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QUALITATIVE THEORY OF CODIMENSION-ONE FOLIATIONS
KAZUO YAMATO

Introduction. The object of the present paper is to give a method
of studying the topological properties of integral manifolds defined by a
completely integrable one-form.

Our method is differential-topological. Through the singular points
of the variation equation of the given one-form, we investigate the
qualitative properties of the integral manifolds.

The plan of this paper is as follows. In §1, we state our main
theorems, which assert that under certain conditions, foliated structures
are classified into three groups, ‘“bundle foliations”, “Reeb foliations”,
“hyperbolic foliations”. In §2, which is one of the most important parts
in our theory, we introduce the concept of a vein. A vein is a leaf of
a certain codimension-two foliation associated with the given foliation.
Proposition 2.2.1 is concerned with the existence of compact veins. In
§3, we study precisely the distance between two leaves along a curve
contained in one of them. ‘“Admissible tangential curves” and their
“lifts” are the fundamental tools in the proofs of the main theorems.
In §4, we introduce a special Riemannian structure convenient for the
proof of Proposition 4.2.1 from which we prove three fundamental
lemmas 4.1.2-4.1.4. TUsing these lemmas, we prove our theorems I, II,
III, in §§5, 6, 7, respectively. §8 is devoted to the proofs of Proposi-
tions 4.1.1 and 4.2.1. In the appendix, we prove that our condition (T)
is “generic”.

The main results of this paper have been announced in [8].

The author wishes to express his gratitude for the guidance and
encouragement received from Professor Y. Shikata.

Notation. R denotes the field of real numbers, and R™ denotes the
real m-space, regarded as a real vector space or as a smooth manifold.
S™ denotes an ordinary wm-dimensional sphere. By an m-manifold, we
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mean an m-dimensional manifold with or without boundary, of class C*
By a closed m-manifold, we mean a compact m-manifold without bound-
ary. All functions, maps, curves, and vector fields are assumed to be
of class C' unless otherwise stated. All Riemannian structures are as-
sumed to be of class C:. We denote by %, the Lie derivative with
respect to a vector field X. A one-form « on a manifold M is to be
understood a map of the tangent bundle T(M) into R, which induces, at
each point x, a linear map «, of the tangent space T.(M) at x into R.
For two subsets A4, B of a Riemannian manifold, we shall write dis (4, B)
for the distance of A and B, and diam (A) for the diameter of A. For a
map f of a manifold M into another manifold M’, we write f, for the
bundle map of T(M) into T(M’) induced by f. For a curve ¢ on a man-
ifold, we denote by é(t) the tangent vector at a point ¢(f). If a curvee

is defined on an interval [a, b], we write j a for the integral of «
cla,u]

over [a,u] C [a, b], i.e.,

[ o= et

For a piecewise C' curve, the same integral as above can be defined.
We write (M, «) for a manifold M with a specified one-form «, and (M,
a,g) for (M,a) with a specified Riemannian structure g. We shall say
that (M,«) is a foliated manifold if « is completely integrable, i.e.,
a N\ da =0, If «is nonsingular, a maximal connected integral manifold
of a foliated manifold (M,«) will be called a leaf (of (M,«) or of M).
Given a foliated manifold (M, «) by “almost every leaf”, we mean except
for leaves whose union has measure zero in M. It is clear that for a
finite set A in a foliated manifold, almost every leaf does not intersect A.

§1. Statement of the main theorems

Suppose that we are given a connected, closed (» + 1)-manifold V**!,
n>1, of clags C™*' with a nonsingular, completely integrable one-form
o of class C'. Throughout this paper, we denote by (V,w) this foliated
manifold and assume, for simplicity, that » is sufficiently large, e.g.,
+>21. (From the proofs, one will see that our main theorems hold if
r>4.)

