ARITHMETIC OF ORTHOGONAL GROUPS (II)

TAKASHI ONO

In [01,° the writer proved some theorems of Hasse type for two orthogonal
groups which operate on the same vector space. In this paper, we shall further
generalize those results in two directions. One is to consider the propositions
of that type for two orthogonal groups which operate respectively on two vector
spaces whose dimensions are different from each other, and the other is to deal
with some conspicuous subgroups of an orthogonal group simultaneously which
play important roles in the structure theory for orthogonal groups. For this
reason, the present paper consists of three steps §1, §2 and §3 which give the
generalizations in the above sense of the results in the corresponding sections
of [0].

§1 is of purely algebraic nature and the ground field A may be an arbi-
trary field of characteristic % 2. The fundamental statement (Theorem 1) shows
that the possibility of imbedding (in a certain sense) a group in another group
is equivalent to the representability (in a certain sense) of a form by another
form each of which corresponds to one of those groups respectively. In §2,
we investigate, in the case where K is a locally compactly valued field, local
properties of the groups and forms. These are summarized in Theorem 2. It
is remarkable that though the Clifford algebras are used explicitely to charac-
terize the usual representability of forms over our K, the imbedding of groups,
which is the same thing as the similar representability of forms, may be charac-
terized by the indices of forms which are a much simpler notion than the
Clifford algebras. Lastly, in §3 where we assume that K is a field of algebraic
numbers or a field of algebraic functions of one variable over a finite field of
characteristic = 2, we first prove theorems of Hasse type for the representabili-
ties of forms (Theorem 3, 4), which are essentially reduced to the fundamental
theorem of algebras over our K. Then, we may immediately transfer Theorem

4 to that for groups (Theorem 7). Here, we observe some examples of the
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fact that ‘a property IT of an object O(K) follows from the fact that the object
Op(K), which is obtained naturally from O(K) by transition to Kp from K, has
a weaker property II' than II for every place p in K’ (Theorem 6, 8 etc.). It
seems interesting to the writer that such facts are, in the present case, based
on Theorem 5 which is stated by making use of the indices of forms.

The writer wishes to express his thanks to Mr. T. Tamagawa who gave

him a suggestion on the arithmetic of algebras.

§ 1. Preliminaries

Let K be a field of characteristic 2 2, and let V and W be finite dimen-
sional vector spaces over K. Suppose that there is a semi-linear mapping @ of
W into V. Let f be a symmetric bilinear form on V. We denote by 6f a form
on W which is defined as follows:

0f (%, y) = (f(0x, 09))"" for x,yE W,

where @ is the automorphism of K associated with 6. It is easily verified that
thus obtained 6Of is again symmetric bilinear. Now, let @ be another semi-linear
mapping of the third space U into W with the associated automorphism ¢ of
K, then the mapping 0 ° @ of U into V is a semi-linear mapping with the auto-
morphism ¢6, and it follows at once that (0 ° @)f = ®(6f) for the form f on V.
Particularly if @ is a semi-linear isomorphism between W and V, then we have
d(Of) ~ d(f)*" and »(6f) = »(f) for a nondegenerate form f on V, where d(f)
is the discriminant of the form f relative to some basis of V and »(f) is the
index of f.%

Now suppose that two nondegenerate forms f and g are given on the
spaces V and W respectively. We say that f semi-similarly represents g:f 3 &,
if =2+ 6f for some semi-linear injection ® of W into V and for some 1 € K**
If the injection @ is linear, we say that f similarly represents g:f S g, and,
furthermore, if the scalar 1 =1, then we say simply that f represents g¢: > &.
Particularly if V and W have the same dimensionalities, we take away the
arrows in the above notations and say that f and g are semi-similar : f<~ g,

similar : f o g and congruent : f ~ g respectively.

2) We often use simply the word ‘form’ for ‘nondegenerate symmetric bilinear form.’

3) See the footnotes 15) in [0].

4) Semi-linear injection of W into V means the isomorphism of W into V. KX* is the
set of all non-zero elements in K.
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ProrositioN 1. Let f and g be nondegenerate symmetric bilinear forms on
the spaces V and W respectively. Then, in order to have f 5 ¢ (f S g or f> g)
it is necessary and sufficient that there exists a form h on a swuitable space U
such that ferg+h (foog+horf~g+n)®

Proof. Suppose that there exists a form . on a space U such that fe» g+ h.
Then, there is a semi-linear isomorphism @ between W X U and V and an ele-
ment A € K* such that g+ =24+ 6f. Let @ be the restriction of 6 to W(6'(w)
=0(w, 0), we W). Then, @ is clearly a semi-linear injection of W into V
such that g=41°+60'Y. Thus, we have %5 g. Conversely, suppose that f % g.
Then, there is a semi-linear injection 6' of W into V and an element 1€ K*
such that g=2+6'f. It is clear that the image space 6'(W) is non-isotropic
in V. Therefore we get an orthogonal decomposition, V=6'(W)® U. Let 6"
be the semi-linear automorphism of U with the same associated automorphism
as 0. Using this 0", weput k=2 +*6'f on V and define a mapping 6 of Wx U
into V by putting 0(w, %) =6'"(w) +6"(u), weE W, u € U. Then, it follows
immediately that @ is a semi-linear isomorphism between W X U and V and
A+ 0f=g+h. Thus, we get fo» g+ h. By specializing the conditions on @ and
A, we get at once the propositions for the similar representability and the re-

presentability of forms.

