2.

On the other hand, there exists a homomorphism of N/N2 onto O+(W, g)lΩ{ W, g).

Since N is the cyclic group of an even order, it follows that [O+( W, g) : Ω{ W, gΠ

^ 2. Therefore, order of Ω(W, g) ^ (order of 0+{W, g))/2 = (q + l)/2 > (q-l)/2
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-order of Ω(V,f). Thus, the assertion is also true for Γ=Ω. Q.E.D.

Re?nark. We say that Γ(W, g) is abstractly (topologically) imbedded in

Γ(V,f) if there exists a non-isotropic subspace W'CU such that dim Wr

= dim W and Γ(W, g) is isomorphic with Γ{W',ff), where /' is the restriction

of/to W\ as abstract (topological) groups (when the basic field iΠs topologized).

We shall close this section with some remarks on the discriminants and

the Clifford algebras of forms.12) As for the discriminant d{f) of a form / on

V9 we set

J(/) = (-l)Λ ( n-1 ) / 2rf(/), where n = dimV.

Now, let g be another form on W9 and let (£(/) and &(g) be the Clifford alge-

bras of the forms. We put

/, g) = <£(/) ® «(#) ® (rf(#), d(f)d(g)),

The following properties of these algebras will be used later.

(1) If n - m ΞΞ 2 (mod. 4), then J(/) J(#) = - d(f) dig), where Λ = dim V,

m — dim W.

(2) If w is even, Maf, g)~(a, J(f)) ®W(f, g), aGK*.

If f̂ is odd, Wafig)<*>(<*, (-l)in+md(g))(g)mf,g).

(3) If n is even, S(β/, ̂ )-(«, Δ{f))

If 9i is odd, (

§ 2. Local considerations

In this §, we assume that if is a locally compactly valued field of charac-

teristic φ 2. Let V be an w-dimensional vector space over K and let / be a non-

degenerate symmetric bilinear form on V. If K is the complex number field,

then always v{f) = [w/2]. Let g be another form on an m-dimensional space

W. Since every form / is congruent to the unit form, / represents g provided

n^m. If K is the real number field, then we get v(f) = min (c(f), c*(f))9

where c(f) is the number of positive coefficients in a canonical form of / and

<*(/) = «-<(/).

PROPOSITION 3. Let K be the real number field and let f and g be forms

12> [ 0 ] . § 1 .
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on the spaces V and W respectively. Then, f represents g-f^g if and only if

0 ^ c(f) - c(g) ?= n- m (0 ^ c*(f) - c*(g) ̂  n- m), where n - dim V, m = dim W,

and f similarly represents g:fSg if and only if 0 ̂  v{f) —v(g) ^n — m.1S}

Proof. By Proposition 1, f~g if and only if there exists a form h such

that / — g + h, namely :(/) = c(g + h) = c(g) + c(h). Thus, our first statement is

proved. The necessity assertion in the second statement is already proved

(Proposition 2). Suppose that 0 ^ v(f) - v(g) ^n- m. Then, by suitable ε, y

= ± 1 , we have v(f) = c(εf) and p(g) = K^) and so we are reduced to the first

case.

For our purpose in § 3, we give here some formulas on the forms over the

real number field. It is easily verified that d(f) - ( - lV*(/) and β ( / ) M - l ,

( ^ιy*(f)(t*(f)+i)i2^ B y r simple computations, we get the following formulas:

(4) 3ί(/, #) ~ ( - 1, ( - iy<*(/>-^)><^-^+i)/2)?

(5) S(/, g) - ( - 1, ( - i)^-^)^/)-^)-^).

From (4) and (5) it follows that

(6)

(7)

9ί(/? g)

9K/, g)

S(/, ^

4-1

if

if

if

g) = o,

^) = 1,

3

2

1

(mod.

(mod.

(mod.

4),

4),

4),

) + l if c*(f)-c*(g)=2,3 (mod. 4).

Now, let K be non-archimedean. We prove some propositions on the local

representabilities of the forms.

PROPOSITION 4. Let K be non-archimedean and let V and W be n and m

dimensional vector spaces over K. Let f and g be forms on V and W respectively.

