ON ONE-PARAMETER SUBGROUPS IN FINITE
DIMENSIONAL LOCALLY COMPACT GROUP
WITH NO SMALL SUBGROUPS

MASATAKE KURANISHI

Let G be a locally compact topological group and let U be a neighborhood
of the identity in G. A curve g(1) (|4l £1) in G, which satisfies the conditions,

gs)g(t)=g(s+t) (sl, lt], s+ 1),

is called a one-parameter subgroup of G. If there exists a neighborhood U,
of the identity in G such that for every element x of U; there exists a unique
one-parameter subgroup g£(1) which is contained in U and g(1) =x, we shall
call, for the sake of simplicity, that U has the property (S)*. It is well known
that the neighborhoods of the identity in a Lie group have the property (S)".
More generally it is proved that if G is finite dimensional, locally connected,
and is without small subgroups,” G has the same property.? In this note, these
theorems will be generalized to the case when G is finite dimensional and with-
out small subgroups.

The writer’s proof is based on the theorems recently developed by D. Mont-
gomery and A. Gleason.” Their theorems, which will be used in this note, are
summarized in §1. In §2 it will be proved that the group G, which is finite
dimensional and without small subgroups, is locally connected and our theorem
is reduced to the known case.

§1. TuroreMm 1 (Montgomery)." Let G be a locally compact locally con-
nected n-dimensional group (n< o). Then there exists a neighborhood V of
the identity in G possessing the following properties:

Let A and B, (BCA), be compact subsets of V. Then the sufficient con-

Received November 5, 1951.

H G is called to be without small subgroups, if there exists a compact neighborhood of
the identity in G which does not contain non-trivial subgroups of G.

%) Cf. Chevalley, C. [1]. C. Chevalley proved the case when G is locally euclidean and
without small subgroups. K. Iwasawa communicated to the present author that D.
Montgomery pointed out that the Chevalley’s method may be applicable even when G
is locally connected and without small subgroups. It is also informed that H. Yamabe
obtained the same result.

3 D. Montgomery [7], [81, [9]1, [10], A. Gleason [2].

4) This Theorem and its Corollaries are valid when G is a locally connected finite dimen-
sional homogeneous space, or more generally, G is a locally homogeneous space. See
D. Montgomery [8].
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ditions for A — B to be an open subset of G are

1) B carries an (n—1)-cycle 2 which is not homologous to zero in B, and
2) A is minimal with respect to the properties
a) BCA

b) 2z is homologous to zero in A.

CoROLLARY 1 to TuEOREM 1. (Invariance theorem of domain). Let Gy and
G2 be locally compact locally connceted groups. Suppose that dim G, =dim G:
=n< oo, Let M be an open subset of G. and f be a topological mapping of M
into G.. Then the image f (M) of M under the mapping f is an open subset
of Go.

Proof. Let V; be the neighborhood of the identity in G; pointed out in
Theorom 1 (=1, 2). Let p. be a point of f(M) and let p; be the ponit M
such that f (1) =p.. We can take a neighborhood Vj of the identity in G; such
that ViS Vi, Vi SM, £ (V1p) S Vaps. Since the dimension of Vi is #, there
exist compact subsets A; and B; of V| satisfying the conditions 1) and 2) of
the Theorem 1. Moreover, we can assume that the identity in G, is contained
in Ai— B;. Then f(Ai1p1) and f(Bip:) are subsets of Vop» and satisfy the con-
ditions 1) and 2) of the Theorem 1. Hence by Theorem 1 f(Aip1) —f(Bip1)
is an open subset of G:. Since p.& f(Aip) —F(Bip) S (M), f(M) is an open
subset of G..

COROLLARY 2 to THEOREM 1. Under the same notations and assumptions
as in the Corollary 1, let N be an open subset of M such that N S M, and let x
be an arbitrary point of f(N). Then

CAG:~f(bdry N))" S f(N).
Proof. From the Corollary 1, it is easy to prove that
bdry f(N) = f(bdry N).

Hence, G: —f(bdry N) = Gz — bdry f (N) =f(N)U (G2~ f(N)),
FINYN(G:—f(N)) =¢° and both f(IN) and (G:—f(N)) are open subsets of
G;. Since xEf(N), it follows that

C:(Gz— f(bdry N) S f(N)).
T}iEOREM 2" (Montgomery). Let G be a locally compact n-dimensional

5) Cycles are in the sense of Cech.

6) Cf. Hurewicz and Wallman [2], p. 151,

7 If x is a point of topological space A, Cx(A) is the connected component of A which
contains x.

8 ¢ denotes the empty set.