ProrositiON 2. Let f and g be forms on the spaces V and W respectively.
If f semi-similarly represents g: f 5 g, then, we have 0 = p(f) —p(g) £dim V
—dim W.

Proof. Let 6 be the semi-linear injection of W into V such that g=21- 6/,
A€ K*. Then, O(W) is non-isotropic in V and we have g =21 - 60f,, where /1
is the restriction of f to &(W). Since gc» fi, we have v(g) = »(f1) £v(f). This
proves the first inequality. To prove the second inequality, it is sufficient to
show that »(f) —»(f1) £dim V—-dim Wi, Wi=6(W). Let V=W,D W, (or-
thogonal decomposition) and let f» be the restriction of f to W.. First, assume
that »(f1) =0, and suppose that »(f) > dim Wz. Let U C V be a totally isotropic
subspace of dimension »(f), and w; (i=1,..., »(f)) be its some basis. Ac-
cording to the above orthogonal decomposition, we set #; = w;+ w?, wi e Wi,

5) g+ h is the form on W x U defined by (g-+h)((w1, 21), (w2, #2)) = g(wi1, w2) -+ A(u1, u2)
forwie W, uueUi=1, 2.



132 TAKASHI ONO

wiE W, i=1,..., v(f). Since »(f) > dim W, there is a nontrivial linear
v(f)

relation gihwf- =0. On the other hand, as #; is a basis of U, we get # = >\ u;
=2 %w; % 0& Wy Since u & U, it follows that fi(#, #) =0. This contradicts
the assumption that »(f;) = 0. Next, suppose that v(f;) =% 0, and let Wy = W1® WY
be the orthogonal decomposition of Wi such that »(f1) = »(f1), »(f!') =0, where
f1 and fi' are the restrictions of f to Wi and Wi respectively. Applying the
first case to the space W{ @ W., we have »(f{' +/2) = dim W,. Since »(f)
=2(/D) +o(f1' +/2) =v(f) +(f'+ /), we also have the second inequality for
this case.

Now, for a form f on a space V, we denote by O(V, f) the orthogonal
group of f, by O"(V, f) the rotation group of f and by 2(V, f) the commutator
subgroup of O(V, f). Furthermore, we denote by I'(V, f) any one of these three
types of groups. It is then clear that I'(V, Af) =I'(V, f) for any A€ K*. Let
W be another vector space and 6 be a semi-linear isomorphism between W and
V. Let ¢ be a linear automorphism of V. We define a linear automorphism
Gs of W by putting

Bo(w) = 60766 (w), we W.

It is easy to see that BGor =8¢+ Or and ¢ leaves f invariant if and only if G¢
leaves 6f invariant. Moreover, observing that the group 2(V, f) is generated
by the squares of the elements in O(V, f),” we have 6(I'(V, f))=T(W, 6f),
where the groups I’s on both sides belong to the same type of that three
groups.”  Assume that there are forms f, g on the spaces V, W respectively
such that /% g. By definition there exists a semi-linear injection ® of W into
V such that g=1-+6f for some 1€ K*. Applying the above consideration to
the form f; on 6(W) which is the restriction of f to O(W), we get 6(I'(6(W), f1))
=I'(W, g). Thus, we say that the group I'(W, g) is semi-lincarly imbedded in
v, s if

for some semi-linear injection @ of W into V. Particularly, if I'(W, g) is semi-
linearly imbedded in I'(V, f) with a linear injection 6, we say simply that

I'(W, g) is linearly imbedded in I'(V, f). Using these terminologies, we get the

6 [1]. p. 23. Prop. 10.
) We always use two I’s in this sense.
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following fundamental relation between forms and the corresponding groups.

TueoreM 1. Let V and W be vector spaces over a field K of characteristic
% 2, and let f and g be nondegenerate symmetric bilinear forms on V and W re-
spectively. Then, a group I'(W, g) is semi-linearly (linearly) imbedded in a group
I'(V, f) if and only if f semi-similarly (similarly) represents g f %5 g(f % >

Proof. The sufficiency is already verified. Conversely, suppose that
I'(W, g) is semi-linearly (linearly) imbedded in I'(V, f). Then, there exists a
semi-linear (linear) injection @ of W into V such that @(I'(6(W), f1)) =T(W, &),
where f; is the restriction of f to 6(W). Thus, we are reduced to the following

lemma.

LemMma. Let O be a semi-linear (linear) isomorphism between W and V
such that O(I'(V, f)) =I'(W, g), then it follows that fo» g(f o &).

Proof of Lemma. Let dim V=xn. If n=1, there is nothing to say. For
n = 2, we devide the proof into several parts.