Then,

if n-m-l, / ~ g if and only if 35(/, g) ~~ 1,

if n - m = 2, fez g if and only if SS(/, g)~l in K(yίJ(f)J{g)),

ifn — m^3,f??g for any f on V and g on W.

Proof. By Proposition 1, / ̂  g means that there exists a form h such that

f*g-\ h and this is equivalent to say that there exists such a form h on an

in - m)-dimensional space as d(f) — dig) d{h) and &(/) — &(g+ h) —

13> This condition is trivially satisfied for forms on V and W(n^m) over the complex
number field.
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® Uh) ® (dig), d(h)), namely d(h) - d(f) dig) and <£(ft) - <£(/) ® «(#) ® (d(g)9

dif)dig)) -^Wif, g). From the theorem in [4] 1 4 ) our proposition follows by-

observing that Δ(f) Jig) = - dif) dig) iίn-m = 2and S(/ , g) = 2I(/, #) ® ( - 1,

d(f)dig)).

PROPOSITION 5. Let K, V, W, f and g be as described in Proposition 4.

Then,

i) if n-m=:l, n : odd, fSgif and only if $(/, g) ~~ 1 in KijTigj),

ii) if n-m-\, n \ even, f^gif and only if $(/, #) ~ 1 in K(yjΔ{f)),

iii) if?ι-nι-2,n: odd, f™g always,

iv) if n-m = 2, n : even, f^gif and only if 33(/, #) ̂  1

in KUΔUΊ, yJΆΊΓ)),
v) if n — m ̂  3, f^g always.

Proof v) follows at once from Proposition 4. For n-m^2, f^giί and

only if αf^g for some α EL K* and this is, by Proposition 4, equivalent to say

that 33(α/, #) — 1 in if if w - wi = 1 and ̂ iαf, g) — 1 in Ki\/j{αf)J(g)) if w - m

— 2. By the formula (3) in §1, f^g is equivalent to the existence of αξ~K*

such that

l in ΛΓ,

Π) »(/, g)®(α, Δ(f))<*Ί in ϋΓ,

iii) S(/,^)®(fl, - J ( ^ ) ) - l in K(ylαΔ{f)Δ{g)),

iv) 58(/,#)®U J ( / ) ) - l in U

As for iii)? if we take αEΞK* such that αΔif) Δig) is not a square, the

condition is satisfied for any / and g, since then any algebra class with index

at most 2 is — 1 in any proper quadratic extension. On the other hand, the

cases i), ii), iv) are reduced to the following lemma.

LEMMA. Let 9ί be α central simple algebra over our K with index at most

2, and let a, β be EΞ K*. Then, there exists a 6Ξ K such that (a, α)^-3ί in

KWJ) if and only if 31 - 1 in K(*fcc, y/T).

Proof of Lemma. The necessity is trivial. Conversely, suppose first that

β is not a square or both β and a are squares. Then, we may take a — I. Next,

if a is not a square and β is a square, we may take such a that is a norm or

14> [4], Satz 18.
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not relative to the quadratic extension K(\l a )IK according as 21 ̂ 1 or -h 1 in

As an analogue of Proposition 3 we prove the following

PROPOSITION 6. Let K, V, W, f and g be as described in Proposition 4.

Suppose that n > m. Then, f similarly represents g-f^gif and only if 0 ̂  v{f)

— v (g) ^ n — m.

Proof The necessity assertion is already proved (Proposition 2). To prove

the sufficiency, suppose first that n — m ^ 3 or n — m — 2 and n is odd, then the

statement is trivial by Proposition 5. Therefore there remains to be discussed

the three cases i), ii) and iv) in Proposition 5.

i) Oέv(f)-v(g)£l implies that - 1 *= p*(g) - **(/) ^ 1.