9 This is a part of Theorem 7 of D. Montgomery [9].
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group (n< ). Then there exists a locally compact locally connected group
G* of dimension n and a continuous one-to-one mapping « of G* into G satis-
fying the following conditions.
Let C* be a neighborhood of the identity in G*, then «(C*) =C is an
invariant local snbgroup of G and the factor local group of G by C is zero-
dimensional.

§2. A neighborhood U of the identity in a topological group G is called
to have the property (S), if for every element x of U there exists an integer
n such that x* & U.

LeMMAa 1 (Yamabe)® Let G be a locally compact group, and suppose
that G is without small subgroups. Let U be a neighborhood of the identity e
in G such that U contains no non-trivial subgroups. For every neighborhood V
of e there exists a neighborhood V™ of e satisfyving the following conditions.

If x and 5" are contained in V* and if x' (1<i<k) are elements of U, then
x' is contained in Vfori=1,2,...,k

CoROLLARY to LEMMA 1 (Yamabe and Goto).” If a locally compact group
G is without small subgroups, G has the property (S).

LemMma 2.2 Let G be a locally compact group which is without small sub-
groups. Then there exists a neighborhood U of the identity in G, in which the
square root is unique. More strictly, if x and y are elements of U, and if %
= 3%, it jollows that x = 3.

In this case the mapping ¢(x) = %" of U into G is one-to-one.

Lemma 3.2 Let G be a locally compact group which is without small sub-
groups. Then on a sufficiently small neighborhood U of the identity in G we
can define a real valued continuous function f(x) satisfying the following con-
ditions.

(3) F(x)=2f(x) for x xEU,
(4) 7(x) =0 i and only if x is the identity.

Now let U be a local group and let C be an invariant local subgroup of
U. 1If we take a sufficiently small neighborhood W of the identity in U the
factor local group W/C is defined as follows.”

(i) The element X of W/C is the coset W\ Cx for xE W.

(ii) We shall consider that the product XY of a pair of elements X, ¥ of
W/C is defined if and only if there exist elements ¥& X and y€ Y such that

1% For the proof, see H. Yamabe [12].
1) H. Yamabe and M. Gotd [4].

12) See Kuranishi [5] and [6].

13) Pontrjagin [11], p. 83.
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xy is contained in W. The product XY is equal to W\ Cxy, which is inde-
pendent of the choices of x and y.

(iii) The natural mapping W- W/C is continuous and open.

Let G be a locally compact finite dimensional group. Suppose that G is
without small subgroups. Let G* and a be the locally compact locally con-
nected group and the continuous one-to-one mapping of G* into G stated in
Theorem 2. Let U be the sufficiently small neighborhood of the identity in G
on which the function f(x) of Lemma 2 is defined. U is naturally a local
group. Take a sufficiently small open neighborhood C* of the identity in G*
and let C=a(C¥). By Theorem 2 C is an invariant local subgroup of U.
Take a sufficiently small neighborhood W; of the identity in U so that the factor
local group Wi/C is defined. By Theorem 2 W,/C is a zero-dimensional locally
compact local group. Let 8 be the natural mapping W;— W:/C and let ¢ be a
mapping ¢(x) =x°. Take an open neighborhood W of the identity in U such
that WS Wi.. Let V; be the neighborhood of the identiy in U such that

(3) ¢(bdry W)NVi=g,
(6) View,
(7) ViNC is connected.

Let V be a neighborhood of the identity in U such that V'SV, V=V

LemMMa 4. Let X be an element of 3(V) such that X® is contained in B(V).
Then for every element y of XNV, there exists an element x of X such that
2
y=x"

Proof. Let X=WiNCx, xEV,
and M* = a ™ ((WiN Cxo)x5).
We define the topological mapping ¢(a) of M™ into G* by
¢(a) = a7 ((¢((ala))xo) x5 ).

Since N*=a "((WNCxo)x;') is an open set containing the identity " in G*
and N*<S M?*, by Corollary 2 to Theorem 1,

(8) Co(G* ~ ¢(bdry N*)) € ¢(N*).