Case A. 723, K~ GF(3). Since 6(I'(V,f))=I(W, 6f)=I(W, g and
2(W, 6f) CO™ (W, 6f), it is sufficient to show that g=21-+6f, 1€ K*, if
2(W, 6f) CO" (W, g). Let P be any non-isotropic plane in the sense of 6.
Then, we have an orthogonal decomposition W= P ® P Let e, e: be some
orthogonal basis of P and let e, ..., e, be some basis of P We set
Of(e1, e1) =c, Of(es, e2) =d. Since K = GF(3), there exists t & K* such that
t*+d/c=0. By this ¢, set x=(£*—d/c)/(®+d/c), y=2t/(#+d/c). Then, it
follows that y %0 and x°+ (d/c)y’=1. Relative to the above basis e; (=1,

., n) of W, the matrix

x —(d/c)y
y X
o= 1 e 0" (W, 6f)

8) This is a generalization of Lemma 1 in [0].
9) P®f means the conjugate space of P relative to ®f.
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and so

& —(d/e)y

3
vy

r=o = . € 2(W, 6f) CO(W, g),

1

where &=2x*—(d/c)y’, 7=2xy. Since ¥y %0, it is easily seen that £ % 1. Since

g = g, we have

gley, ei) = g(res, te;) = g(Ler+ ves, €:),
glex, e) = gl(res, ve;) =g( — (d/c)ner+ Ees, ei). 3<i<n)

Therefore

‘(5— 1) gles, i) +ng(es, ) =0,
—(d/c)ngles, ) + (£ —1)gles, ;) =0.

But the determinant of the coefficients of these linear equations =(&—1)*+(d/c)%’
=2(1—-¢)=0. Thus, we get glei, ;) =g(es, €;) =0 (i =3). This means that
P% C p%  Comparing the dimensions of the spaces on both sides, we have
P = pe, Now, let @ = 0 be any non-isotropic vector € W in the sense of 6f.
Since 7 = 3, there exists non-isotropic planes P, P’ in the sense of 6f (and
necessarily in the sense of g) such that <a>=PN P'. Thus, <ad>® = (PN P)**
=P" U P = pf Y P = (PN P)¥=<{a)»’. Then, by the argument in Lemma
1 in [0], we have g=1+06f, A€ K*,

Case B. # =3, K=GF(3). Itisknown that the two finite groups O (V, f)

19 Therefore

and O (W, g) have different orders if f and g are not congruent.
if f and g are not semi-similar (similar), there can not be any isomorphism 0
between W and V such that O(O(V, 1)) = O(W, g) or 6(0°(V, f)) =0 (W, g).
Furthermore, since # = 3, 2(V, f) has index 2in O (V, f)," and so 2(V, f) and
2(W, g) can not be isomorphic each other if f and g are not semi-similar
(similar).

Case C. 7 =2 and K is infinite. We shall show, as in Case A, that

g=2+0rif (W, 6f) CO(W, g). Let e, e: be some orthogonal basis relative to
10) [2]. Chapt. VIL §§169-170.
1) [3]. p.6l. §41.
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Of in W. We may assume without loss of generality that the matrices of the

coefficients of @f and g relative to the above basis are of types (1 ) and

d
(11, Ic)) respectively. By an element t& K* such that #+d=0, set x
= ~ad)/(f+d), y=2t/(+d). Then,

=(§ ~Peomen

and

_ 2 (& —dy
r=at=(: M) eaw, oncow, o),

where ¢ = x* —dy’, y=2xy. Comparing the (1, 1)-components on both sides in

the following matric relation

(MG OE =G

we get & +2bfp+cr°=1. Since £8+dy’=1 and 7 = 0, it follows at once that
2b6 4+ (¢ —d)yp=0. Thus, observing that K contains infinitely many elements,
we get b=0and c=d : g=0f.

Case D. n=2, K=GF(q) (the finite field with g elements). We shall show
that the groups I'(V, f) and I'(W, g) have different orders if »(f) =1 and »(g)
=0. For f with »(f) =1, there is a basis of V such that the matrix of the
coefficients of f is of type ((1) (1)>
©x gives the isomorphism O™ (V, f) =~ K*.

O"(V,f) is g—1. On the other hand, for g with »(g) =0, let (1 d) be the

relative to it. The correspondence (x 1/ x>

Thus, we see that the order of

matrix of the coefficients of g relative to some orthogonal basis in W. Then,
the correspondence (i —xdy ) &> x+vV—dy, with «*+dy*=1, gives the iso-
morphism O"(W, g) = N, where N is the group composed of all elements € L
= K(V—d) with norm =1 (relative to this quadratic extension). By Hilbert’s
lemma, we have N =~ L*/K*. Thus, the order of O" (W, g) is ¢+1. Therefore
our assertion is true for I'=0 or I'=0". Now, by the above correspondence,
we have K*/K** =~ O0*(V, £)/2(V, f). Hence, the order of 2(V, f) is (g—1)/2.
On the other hand, there exists a homomorphism of N/N? onto O (W, g)/2(W, g).
Since N is the cyclic group of an even order, it follows that O™ (W, g) : 2(W, g)]
= 2. Therefore, order of 2(W, g) = (order of O (W, 8))/2=(q+1)/2>(g—1)/2
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=order of 2(V, f). Thus, the assertion is also true for I'=£2. Q.E.D.

Remark. We say that I'(W, g) is abstractly (topologically) imbedded in
I'(V, f) if there exists a non-isotropic subspace W' C U such that dim W'
=dim W and I'(W, g) is isomorphic with I'(W', f'), where f' is the restriction
of f to W', as abstract (topological) groups (when the basic field K is topologized).