From this inequality it follows that v*(g) =2, v*(f) = 1 and v*(g) = 0 or **(/)

= 3 and v*ig) =4. By Lemma 2 in [0], these three conditions are equivalent

to saying that Jig) is not a square or Jig) is a square and S(/)®(—1,
( _ l ) ( ^ - i ) / 8 Λ / ) ( « + i)/2) _ e ( f i r ) ^ ( __ 1 ? ( _ l)(m2+2rn)/8)ι τ h u s ? t h e s e c o n d i t i o n s a r e

summed up as $(/, g) - 1 in KUKgj), observing that ( - 1, ( - ly*1-1)/8^/)^1)/2)

® ( - l , ( - l ) ί Λ f I + s m V 8 )-( r f (/) , - ( - l Γ / 2 ) - W ( / ) ; -rf(^)) if Jig) is a square.

Then our statement follows from Proposition 5.

ii) is proved in a similar way as in i).

iv) 0 έ£ v(f)-v(g) ^2 implies that -2 £v*(g)-v*(f) £2.

It follows from this that **(/) = 2 or y*(^) =2 or n*(/) = v*{g) = 0 or 4. Again

by the Lemma 2 in [0], we have Jif) is not a square or Jig) is not a square

or Jif) and Λ(#) are both squares and Si/) ® ( - 1, ( - lYn^2n)l8) ~~ $(g) ® ( - l,

(- l ) ( m 2 + 2 m ) / s ) . Observing, in the last case, that ( - 1, ( - l) ( n 2 + 2 n ) / 8® ( - 1,

( - D ( m 2 + 2 m ) / 8 ) ^ ( ( - l Γ / 2

? - ( - i r 2 ) ~ ( Λ / ) , -dig)), we have S3(/, #) ~ 1 in

Ki\J{f), y'Jig)). Thus, we are reduced to Proposition 5 again.

Now, thus obtained local considerations, containing the case where n = m,l0)

are summarized in the following

THEOREM 2. Let K be a locally compactly valued field of characteristic # 2,

and let V and W be vector spaces over K such that dim V ̂  dim FF. For the

nondegenerate symmetric bilinear forms f, g on V, W respectively, the following

15> [0]. Lemma 3.
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three conditions are equivalent.

i) / similarly represents g: / 2$ g.

ϋ) o ^ v(f) - v(g) *= dim V- dim W.

{For the case where dim V= dim W is even and K is non-archirnedean>

we add the condition d{f) ~~ dig)).

iii) Γ(W, g) is linearly imbedded in Γ( V, f).

Remark. If O(W, g) is imbedded in O(V,f) topologically, we may take a

non-isotropic subspace W of Vsuch that O(W, g) = O{W'9f) (homeomorphical-

ly), where / ' is the restriction of / to W. Thus, we know that vig) = v(f).m

Since /=>/', we get 0 === *(/) - v(f') ^ dim F ~ dim T7' by Proposition 2. There-

fore, we have 0 ^ z (̂/) — v(g) = dim F-dimT7. Furthermore, this inequality

comes from the abstract imbedding of the orthogonal groups provided dimPF

^ 3.17) For dim W ^ 3, in order to have that inequality it is sufficient that there

exists a homeomorphism as topological spaces between two groups O( W, g) and

O(W, / ' ) . 1 8 )

§ 3. Hasse principle

In this §, we assume that K is either a field of algebraic numbers or a

field of algebraic functions of one variable over a finite field of characteristic

# 2. Let Kp be the p-adic completion of K with respect to a place p in K.

We denote by Fp the scalar extension of a space V with respect to Kp. First

we prove, for the completeness sake, the following well known theorem on the

representability of forms.

THEOREM 3. Let K be a field of algebraic numbers or a field of algebraic

functions of one variable over a finite field of characteristic ^ 2, and let V and

W be the vector spaces over K with dim V- n, dim W= m. Let f and g be non-

degenerate symmetric bilinear forms on V and W respectively. Then f represents

g : f^ g in K if and only iff^g in Kp for every place p in K.

Proof. The necessity is trivial. We prove the sufficiency separately for

several cases.

16> [0]. Lemma 4.
17> [0]. Addendum.
18) For such case, we say that O(W, g) is set-theoretically imbedded in O( V, f).
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i) n = m: We find the proof in [4] (Satz 20).

ii) n — m — 1: By the assumption, we have S(/, g) ~~ 1 in Kp for every

finite place p (Proposition 4), and 0 ^ cp if) -cp (g) ^ 1 for every real infinite

place p. From the formula (7) in §2, it follows that S8(f,g)~~l in Kp

for every real place p. Let h be a unitary form with discriminant d(f)dig).