1.1. The critical cycle 3. Since » is nonsingular and completely
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integrable, it is well known that for each point p of V there is a local
coordinate system (z!, --.,2z**) of class C” in a neighborhood U of p
such that w|U = fda™*' for some positive-valued C"~! function f defined
on U. Then the set (U, f;al, -, is called an F-chart (at p).
Now, let X be the set of zeros of the exterior derivative of o, i.e.,

Y={peV|(dw, =0}.
For a point p of X, we define the type of p as follows. Let (U, f; 2!,

<., 2™ be an Z-chart at p, and consider two matrices

7@ = (fu@sy L)

0 get||of);t v boon Tt 1) ,
ox? j—1,--,n

127 @)] = ( Fist@,

where f;(x) = 3*f(x) /oxtox’.

Let 2=0,1,...,%n. The point p is said to be of type (1) if the matrix
10*f(p)|| is nomsingular and if the number of negative eigenvalues of
116%f(p)|| is equal to 2. We say that p is of type () if ||6*f(p)| is singular.
It is obvious that the type of a point of ¥ is well defined independently
-of the choice of %#-charts. For t=0,1,...,%n or *, let X, be the set of
points of type (f). Then we have

=23, U U2 U---U2Z%, (disjoint union) .

We shall assume that o satisfies the following condition:

) For any point p of 3, there is an F-chart (U, [f;a', ---,2"*") at
p such that ||3*f(p)|| is nmonsingular.

‘One sees then that the same condition holds for any %#-chart at peX,.

One sees also that Condition (T) implies that Y is a closed one-manifold.

Hence if o satisfies (T), then X will be called the critical cycle (of (V,

). In the appendix, it will be proved that Condition (T) is generic.

1.2. The main theorems. Assume that o satisfies Condition (T).
Then we have the following three theorems.

THEOREM I. If 3,# 0 and X, =0, then there exists a CT fibre
bundle B**' over S* and a C* diffeomorphism h: B**' — V**! such that

(i) the fibre of B™*' is a connected, simply connected, closed n-
manifold of class C.
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(ii) for each fibre M™ of B"™*', the diffeomorphism h induces a CT
diffeomorphism of M™ onto a leaf of V.

THEOREM II. If 3,+0, 2,_, =0, and X, =0, then for any point p
of 3,, there exists a C* fibre bundle R**' over S!, and a C7 imbedding
h: R** — V**isych that

(i) the fibre of R*" is a connected, simply connected, moncompact
n-manifold without boundary.

(ii) for each fibre N* of R™*!, the imbedding h induces a C™ dif-
feomorphism of N™ onto a leaf of V.

(iii) the set WR™) N X, coincides with the connected component
of X containing p.

@{iv) if Cl1(Z, N WR**Y)) C h(R™1Y), then there exist a finite number
of compact leaves K,, ---,K,, such that

K U..-.UK,=CwR") — WR")=CIL - L
for any leaf L in h(R™™).

THEOREM III. If 5, = 0, then there exists an open, dense subset V,
of V such that for any peV, the leaf through p is locally dense in the
sense of Reeb (see 7.1).

§2. The veined structure

2.1. The veined structure. Let X be a vector field on V such that
o(X) =1, and put o = —Z 0.

LEMMA 2.1.1. For an %-chart (U, f;x!, ---,2"""), we have

o'|U = 32, (@01og f/oxd)dxt + (—X(f) + 0 log f/ox™ )dar+! .

Proof. This is an easy consequence of the following elementary
formulas:

(Zz0)(Y) = X((Y)) — o(X, Y],
oY, nZ] = ghlY,Z] + 9(YWZ — WZ9)Y

for vector fields Y, Z and functions g, 2 on V, where [,] denotes the
bracket.

By this lemma, we know that the map o’|0™(0): 0 (0) — R is defined
independently of the choice of X, where v '(0) denotes the subbundle of
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T(V) defined by w = 0. Furthermore, we see that the one-form o’|L
on each leaf L is closed. Hence, the following definition makes sense.

DEFINITION 2.1.1. The wveined structure of the foliated manifold
(V, ) is the “codimension-two” foliation on V defined by o = o’ = 0. The
leaves of this “codimension-two” foliation will be called the wveins of
(V,w).