We shall close this section with some remarks on the discriminants and
the Clifford algebras of forms.”” As for the discriminant d(f) of a form f on

V, we set
4(f) =(=1)""24(f), where n=dim V.

Now, let g be another form on W, and let €(f) and €(g) be the Clifford alge-
bras of the forms. We put

AL, ) =C(f) ® C(g) ® (d(g), d(f)d(g)),
B(S, &) =AS, & ® (—1, d(f)d(g)).

The following properties of these algebras will be used later.

(1) If n—m=2 (mod. 4), then 4(f)4(g) = —d(f)d(g), where n=dim V,
m =dim W.

(2) If n is even, Alaf, g ~(a, 4(f)) UL, &), a€ K™ .
If n is odd, Waf,g ~(a (—1)""2d(g)) ® AL &).

(8) If n is even, Blaf, g ~(a, 4(f)) & B(S, g).
If n is odd, B(af,8 ~(a, (-1)"""d(g)) ® B(S, &).

§ 2. Local considerations

In this §, we assume that K is a locally compactly valued field of charac-
teristic = 2. Let V be an n-dimensional vector space over K and let f be a non-
degenerate symmetric bilinear form on V. If K is the complex number field,
then always »(f) =[#n/2]. Let g be another form on an m-dimensional space
W. Since every form f is congruent to the unit form, /" represents g provided
n=m. If Kis the real number field, then we get »(f)=min ((f), *(f)),
where ¢(f) is the number of positive coefficients in a canonical form of f and
() =n—(f).

ProrosiTION 3. Let K be the real number field and let f and g be forms

12) 10]. §1.
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on the spaces V and W respectively. Then, f represents g: f = g if and only if
£dfN)—g)=2n—m (02 *f)— Mg £n—m), where n=dim V, m =dim W,

and f similarly represents g: £ g if and only if 0 £ v(f) —»(g) € n—m>®

Proof. By Proposition 1, f = g if and only if there exists a form % such
that f~ g+ h, namely «(f) =g+ h) =¢(g)+¢(h). Thus, our first statement is
proved. The necessity assertion in the second statement is already proved
(Proposition 2). Suppose that 0 = (/) — »(g) = n—m. Then, by suitable ¢, 7
= +1, we have »(f) =(¢f) and »(g) =¢(%g) and so we are reduced to the first
case.

For our purpose in §3, we give here some formulas on the forms over the

real number field. It is easily verified that d(f)~(—=1)""Y and €(/)~(-1,
(=1)DEN D2y - By simple computations, we get the following formulas :

(4) AL, @~ (=1, (—phmm@ e,
(5) B(S, g)~(—1 (_1)u*(f)—l*(gs)(e*(f)—4*<g)—1)/2).

From (4) and (5) it follows that

(6) ASf, 2~1 if *(f)~Mg)=0,3 (mod. 4),
A/, ) +1 if M) ~Mg =12 (mod. 4),
(7) B, ~1 if M) ~*g)=0,1 (mod. 4),
B, @)+1 if M(f)—-cMg =23 (mod. 4).

Now, let K be non-archimedean. We prove some propositions on the local

representabilities of the forms.

ProrosiTionN 4. Let K be non-archimedean and let V and W be n and m
dimensional vector spaces over K. Let | and g be forms on V and W respectively.

Then,

ifn—m=1, f> g if and only if D(f, g)~1,
if n—m=2, £ g if and only if B(f, &) ~1 in K(NA(f)4(g)),
fn—m=x=3, f>xgforany f on V and g on W.

Proof. By Proposition 1, f = ¢ means that there exists a form % such that
f~ g+ h and this is equivalent to say that there exists such a form % on an
(% — m)-dimensional space as d(f)~ d(g)d(h) and €(f)~GC(g+7n)~C(g

13) This condition is trivially satisfied for forms on V and W(n x> m) over the complex
number field.
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® €(h) ® (d(g), d(h)), namely d(h) ~ d(f)d(g) and €(h) ~C(f) ® C(g) ® (d(g),
d()d(g)) ~A(f, g. From the theorem in [4]1"™ our proposition follows by
observing that 4(f)4(g) = —d(f)d(g) if n—m=2and B(S, g) =U, )R (-1,
d(f)d(g)).

ProrosiTiON 5. Let K, V, W, f and g be as described in Proposition 4.
Then,

i) sfnm—m=1,n:odd, fXgifand onlyif B(f, g) ~1in K(Vd(g)),

ii) if n—m=1, n: even, f S g if and only if B(S, g) ~1 in K(V4(S)),

iii) ¢fm—m=2,n:odd, f3g always,

iv) ifn—m=2, n:even, f X3 g if and only if B(f, g) ~1

in K(N4(f), V4(&)),

v) #fm—m=23, % g always.