Then, for finite places p, we have <Z(g+h) ~<ί(g) <8>&(h)(g>(d(g), d(f)d(g))

~&(f)®m/, g)ΘUh)^&(f)ΘW, g)~®Λf) in /ίp, since β(ft) ~ ( - 1,

d(f)d(g)). On the other hand, for real places fc dih)~~( -i)ci{^'cP^\ There-

fore it follows at once that fp(/) = (pig) + ty(ft) = cpigΛ- h). Thus f^gΛ- h in i£p

for every place p in ZΓ, which reduces the proof to the case where n — m.

iii) n-m- 2. From the assumption, we have 33(/, gθ — 1 in Kp(ylΔ{f)Δ{g))

for every finite place p (Proposition 4) and 0 ^ $(/) - rp (#) ̂  2 for every real

place p. If cp(f) - ^(^) = 0 or 1 for a real place p, then 33(/, ^) — l in K$ and

necessarily in Kp(yJJ{fJJΐg)) by the formula (7). While, if $(f) - $(g) =2,

then A(f)A(g)= -d(f)d(g) ((1) in §1) is negative in Kp and so 33(/,#)- l

in Kp(yjΔ{f)Δ(g)) for such real place £. Therefore from the fundamental

statement on the splitting of algebras, we get 35(/, # ) ^ Ί in K(yjΔ(f) Δ(g))

Now, set d=d(f) dig), © = K(/) ® K(^) ® (Λ^), J). Then,

- ( - l , -1) in

Thus, from the theorem in [4]19) there exists a binary form /z over i ί such that

d(h)~d, e(fc)-©. Since d(f)~d(g)d(h) and S ( / ) - g ί ^ + λ ) , we have / - £

+ /z in Kp for every finite place p. As to a real place p, d(h) ~~ d(f) dig) im-

plies that $ ( / ) Ξ $ ( # ) + $(ft) (mod. 2). We have SU)~2K/, £•)-1 if cp(f)

-<p(g)=0, 3 (mod. 4) and TO)ψl if ^ ( / ) - ^ ( ^ ) = l ? 2 (mod. 4) ((6) in §2).

Since 6 ( f c ) - ( - l , ( - 1 ) ^ ) ( ^ ) + 1 ) / 2 ) , it follows at once that $(f) = $(g)

-f fp(h) - cp(g+ h). Thus, we get f ^g+ h in Kp for all places p in iζ and we

are reduced to the case where n — m.

iv) n-m =3. Let d = d(f)d(g) and <& = £(/) <8)£(g)® (dig), d), then there

exists a ternary form h such that dih) ^ d and ^(^)^-@.20) Therefore J(/)

-^ dig) dih) and 6(/)~S(#-|-ft) and sof~~g+h in ϋCp for every finite place

p. As to a real place p, the similar consideration as in iii) shows that tp(f)

h). Thus, we are also reduced to the case n — m.

19> [4]. Satz 18.
2 0 i [4]. Satz 18.
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v) n - m ^ 4. Let d = rf(/) tf(g ), @ - S(/) ® S(^) ® (</(#), d) and ^ =

f (p ), where J) is any real place in K. Then, we get d~~(-lYv and @
_ ( _ 1 ? ( __ 1)(^(/)-^^))(^(/)-p(^)+i)/2) = ( _ 1 ? ( _ 1 )ψ^+υ/2 ) β Therefore, there

exists a form & wtih d^-d(h), ©^-(£(/z) and ty = ty(/O for every real place £.2])

Thus, we get f~~g + h in iΓp for every place p in K and we are reduced to the

case n = m. Q.E.D.

Next, we prove the following theorem of Hasse type on the similar repre-

sentability of forms.

THEOREM 4. Let K, V, W, f and g be as described in Theorem 3. Then,

f^g in K if and only if / S g in K$ for every place p in K.