More precisely, a vein of (V,w) is a nonempty subset J in V having
the following properties:

(i) any two points z, yecJ can be joined by a piecewise C' curve
¢:[0,7] - V such that w(é(?)) = o’'(é(t)) = 0 for all te[0,z] at which ¢ is
differentiable ;

(ii) any point € V which can be joined to a point eJ by a piece-
wise C' curve c¢ satisfying the same condition as in (i), belongs to J.

A vein J will be said to be nonsingular if J does not contain any
singular point of «'|w '(0), i.e., any point xzeV such that o/, =0 on
©,%0). Clearly, a nonsingular vein is a connected (n — 1)-submanifold-
without-boundary (not necessarily closed) in V, of class C".

2.2. Closed one-forms and Morse theory. Let M™ be a connected, com-
plete Riemannian n-manifold of class C°, without boundary. Let « be a
closed one-form of class C:. Denote by a* the dual vector field of « and
denote by || || the norm of tangent vectors or cotangent vectors of M.
For a singular point p of «, the index of p is defined to be the number
of negative eigenvalues of the Jacobian matrix of « at p. The one-form
« is said to be proper if every singular point is nondegenerate and the
vector field «* is complete, and if there exist two families {F };.;, {]E?i}ie 7
of open sets of M satisfying the following conditions:

(i) E,c E, for each eI, and E, N E’j =0 for every 4, 7,1+ 7;

(ii) for each singular point p of «, there is eI such that pe F;, C E.;

(iii) there exist three positive constants «a, b, ¢, such that (a)
llaoll > a, for all ke M — s, By, (b) dis (B,M — E) > b, for all i¢el,
and (c) diam (£,) < ¢, for all iel.

ProOPOSITION 2.2.1. Suppose that « is proper and has at least one
singular point of index 0. If a has no singular point of index 1, then
the following hold:

(i) There exists a C* function f: M — R which is proper, i.e., every
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inverse image of compact sets is compact, such that o = df.

(ii) M™ is simply connected.

(i) If o has no singular point of index n, then M™ is noncompact.

(iv) The number of the singular points of index 0, is equal to one.

(v) For any ye M, there exists a piecewise C* curve a:[0,z] > M
such that a(t) =y and a(0) is the singular point of index 0, and such
that for any x = a(t) at which the vector field o* does not vanish, the
tangent vector a(t) coincides with of /|||

This will be proved in 2.3. The following proposition can be proved
similarly (cf. [9D.

PROPOSITION 2.2.2. Suppose that « is proper. Suppose that there
exists o closed (n — 1)-manifold J* ' and an immersion i:J — M such
that for any xed, the subspace 1, (T (J)) of T;.,(M) does not contain the
vector of,, and such that the cohomology class [t*a] € H'(J ; R) is trivial,
where iy, t* are the induced maps. If a has no singular point of index
1 and no singular point of index n — 1, then « is rational, i.e., for any
x e M, there exists an open subset U of M containing x and o function
f: U— R of class C* such that a« = df on U and each level manifold f~'(h),
helm f, is compact.

Remark 2.2.1. If V is Riemannian and if o satisfies Condition (T),
then for any leaf L of (V,») which does not contain any point of %,
hence for almost every leaf L, the closed one-forms +o’|L on the mani-
fold L with the induced Riemannian structure, are proper in our sense.
This may be seen as follows. Condition (T) implies that the critical

cycle Y is a closed one-manifold S* U --- U S! and is tangent to the leaves,
at the finite set ¥,. For each peX,, choose an F-chart (U, f;«', .-,
x**) at p such that z'(p) = ... = 2**(p) = 0 and put

l](p) ={qgeUl|lz¥q| <e/2,i=1,---,n + 1},
Up) ={qeUllzi(@| <ei=1,---,n;|2x"* ()] < ¢/2},

where ¢ is a small positive number such that U(p), U(p) are homeomorphic
to the open sets

{xeRnHHxil <5/2?i= 1’ RPN (2 + 1} ’
{xeRn+ll|xi| <e,i= 1, ...,n;|xn+1| < 5/2} ,

by ¢ = (', ---,2"*"), respectively. Let T, T be two sufficiently small
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tubular neighborhoods of ¥ in V such that C1T C T, and put
E=Up)U - ---UU@)UT, E=0U@U---Ulp)UT,

where {p,, ---, 0} = 2. Then, for a leaf L which does not contain any
point of Y, it is easily verified that the forms +«’|L on L have only
nondegenerate singular points (by Lemma 2.1.1.) and are proper, with
the families {F}cs, {E’i}iel of open sets E,, E, defined by the following
conditions: | J;e; E; = L N E, User £; = L N E (disjoint unions), and E,,
E, are connected components of L N E, L N E, respectively.