Proof. v) follows at once from Proposition 4. For n—m <2, f % g if and
only if af > g for some a € K* and this is, by Proposition 4, equivalent to say
that B(af, &) ~1in Kif n—m=1 and Blaf, &) ~1 in K(V4(af)d(g)) if n—m
=2. By the formula (3) in §1, ¥ & g is equivalent to the existence of a € K*
such that

i) B, R(a, 4(g)) ~1 in K,

i) B(f, @ ®(a, 4f))~1in K,
iii) B/, ) ®(a, —4(g)) ~1in K(Nad(f)4(g)),
iv) B(f,8)®(a, 4(f)) ~1in KNA(f)4d(g)).

As for iii), if we take a & K™ such that ad(f) 4(g) is not a square, the
condition is satisfied for any f and g, since then any algebra class with index
at most 2 is ~ 1 in any proper quadratic extension. On the other hand, the

cases i), ii), iv) are reduced to the following lemma.

LemMma. Let U be a central simple algebra over our K with index at most
2, and let «, B be € K*. Then, there exists a € K such that (a, ) ~% in
K(EB) if and only if A~1 in KN a, VB).

Proof of Lemma. The necessity is trivial. Conversely, suppose first that

£ is not a square or both § and « are squares. Then, we may take a=1. Next,

if a is not a square and f is a square, we may take such a that is a norm or

1) [4]. Satz 18.
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not relative to the quadratic extension K (Va )/K according as A ~1 or +1 in
K.

As an analogue of Proposition 3 we prove the following

ProrosiTiON 6. Let K, V, W, f and g be as described in Proposition 4.
Suppose that n > m. Then, f similarly represents g: f 3 g if and only if 0 < v(f)
—u(g) £ n—m.

Proof. The necessity assertion is already proved (Proposition 2). To prove
the sufficiency, suppose first that #—m =3 or n—m =2 and »n is odd, then the
statement is trivial by Proposition 5. Therefore there remains to be discussed

the three cases i), ii) and iv) in Proposition 5.
i) 02v(f)—2(g) 21 implies that —-1="(g)—»*(f)=1.

From this inequality it follows that »*(g) =2, »™(f) =1 and »*(g) =0 or »*(f)
=3 and »*(g) =4. By Lemma 2 in [0], these three conditions are equivalent
to saying that 4(g) is not a square or 4(g) is a square and €(/H® (-1,
(= 1) 0B L G(2)® (=1, (—1)" ™8 Thus, these conditions are
summed up as B(f, g) ~1 in K(V4(g)), observing that ( — 1, ( — 1) VBg(f)"+112)
(=1, (=) L (d(f), —(=D)")~(d(f), —d(g)) if 4(g) is a square.

Then our statement follows from Proposition 5.

ii) is proved in a similar way as in i).
iv) 0=»(f)—»(g) £2 implies that —2=%(g) —»™(f) =2.

It follows from this that »™(f) =2 or »™(g) =2 or »*(f) =r™(g) =0 or 4. Again
by the Lemma 2 in [0], we have 4(f) is not a square or 4(g) is not a square
or 4(f) and 4(g) are both squares and €(f)® (=1, (=1)"*""8) LGP R (-1,
(—1)merzmisy Observing; in the last case, that (—1, (—=1)"™*""Bg (-1,
(=1 < ((= D™, = (=1)™*)~(d(f), —d(g)), we have B(f, g) ~1 in
K(V4(f), Vdig)). Thus, we are reduced to Proposition 5 again.

Now, thus obtained local considerations, containing the case where #n = m,"™

are summarized in the following

TueoreM 2. Let K be a locally compactly valued field of characteristic = 2,
and let 'V and W be vector spaces over K such that dim V = dim W. For the

nondegenerate symmetyic bilineay forms f, § on V, W respectively, the following

15) [0]. Lemma 3.
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three conditions are equivalent.

1) f similarly represents g:f 2 g
ii) 0=v(f)—2(g =dim V—dim W.
(For the case where dim V =dim W is even and K is non-archimedean,
we add the condition d(f) ~ d(g)).
iii) I'(W, &) is linearly imbedded in I'(V, ).

Remark. 1If O(W, g) is imbedded in O(V, ) topologically, we may take a
non-isotropic subspace W’ of V such that O(W, g)= O(W’, f') (homeomorphical-
ly), where f! is the restriction of /¥ to W'. Thus, we know that »(g) =»(f").*®
Since /1!, we get 0 £ »(f) —»(f') € dim V —dim W' by Proposition 2. There-
fore, we have 0 < »(f)—»(g) £dim V~dimW. Furthermore, this inequality
comes from the abstract imbedding of the orthogonal groups provided dimW
=3 For dim W = 3, in order to have that inequality it is sufficient that there
exists a homeomorphism as topological spaces between two groups O(W, g) and
o(w', 1.®

§ 3. Hasse principle
In this §, we assume that K is either a field of algebraic numbers or a
field of algebraic functions of one variable over a finite field of characteristic
% 2. Let Ky be the p-adic completion of K with respect to a place p in K.
We denote by Vp the scalar extension of a space V with respect to Ky. First
we prove, for the completeness sake, the following well known theorem on the

representability of forms.

TueoreM 3. Let K be a field of algebraic numbers or a field of algebraic
Sunctions of one variable over a finite field of characteristic = 2, and let V and
W be the vector spaces over K with dim V=n, dim W =m. Let f and g be non-
degenerate symmetric bilinear forms on V and W respectively. Then f represents

g:f>xgin Kif and only if f g in Ky for every place p in K.