Proof. The necessity is trivial. Conversely, if n = m, the sufficiency is

proved in [0],22) and if n — m ^ 3 there is nothing to say since then any / re-

presents any g. Therefore we shall prove the sufficiency in the following four

cases.

i) n - m - 1, n : odd. By the assumption, we have 0 ^ vp(f) - vp(g) ^ 1

for any real place p. Multiplying ε, -η e K with suitable positive or negative

signs relative to real places on / and g respectively, we may assume that v$(f)

= 'ρ(/) and vp(g) = tp(g) for every real place p. For a finite place p, we have

S3(y, ^) — 1 in Kp(y/Δ{g)) from Proposition 5. On the other hand, for a real

place p, we have 23(/,<§0^Ί in ϋζp from (7) in §2. Thus, S8(f,g)~Ί in

Kp(y/J(g)) for every place p in K, and so 33(/, ^)—l in K(yljjg)) and S(/, g)

~~ (a, J(g)) in K with some a €Ξ K*. Next, we replace a by a totally positive

element e K*. If J(^) is a square in K, then we may put a = 1. If J(#) is

not a square, let L-K{^~ΔΪg)) and let 9ϋ£ be the totality of real places p such

that Jig) is positive in ϋίp, then by the lemma in [OJ,23) there exists an element

CELL such that aNL/κ c is positive in K$ for all p e ΪR. Set Z? = «iVz(/x c, then

t&if, g)~ ia, Jig))***ib, Jig)) in iΓ. For all real infinite places p such that

p^ΊR, b must be positive in Kp, since 1 — S(/, g)-~ib, Jig)) and J(#) is nega-

tive in such Kp. Thus, 6 is totally positive and S(£/, #) - S(/, ^) ® (̂ , J(^)) - 1

in K Therefore, bf~g in Iζp, since :*($/*) = cpif) for any real place p. Thus,

we are reduced to Theorem 3.

21> [4]. Satz 21.
22> [0]. Theorem 1.
23> [0]. Lemma 5.
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ii) n — m — 1, n : even. This case is treated by the similar method as in i).

iii) n-m-2, n : odd. To prove this case we need the following

LEMMA. Let 9ΐ be any finite set of finite places in K, then there exists an

element aΈ^K such that a is not a square in Kp for every place p in 9? and

a has an arbitrarily given {positive or negative) sign in each Kp for every real

place p when K is a number field.

Proof of lemma. Let 9ΐ' be a set of finite places in K containing places of

an even number such that 9ί' D 5?. Then, there exists a cyclic algebra 9ϊ= (b,

K(\l~β~), a) with p-invariant (—) ==~ (mod. 1) for every place p G 9ί' and (—)

Ξ 0 (mod. 1) for every p φ. 9t'. Thus, b is not a square in Kp for p G 9i'. Since

c G K is a square in Kp if and only if c is a square mod. pe$ with a suitable

positive integer ep, the element # G if which satisfies the equation x = b

mod. Π tfV and the given sign condition is the desired one.

Proof of iii). Similarly as in i) we may assume that 0 ̂  cp (/) — ip(g) = 2

for every real place p. If $(f)-$(g) = 0, 1 then »(/,£) ~ 1 in iΓp ((7) in

§2). Now, let ε be an element G if such that e is positive in iζp for p with

<£(/) - ^(^) = 0, 1 and is negative in HΓp for p with ^ ( / ) - $(g) = 2. Then,

for the latter p, we have cp(εf) = c^(εg) since n — m — 2 and cp(εf) = n — cp(f),

ίp(εg) ~rn- ip(g). Thus, we may assume that $ ( / ) — fp(^) =0, 1 for all real

places p and so 53(/, £\)~-1 in Kp for all real places p. Our statement is proved

if we can show that there exists a totally positive a&:K* such that 33(#/, g)