2.3. Proof of Proposition 2.2.1. We begin with some definitions. For
b
a C' curve c: [a, b] — M, the integral of « on ¢ is defined to be f a(c)dt

and will be denoted by j «. A compact leaf of (M,«) is defined

c(t),ast<d
to be a nonempty, arcwise connected, compact subset J in M satisfying

the following condition: for each x e J, there exists a neighborhood U of
xz in M and a function f: U — R such that e =df on U and J N U =
Y f(®). A compact leaf J is said to be singular if J contains any
singular points of «. Clearly, a nonsingular, compact leaf is a connected,
closed (n — 1)-submanifold in M. Let {y,} be the one-parameter group
of transformations generated by «*. The proof of Proposition 2.2.1 will
be preceded by six lemmas, 2.3.1-2.3.6.

2.3.1. There exist positive constants d,, h, satisfying the following
condition: for xe M and = >0, if dis(z,.(x)) > d,, then the integral of
o on the curve ¥, (x), 0 < t <z, is greater than h,.

Proof. Let {E]}, {E’i}, @, by, €, be as in the definition of ‘“proper”.
Put d, = max (b,, ¢;), b, = a,b,, and let the curve 4, (x), 0 < t < 7, satisfy
dis (z, ¥.(x)) > d,. First, consider the case where the curve ¥,(2),0 <t <,
does not intersect E, for any ¢e I. Then, ||af | = [lawml > &, hence we
have

[ « = [atat)it = [age | dt
$1(2),0<t<7 0 0
>, [lafinll dt = a,dis @, @) > aody > by
0

Next, in the case where the curve .(x), 0 < t < r, intersects some F,,
since dis (z, v.(x)) > d,, dis (B;, M — E,) > b,, and diam (£,) < ¢, we see
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that there exist real numbers ¢, t,, 0 < t, < t, <z, such that the curve
v (@), t, < t <t, is contained in E; — E;, and such that the length of
Y (x), t, <t < t, is greater than b, Since |af .l > a, for telt,t,l],
similarly to the preceding case, we have

j a> aby=hy .
$e(z),t1<t<ts

Hence, we obtain

j o> f a>h,,
¢t(x),0<t<7 Ge(x),t1<t<tg

which proves 2.3.1.

2.3.2. Suppose that there exists a connected, compact n-submanifold
W= in M* such that the boundary oW is the finite union of nonsingular,
compact leaves of (M, ), and such that for any x e oW, the vector a¥ is
directed toward the outside of W. Suppose further that there exists a
function f: W — R such that « =df on W. Let J be a connected com-
ponent of oW, and let 6 be a positive constant satisfying the following
condition: for each xeJ, there is a positive number c(x) such that the
integral of « on the curve v, (x), 0 <t < «(x), is equal to 6. Then, the
set W=WU {y@|ze, 0<t< ()} is a connected, compact n-sub-
manifold in M such that the boundary oW is the finite union of mon-
singular, compact leaves of (M,«), and such that for any xeW, the
vector of is directed toward the outside of W. Furthermore, there exists
o function 7:W — R such that f = f on W and « = dj on W.

This is easily verified.

2.3.3. Let p be a nonsingular point of a. Suppose that there is a
positive number o, having the following properties:

(i) for any 0¢€(0,d,), there is a positive number t(5) such that the
integral of a on the curve ¥,(p), 0 < t < (), s equal to d;

(ii) for any >0, the integral of « on the curve ,(p), 0 < t <,
18 smaller than o,

Then lim,_ ., ¥,(p) exists and is a singular point of .