Proof. The necessity is trivial. We prove the sufficiency separately for
several cases.
16) [0]. Lemma 4.

17) 10]. Addendum.
18) For such case, we say that O(W, g) is set-theoretically imbedded in O(V, f).
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i) m=m: We find the proof in [4] (Satz 20).

ii) m-—-m=1: By the assumption, we have B(f, g) ~1 in K, for every
finite place p (Proposition 4), and 0 = ¢;(f) —¢;(g) £1 for every real infinite
place p. From the formula (7) in §2, it follows that B(f, 2 ~1 in Ky
for every real place p. Let % be a unitary form with discriminant d(f)d(g).
Then, for finite places p, we have Clg+7) ~€(g) ® C(h)® (d(g), d(f)d(g))
~CNH UL, 8 ®C(R) ~C(/)® B(f, &) ~Clf) in Kp, since C(h)~ (-1,
d(f)d(g)). On the other hand, for real places p, d(h)~( —1)PP~P®  There-
fore it follows at once that ¢y(f) = tp(g) +ep(h) = ¢,(g+ k). Thus f~g+h in Ky
for every place b in K, which reduces the proof to the case where % = m.

iii) #—m=2. From the assumption, we have B(f, g)~ 1 in Kp(V4(f)4(g))
for every finite place p (Proposition 4) and 0 = 3 (f) — ¢ (g) =2 for every real
place p. If ¢ (f) —¢5(g) =0 or 1 for a real place p, then B(f, g)~1 in Ky and
necessarily in Kp(Vd4(f)4(g)) by the formula (7). While, if ¢ (f) —¢(g) =2,
then 4(f)4(g) = —d(f)d(g) ((1) in §1) is negative in Ky and so B(f, g ~1
in Ky(V4(f)4(g)) for such real place p. Therefore from the fundamental
statement on the splitting of algebras, we get B(f, &)~ 1 in K(V4(f)4(g))
=K(V—-d(f)d(g)). Now,set d=d(f)d(g),S=C(f)® C(g) & (d(g), d). Then,
S~UL, 8 ~B(f, )& (~1,d(f)d(g) ~ (-1, =1) in KN —-d([)d(g)) = K(N=d).
Thus, from the theorem in [41" there exists a binary form % over K such that
d(h)~d, €(h)~S. Since d(f)~d(g)d(h) and €(f)~ G(g+ 1), we have f~ g
+h in Ky for every finite place p. As to a real place p, d(h)~ d(f)d(g) im-
plies that ¢ (/) =5 (@) + (k) (mod. 2). We have €(h)~A(f, g)~1 if 5 (f)
— () =0, 3 (mod. 4) and G(k)+ 1 if (/) — (@) =1, 2 (mod. 4) ((6) in §2).
Since €(7)~(—1, (=1)FMBMDE) ¢ follows at once that «(f)=c(g)
+ tg(h) = :;";(g+ h). Thus, we get f~g+h in Ky for all places p in K, and we
are reduced to the case where # = m.

iv) n—m=3. Letd=d(f)d(g) and ©=6C(f)®EC(g)®(d(g), d), then there
exists a ternary form & such that d(h)~d and €(h)~ &2  Therefore d(f)
~d(g)+d(h) and €(f)~E€(g+h) and so f ~g+h in Ky for every finite place
p.  As to a real place p, the similar consideration as in iii) shows that q“;(f)

= :§ (g+h). Thus, we are also reduced to the case n = m.
19} [4]. Satz 18.
20} 4], Satz 18,
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v) n—ma4 Letd=d(f)d(g),S=6(f)®E(g)®(dg),d) and ¢ = ()
—¢5 (g), where p is any real place in K. Then, we get d~ ( —1)% and G~UA(f, @)
~(-1,(- 1)(bN= @~ p@+i2y _ ( 1, (= 1)B¢p*V2)  Therefore, there
exists a form h wtih d~ d(h), © ~ €(h) and ¢y =¢p(h) for every real place p.*”
Thus, we get / ~ g+ h in K, for every place p in K and we are reduced to the
case n=m. Q.E.D.

Next, we prove the following theorem of Hasse type on the similar repre-

sentability of forms.

Turorem 4. Let K, V, W, f and g be as described in Theorem 3. Then,
FRgin K if and only if X g in Ky for every place p in K.

Proof. The necessity is trivial. Conversely, if n=m, the sufficiency is
proved in [0, and if » —m > 3 there is nothing to say since then any f re-
presents any g. Therefore we shall prove the sufficiency in the following four
cases.