-^®(f,g)Θ(a, -J(g))^l in Kp(y/aJ(f) J(g)) for every finite place p (Propo-

sition 4). To do this, suppose first that —Jig) is a square in K Let 9ΐ be

the totality of all finite places p such that S(/, #) -f 1 in ϋΓp. Then, from the

above lemma, there exists b &: K such that a- —bΔ(f) is totally positive in K

and b is not a square in iζp for p G 9Ϊ. Thus, if p φ 5ί, then 23(/, g) ~ 1 in iζp

and if p G 9Ϊ, then »(/,#) ~ 1 in Kp(yl~:^al{f)) since ^(V-^βϊϊT)) is a

proper quadratic extension. Therefore we get 3$(f,g)~~l in K{yJ-aJ{f))

= K(yj'aA{f)d(g)). Next, suppose that - Jig) is not a square in K. Set 35*

= 8 ( / , # ) ® ( J ( / ) , - A(g)). If S * - l in iΓ, then we take an element c G K

such that a-cA(f) Δ(g) is totally positive in K. It follows that 33(/, g)

®(a, -J(g))~$i(f,g)(8)(cJ(f)J(g), -A(g))*fB(f,g)®U(f), -A(g))®(c,

®*®(c, -J(g))~l in KU~c) =KWaΔ(f)J(gj). On the other hand,
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if 33* 4-1 in K, then 23* *(a, β), a, β G if*. For a real place J>, we have 23*

( _ 1)(^-D/2( _ D ^ ) ) β T h u s ? 53* —1 in Kp for p such that :*(/) - $(g) = 1. Now

let 9Jΐ be the totality of real infinite places p such that /9 is positive in Kp, then

there exists an element c ^L = K{\j~β) such that α' = OCNLIKC is positive in

Kp for J) e 3R. For J> φ 9tt such that 23* ̂  1 in Iζp, we have a1 is positive in Kp.

Therefore we may assume that a is positive in Kp for p such that 33* — 1 in

Kp. Next, let W be the totality of p's such that α: is positive in Kp, then there

exists an element c* E Lf = K(-J a ) such that βf = βNL'ικc' has the same sign as

z/(/) J(#) in ifp for every p e 3K'. For p φ 9J?', since α: is negative in Kp, 23*

- ( ( - l ) ( Λ - 1 ) / 2 ( - l ) d 5 ( / ί , ( - i r i ) / 2 ( - l ) ^ ) i l in Kp, hence /9' is also nega-

tive. On the other hand, this relation implies that cp(f) = tp(g) and so Δ(f)Δ(g)

M - l ) ( " - 1 ) / 2 ( - l ) ^ ( / ) , ( - l Γ ^ ί - D ^ ^ l , Thus, β' has again the

same sign as Δ(f) Δ(g) in Kp for j) φ W. Put « = β'J(/) Δ\g). Then, « is totally

positive in K and S3(Λ g) ® (β, - J ( ^ ) ) - » ( / , ^) ® (β'Δ(f)Δ(g), - Δ(g))

- S * ® ( 0 ' , - J ( ^ ) ) - ( α , β')® (β;, - J ( ^ ) ) - ( / 5 ' , - α J ( ^ ) ) - l in iΓ(VT)

= K(ylaΔ[f)Δ{g)).

iv) n — m = 2, n : even. As in iii), we may assume that 33(/, ^ ) ^ 1 in /fp

for real places p and 23(/, ^)-^ 1 in Kp(^Δ(f), ^Δ(g)) for finite places p, and we

shall show that there exists a totally positive a&K such that 33(/, g)^ {a, Δ(f))

in Kp(i~Δ(f) Δ{g)) for all finite places J) (Proposition 4). If one of Δ(f) or Δ(g)

is a square in K, then we may take a = 1. If J(/) — J(#) + 1 in K, then S3(/, ^)

- 1 in KUJ{Γ)) and so 33(/, g)^{b, Δ(f)) in ΛΓ for some b G iΓ. Then, we

may replace & by totally positive <z, since 23 (/, g) ~~ 1 in iΓp for any real place

p. Therefore it remains to be considered the case where L = K(yjΔ(f)9 >lΔ(g))

is a proper biquadratic extension. Now, let sJft be the totality of all finite places

p such that Δ(f) - Δig) 4-1 in Kp and let 9Ή0 be the totality of all p G 3K such

that 23(/, g\)4l in ϋζp. Set 9Ki = ΉQ if 9Jΐ0 contains an even number of p and

9fti = 9fto + {q}, where ς is a finite place in K such that J ( / ) 4 1 in ifq and Δ(f)