Proof. Using 2.8.1, we know that the subset | J,»,V.(p) is bounded
in M. In fact, this set is contained in the compact set

{we M|dis (p, @) < d,(3h* + D} ,
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where d,, h, are the same constants as in 2.3.1. Therefore, since M is
complete, there is an infinite sequence ¢, < t, < ..., t, — oo, such that
lim,.., ¥, (p) exists in M. It is easy to verify that the limit point is a
singular point of «. Since every singular point of « is nondegenerate,
the limit point is uniquely determined. This proves 2.3.3.

2.3.4. Suppose that there is a mnonsingular, compact leaf J of
(M,a). Let 5, be a positive number satisfying the following condition:
for any 6¢(0,0,) and any xcJ, there exists a positive number <(x,0)
such that the integral of o« on ¥, (x), 0 <t < z(x,0), is equal tod. Let S
be the subset of J consisting of those points x such that for any r > 0,
the integral of a on ¥(x), 0 <t <<, is smaller than &, If S+ 0, then
S, = {lim,_... v, () | p € S} is a finite set, whose elements are singular points
of a.

Proof. By 2.3.3, for each peS, the limit point of ()t — o)
exists and is singular. Similarly to the proof of 2.3.3, using 2.3.1,
we see that the set S, is bounded in M. Since M is complete, and every
singular point of « is nondegenerate, we can conclude that S, is finite.

2.3.5. Under the same hypotheses and notations as in 2.3.4, if S+ 0
and if S, contains no singular point of index 1, then the set

J =8, U {Yuo@|ze] — S},

where t(x) is a positive number satisfying a = d,, 18 a singular,
¢e(x),0<t < (2)

compact leaf of (M, ).
This is proved in [9].

2.8.6. Let a singular, compact leaf J of (M,«) which contains no
singular point of index 1, be given. Then, there exists a connected,
compact n-submanifold W* in M® containing J and there exists a func-
tion f: W — R satisfying a = df on W, such that the boundary oW is
the finite union of nonsingular, compact leaves of (M,«), and such that
the subset 3_W of oW consisting of those points x at which the wvector
a¥ is directed toward the inside of W, is connected (therefore o_W is a
nonsingular, compact leaf if o_W + 0).

This is also proved in [9].

Proof of Proposition 2.2.1. Fix a singular point p of index 0. By
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Morse’s lemma, there exists an imbedded n-disk D” in M” containing p
such that the boundary is a leaf of (M, «), and there exists a function
S:D"— R such that « = df on D. TUsing this fact and 2.3.1, and applying
2.3.2, 2.3.5, and 2.3.6, we can easily construct a function f: M — R of
class C* which is proper and satisiies « = df. Applying Morse theory
to the proper function f: M — R, we see that M is simply connected and
the number of the singular points of index 0 is equal to one. Part (iii)
is obvious. In order to prove (v), it suffices to verify the following.

2.3.17. Let U be an open set in R® with a Riemannian structure g
of class C', and let f:U — R be a function of class C* with a non-
degenerate critical point p. Denote by grad f the gradient of f with
respect to g. Suppose that there is an integral curve c:[0,c00) — U of
grad f such that c¢(t) —p as t— co. Then, there exists a C' curve
d:[0,7] - U such that d(0) = ¢(0), d(z) = p, and for every tcl0,], the
tangent vector d(t) coincides with grad f/|grad f| at d(t).

This lemma is a consequence of [1, Th. 6.1 (p. 242), Cor. 16.4 (p. 314)].
This completes the proof of Proposition 2.2.1.

§3. Tangential curves and their lifts

Fix a Riemannian structure g on V and a vector field X of class
C* on V such that w(X) = 1. Let o' = — % 0, and {¢;} the one-parameter
group of transformations generated by X.

3.1. Tangential curves and their lifts.

DEFINITION 3.1.1. A continuous curve ¢ in V is called tangential if
the image of ¢ is contained in a leaf. For a tangential curve ¢: [0,7] - V
and »¢ R, suppose that there is a continuous function ¢: [0, z] — R such
that » = ¢(0) and such that the curve d: [0, z] — V defined by 5(¢) = ¢,,((®),
is tangential. Then » is called the 7-lift of ¢, and ¢ is called the height
parameter of the y-lift of c.