i) n—m=1, n:odd. By the assumption, we have 0 = pp(f) —pp(g) =1
for any real place p. Multiplying ¢, » & K with suitable positive or negative
signs relative to real places on f and g respectively, we may assume that pp(f)
=y (f) and »p(g) = ¢5(g) for every real place p. For a finite place p, we have
B(f, &)~ 1 in Kp(V4(g)) from Proposition 5. On the other hand, for a real
place b, we have B(f, £)~1 in K, from (7) in §2. Thus, B(f, g)~1 in
Ky(V4(g)) for every place p in K, and so B(f, &)~ 1 in K(¥4(g)) and B(f, g)
~ (a, 4(g)) in K with some a& K*. Next, we replace a by a totally positive
element € K*. If 4(g) is a square in K, then we may put a=1. If 4(g) is
not a square, let L= K(vV4(g)) and let M be the totality of real places p such
that 4(g) is positive in Kp, then by the lemma in [0],* there exists an element
¢ € L such that aNyx c¢ is positive in Kp for all pE . Set b=aNyx ¢, then
B(f, &)~ (a, 4(g)) ~ (b, 4(g)) in K. For all real infinite places p such that
peEM, b must be positive in Ky, since 1 ~B(f, &)~ (d, 4(g)) and 4(g) is nega-
tive in such Kp. Thus, b is totally positive and B(8f, g) ~ B(f, 2) & (b, 4(g)) ~1
in K. Therefore, bf > g in K), since zf; (bf) = sz (f) for any real place p. Thus,

we are reduced to Theorem 3.

2l [4]. Satz 21.
22) [0]. Theorem 1.
23) [0]. Lemma 5.
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ii) m—m=1, n : even. This case is treated by the similar method as in i).

ili) n—m=2, n : odd. To prove this case we need the following

Lemma. Let i be any finite set of finite places in K, then there exists an
element a € K such that a is not a square in K, for every place p in N and
a has an avbitrarily given (positive or negative) sign in each Ky for every real

place p when K is a number field.

Proof of lemma. Let W be a set of finite places in K containing places of

an even number such that ' D . Then, there exists a cyclic algebra A= (b,

K(VRB), ¢) with p-invariant (%) = % (mod. 1) for every place p € N’ and (—;—)
=0 (mod. 1) for every p e W. Thus, b is not a square in Ky for pE N'. Since
¢ € K is a square in Kj if and only if ¢ is a square mod. ) with a suitable
positive integer ey, the element ¢ & K which satisfies the equation x=b

mod. IT»*® and the given sign condition is the desired one.
peR’

Proof of iii). Similarly as in i) we may assume that 0 = 5 (f) — 5 (g) €2
for every real place p. If (f)—¢5(g) =0, 1 then B(f, g)~1 in Ky ((7) in
§2). Now, let ¢ be an element &€ K such that e is positive in Ky for p with
tp(f) =4 (g) =0, 1 and is negative in Kp for p with ¢5(f) —¢y(g) =2. Then,
for the latter p, we have ¢ (ef) = ¢ (eg) since n—m =2 and ¢ (ef) =n— ¢ (f),
tp(eg) =m—¢f(g). Thus, we may assume that ¢ (f) —¢5(g) =0, 1 for all real
places p and so B(f, g)~ 1 in Ky for all real places p. Our statement is proved
if we can show that there exists a totally positive ¢ € K* such that B(af, g)
~B(f, 9 & (a, —4(g))~1 in Ky(Vad(f)d(g)) for every finite place p (Propo-
sition 4). To do this, suppose first that — 4(g) is a square in K. Let 0N be
the totality of all finite places p such that B(f, g)+ 1 in Ky. Then, from the
above lemma, there exists 6 € K such that ¢ = —b4(f) is totally positive in K
and b is not a square in Ky for pe M. Thus, if peE N, then B(S, g)~1 in K,
and if pEN, then B(f, g)~1 in Kp(V—ad(f)) since Ky(N—ad(f)) is a
proper quadratic extension. Therefore we get B(f, g)~1 in K(¥—ad(f))
=K(Vad(f)4(g)). Next, suppose that — 4(g) is not a square in K. Set B*
=B(f, @) ®U(f), —4(g)). If B*~1 in K, then we take an element cE K
such that a@=cd(f)4(g) is totally positive in K. It follows that B(f, &)
®(a, —4@))~B(f, &) (cd(f)Ag), —4(g))~B(f, &)X (4(f), —4(2)® (e,
—A(g))~B*R (¢, —4(g))~1 in K(V¢ ) =K(Vad(f)4(g)). On the other hand,
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if B*4+ 1 in K, then B* ~(a, B), «, &€ K*. For a real place p, we have B*
~B(f, B (=D VE(—1)BD, (=1 VB 1)B@) ~ ((=1)" V(= 1),
(=1 D2 1)), Thus, B*~1 in Ky for p such that ¢y (f) — 5 (g) =1. Now
let M be the totality of real infinite places p such that B is positive in Ky, then
there exists an element ¢ € L=K(yB) such that a'=aNgxc is positive in
Ky for pe M. For p g M such that B* ~ 1 in K,, we have «' is positive in Kp.
Therefore we may assume that « is positive in Kp for p such that B*~1in
Ky. Next, let M be the totality of p’s such that « is positive in Ky, then there
exists an element ¢/ € L' = K(v « ) such that 8' = SNy xc¢' has the same sign as
4(f)4(g) in Ky for every p& M. For pe=M', since « is negative in Ky, B*
~ (=D DR 1)B, (=1)PV2(—1)%@) 4 1 in Ky, hence §' is also nega-
tive. On the other hand, this relation implies that ¢ (f) = ¢;(£) and so 4(f)4(g)
~ (=D, (1) (1)@ = 1.  Thus, ' has again the
same sign as 4(f) 4(g) in Kp for p & M. Put a=F'4(f) 4{g). Then, a is totally
positive in K and B(f, 2) ® (a, —4(g)) ~B(S, g)® (B'4(f) d(g), — 4(g))
~B*® (B, —A@)~(a, B)® (B, —4(g)~ (B, —adlg) ~1 in KNB)
=K(Vad(f)4(g)).