4 J(#) in JfiΓq,24) if 9% contains an odd number of p. Let 33* be the algebra

—-)=—- (mod. 1), t>G3Λi and (~^-}=0 (mod. 1) for all places

p φ Wli. Since J ( / ) + 1 in iΓp for p G 5!Ki, 23* - 1 in KpWftJ)) for all places

£ in K, thus 23* —(β, Δ{f)), where we may assume that a is totally positive in

Since L/K is biquadratic, we may take such q.
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K since 23* ̂  1 in Kp for every real p. On the other hand, for a finite place p

with Δ(f)Δ(g) + l in Kv, we have »(/, ̂ ) - S* - 1 in Kp(4Δ(f) Δ{g)), for a

finite place J> with Δ(f)*Δ(g)+l in ϋΓp, we have 33(/, # ) 4 Ί and 53*4-1 in

/Cp if | ) G % and 33(/, # ) ^ 3 3 * - Ί if t> e£ ϋJίi, for a finite place £> with Δ(f)

^ Ί in 7iΓp it follows from the assumption that $5(f,g)'*Ί in Kp and

33*-^1 in Kp, and lastly for a real places p, we get 33(/, ̂ > — 33̂  — 1 in

Therefore 33(/, g")-93* in KP(yβ(f)Δ{gj) for all p. Thus, 33(/, <gO~

in #P(VΛΪ77^UF)). Q.E.D.

THEOREM 5. Let K, V, W, f and g be as described in Theorem 3. Then, f

similarly represents g f™ g in K if and only if 0 £ vp(f) - vp(g) ̂  dim V

— dim W for every place p in K.

Proof. The necessity is almost trivial (Proposition 2). Conversely, if

dim V= dim W, then vp(f) = vp(g) for all p implies that f oo g in Kp for all p if

dim V is odd.25^ On the other hand, if dimF is even, we know that Δ(f) is a

square in Kp if and only if Δ(g) is so.26) Thus, we get Δ(f)~~ Δ(g) (and dif)

~~ dig)). Then, we again have f oo g in Kp for all pΓ] Therefore /oo g in K.

Next, if dim V > dim W, then we get f™ g in Kp for all p (Theorem 2) and we

are reduced to Theorem 4. Q.E.D.

THEOREM 6. Under the same assumption as in Theorem 3, if f semi-

similarly represents g : f% g in Kp for every place p in K, then f similarly re-

presents g - f ™ g in K

Proof. f% g in Kp implies that 0 ̂  vpif) - vρ(g) *= dim V- dim W (Propo-

sition 2). Thus, our statement comes from Theorem 5 immediately.

Now, we shall transfer the so obtained theorems of Hasse type to that of

orthogonal groups.

From Theorem 1 and Theorem 4, we get

THEOREM 7. Under the same assumption as in Theorem 3, a group Γ(W, g)

is linearly imbedded in Γ(V,f) if and only if Γ(Wp, g) is linearly imbedded

in Γ{V$,f) for every place p in K.

From Theorem 1 and Theorem 6, we get

25> [0]. Lemma 3.
26> [0]. Lemma 2.
27> See 25).
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THEOREM 8. If Γ(Wp, g) is semi-linearly imbedded in Γ(V$,f) for every

place p in K, then Γ(W, g) is linearly imbedded in Γ(V,f).

From Theorem 5 and Remark in § 2 we have the following theorems.

THEOREM 9. If O(W$, g) is topologically imbedded in O(Vp,f) for every

place p in K, then 0{W, g) is linearly imbedded in O(V,f).

THEOREM 10. Suppose that dim W ^ 3 . If O(W$, g) is abstractly imbedded

in O{ V$, /) for every place p in K, then O(W, g) is linearly imbedded in O( V, / ) .

THEOREM 11. Suppose that dimW?==3. If 0{Wp, g) is set-theoretically

imbedded28) in O(Vp, f) for every place p in K, then O(W, g) is linearly imbedded

in O(V,f).
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