Since ala™ (ViNC)N¢(bdry N*))
S(ViNC) N (¢ (bdry (WNCx)))xi*
s Vixs N e(bdry W) Ixs”
SLViNg(bdry W)t = ¢ (by condition (5))

1 4 is the injection of G* into G.
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and since VN C is connected, it follows that
(9) a M ViNC) ECa(G" — p(bdry N*)).
If cxie XNV =(WiNCx) NV =VNCxi, it follows that

ceVy*NCEVVINCEVIUC,
that is,

PNV E(ViNC)x;
(10) ' LX* NV 1S« (ViNC).
From (8), (9) and (10), it follows that
XNV 1S ¢IN) = a ' [¢(WNCxo)xs "],
that is,
X’NVE¢e(WNCxy).
Hence the lemma is proved.
We now define the function F(X) on 3(W) by

(11) F(X) =inf f(x).”

zEXOT
LEMMA 5. Let V be the neighborhood of the identity in G stated in Lemma
4. We can assume without loss of generality that V ={xlf(x) <0}, where f(x) is

the function of Lemma 3. Then

(12) F(X*)=22F(X) i X, X'€p(V),
(13) F(X) =0 if and onlv if X is the identity,
(14) F(X) s continuous.

Proof. Continuity of F(X): Let X,€8(V), and X,>Xe€B(V). There
exists a sequence x» (=1, 2,...) of Vsuch that F(X.) =f(x,). We can as-
sume without loss of generality that x,—~>x& V(\X. Then

(15) F(X) /(%) =limf(x,) = lim F(Xn).

n>» n-»x

Let x be the element of X such that F(X) =f(x). For arbitrary positive num-
ber ¢, there exists a neighborhood V- of the identity in G such that

S £f(x)+: for yve& Vix.
Since 8 is an open mapping, there exists an integer N’ such that

X, €p(Vex) for n>N.

15) f(x) is the function of Lemma 3.
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Let x, be a point of Xy Vox, (=N +1. NN+2,...). Then
(16) I"(Xn) éf(xn) éf(x)+$:2F(X)+E for n=N,

from (15) and (16) it follows that F(X) is a continuous function on S(W).
(13) is obvious. We shall prove (12). Suppose that X and X? are elements
of B(V). There exists an element y of X*M V such that

F(X*) =f(y.

From Lemma 4 and the fact that V ={x/f(x) =4}, there exists an element x
of XN V such that x* = .
Hence

F(X®) =f(y) = f(5*) 22f(x) 22 F(X).

LemMa 6. Let G be a locally compact finite dimensional group. Suppose
that G is witout small subgroups. Then G is locallv connected.

Proof. Let V be a sufficiently small neighborhood of the identity in G.
Since W/C is a zero-dimensional local group, (V) contains an open and com-
pact subgroup H of W/C. We can take H so that H is the group in the
large, i.e., the product is defined for every pair of elements of H and is con-
tained in H."" By Lemma 5 there is defined the function F(X) on the compact
group H and satisfies the conditions

(12) F(X?)22FX) for every element X of H.

(13). and (14). Hence H must be the group consisting of the identity element
only. Since H is an open subsat of W/C, W/C must be a discrete space. Thus
W is locally connected.

o

TuroreM 3. Let G be a finite dimensional locally compact group. Suppose
that G is without small subgroups. Then for every neighborhood U of the
identity in G there exists a nzighborhood U, satisfving the following conditions.

“For every element x of U, there exists a unique one-parameter subgroup
g(2) (0=£2=<1) contained in U such that g(1) =x.”’

Proof. We can suppose without less of generality that
(18) the function f(x) of Lemma 3 is defined on U, and that
(19) the mapping ¢(x) =" of U into G is one-to-one. (Lemma 2.)

Take a neighborhood V of the identity in G such that V’S U and let V*
be an open neighborhood of the identity in G of the Lemma 1 with respect to
V. By Lemma 6, G is locally. connected. Hence from the condition (19) and

" This can be proved in the same way as in the case of the locally compact zero-dimen-
sional groups.
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the Corollary 1 to Theorem 1, ¢(V*) is an open subset G and contains the

identity. Choose a sufficiently small positive number é such that

(20) Ur = {xlf(x) <8} VF Ne(V),

For every element x of Ui, there exists an element %; of V* such that x

=x3 Since f(x)) é%f(x‘i) = é flx) <4, x is contained in Ui Thus there ex-

ists a suquence x, (n=1, 2,...) of elements of U, such that

on

X =Xn.
Since the square root is unique (Lemma 2),
XnXm = XmXn
and

Q=R

Xn=Xm for mx2n.

- . . 1
Then there exists a unique one-parameter subgroup g(1) such that g( 9") = Xn

for n=1, 2,...." Suppose that

g(;’,“,)gv for m=1, 2,..., 2"

Put v= g(ﬁ-,,l;l) eU,.. For m=2m'+1,

) A ) e v e

Hence

y'eU for m=1,2,...,2"",
and

» ¥ et v
By Lemma 1, V'EV for m=1,2,...2"""
Hence
g(zn,g,)E VSU for m=1,2,...,2" n=12,....

Thus

g)eVelU for 0si<l.
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