iv) m—m=2, n : even. As in iii), we may assume that B(f, g)~1 in K,
shall show that there exists a totally positive ¢ & K such that B(f, g)~ (a, 4(f))
in Kp(V4(f)4(g)) for all finite places p (Proposition 4). If one of 4(f) or 4(g)
is a square in K, then we may take a=1. If 4(f)~ 4(g)+ 1 in K, then B(f, &)
~1 in K(V4(f)) and so B/, g)~ (b, 4(F)) in K for some b & K. Then, we
may replace b by totally positive a, since B(f, g)~1 in Ky for any real place
p. Therefore it remains to be considered the case where L =K(W4(f), y4(g))
is a proper biquadratic extension. Now, let i be the totality of all finite places
p such that 4(f)~ 4(g)+ 1 in Ky and let My be the totality of all pe& M such
that B(f, £ 4+ 1 in Kp. Set My =My if My contains an even number of p and
M = Mo+ {a}, where q is a finite place in K such that 4(f)+ 1 in Ky and 4(f)
+ 4(g) in Kq,zj) if My contains an odd number of p. Let B* be the algebra
such that (—Q;M) E% (mod. 1), p€M; and (%}3—) =0 (mod. 1) for all places
peEM.  Since 4(f)+1in Ky for pe My, B* ~1 in K,(V4(S)) for all places

p in K, thus B* ~(a, 4(f)), where we may assume that « is totally positive in

#) Since L/K is biquadratic, we may take such g.
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K since B* ~ 1 in K, for every real p. On the other hand, for a finite place p
with 4(f)4(g) +1 in Ky, we have B(f, @)~ B*~1 in K,(VA(/) 4(g)), for a
finite place p with 4(f)~4(g)+ 1 in Ky, we have B(f, g)+ 1 and B¥ + 1 in
Ky if peM and B(f, @)~ B ~1 if pe Dy, for a finite place b with 4(f)
~ d4(g)~1 in Kp it follows from the assumption that B(f, g)~1 in Ky and
B*~1 in Kp, and lastly for a real places p, we get B(f, g)~B"~ 1 in Kj.
Therefore B(f, 9 ~V* in Ky(VA(f)4(g)) for all p. Thus, B(f, g~ B*
~(a, 4(f)) in Ky(Vd(f)4(g)). QE.D.

TueoreM 5. Let K, V, W, f and g be as described in Theorem 3. Then, [
similarly represents g: f S g in K if and only if 0= pp(f) —vp(g) =dimV
—~ dim W for every plaze p in K.

Proof. The necessity is almost trivial (Proposition 2). Conversely, if
dim V=dim W, then »p(f) =vp(g) for all p implies that /o g in Ky for all p if
dimV is 0dd™ On the other hand, if dimV is even, we know that 4(f) is a
square in Ky if and only if 4(g) is s0”® Thus, we get 4(f)~ 4(g) (and d(f)
~ d(g)). Then, we again have f = g in K, for all p.”” Therefore f = g in K.
Next, if dim V' > dim W, then we get /% g in Ky for all p (Theorem 2) and we
are reduced to Theorem 4. Q.E.D.

TuroreM 6.  Under the same assumption as in Theorem 3, if f semi-
stmilarly represents g . 5 g in Ky for every place p in K, then [ similarly re-
presents g 3B g in K.

Proof. f3 gin Kp implies that 0 = vp(f) — vp(g) £ dim V — dim W (Propo-
sition 2). Thus, our statement comes from Theorem 5 immediately.

Now, we shall transfer the so obtained theorems of Hasse type to that of
orthogonal groups.

From Theorem 1 and Theorem 4, we get

THEOREM 7. Under the same assumption as in Theorem 3, a group I'(W, g)
is linearly imbedded in I'(V, f) if and only if I'(Wy, g) is linearly imbedded
in I'(Vy, ) for every place p in K.

From Theorem 1 and Theorem 6, we get

25) [0]. Lemma 3.

26) [0]. Lemma 2.
2 See 25).
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TueoreM 8. If I'(Wy, &) is semi-linearly imbedded in I'(Vy, f) for every
place b in K, then T'(W, g) is linearly imbedded in I'(V, f).

From Theorem 5 and Remark in §2 we have the following theorems.

Tueorem 9. If O(Wy, g) is topologically imbedded in O(Vy, f) for every
place v in K, then O(W, g) is linearly imbedded in O(V, f).

TueoreM 10.  Swuppose that dim W = 3. If O(Wy, &) is abstractly imbedded
in O(Vy, f) for every place p in K, then O(W, g) is linearly imbedded in O(V, f).

TreoreM 11.  Swuppose that dimW =3. If O(Wy, g) is set-theo?etically

imbedded™ in O(Vy, f) for every place p in K, then O(W, g) is linearly imbedded
in O(V, f).
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