Let & be a positive number such that the inequality

1| ¢
£ > —2‘ "‘a?w(gos,*(/v))f
holds for all v ¢ T(V) and all s satisfying |s| <1, where T,(V) denotes
the tangent sphere bundle of V. This # has the following property.
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LEMMA 3.1.1. Let ¢:[0,7z] -V be a tangential, piecewise C' curve
such that ||¢(f)] = 1, o’'(¢(t)) < 0 for every te[0,c] at which ¢ is differen-
tiable. -Let n be a real number such that 0 <|p| <1. If the inequality

Jr (expf w’) du < 1—1yl
0 ¢[0,2] K |77|

holds, then ¢ has the y-lift, whose height parameter o satisfies
o= (1) < o(t) < o™ (t) for all te(0,7],

where

0= (o[, @) /(LT[ fow ], o))

This lemma will be proved in 3.2.

COROLLARY 3.1.2. Let k be as above. Let c:[0,7]—V be a tangential,
piecewise C' curve such that ||¢(t)] = 1, o' (¢(t)) = 0 for every tel0,z] at
which ¢ is differentiable. If a real number 7 satisfies

Ipl <1/Gkr + 1),
then ¢ has the y-lift.

Proof. Since every tangential curve always has the 0-lift, we may
assume 7 % 0. The inequality |y| < 1/(sz + 1) implies that || <1 and

<A —|yD/|p). Therefore, since I o = 0, the curve ¢ satisfies the
c[0,u]
assumption of Lemma 3.1.1. Hence ¢ has the y-lift.

3.2. Proof of Lemma 3.1.1. The proof will be preceded by four
lemmas, 3.2.1.-3.2.4.

LEMMA 3.2.1. Let ne R. Suppose that a tangential, C* curve ¢ has
the n-lift. Then the height parameter s = o(t) satisfies the differential
equation

%? = —alps (D))

with initial condition s(0) = 1.

Proof. For the curve ¢: [0,7] —V, consider the map F:[0,7] X R—V
defined by F'(t,s) = o,(c(t)), tc[0,7], se¢ R. Let y be the vector field on
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[0, 7] X R defined by 7(t,s) = 8/9t — w(p,.¢(t))d/os where (Z, 8) is the canon-
ical coordinates on [0,7] X R. It can be checked directly that (F*w)y =0.
Let ¢:[0,z] — R be the height parameter of the »-lift of ¢. Let d:[0,<]
—[0,7] X R be the curve (of class CY) defined by d(t) = (¢,0(t)). Since,
by definition, the set Fod([0,z]) is contained in some leaf, we see that
(F*w)d(t) = 0 for all te [0,z]. Hence, we see that for each ¢, the two
vectors 74uy, d(t) are linearly dependent, because the one-form F*u is
nonsingular. Using the identity dt) = 9/ot + (de/dt)d/ds, we conclude
that 7., and d(t) coincide, and therefore the function o satisfies the
differential equation de¢/dt = —w(g, .¢(t)) with initial condition ¢(0) = 7.

LEMMA 3.2.2. Let £ be the same positive number as in 3.1. Then
the following inequalities hold:
@' (V)8 — £8* < —alp; ) < &' (V)8 + £§°

for any nonzero s with |s|] <1 and any ve T(V) N o '(0), t.e., any unit
tangent vector v such that o(®) = 0.

Proof. Regarding —a(yp,«v) as a function of s, by Taylor’s formula,
we have

= o0~ (L)oo~ 3L )

S

where £¢e[0,s]. Since, by definition,

(4] oo = (Zz0)®) = —0 @),

we have

—a(p;,,v) = o'(V)s — l( (L)Z w(g; w)) s
’ 2 \\ds/s=¢ "7
for vew™(0). Hence we obtain the desired inequalities.
The following is a direct consequence of a classical result, due to
Ricatti, on ordinary differential equations.

LEMMA 3.2.3. Letk;pe R. Letc:[0,7] -V be a C' curve. Consider
the differential equations

ﬁ = o’'(¢(t))s + ks?.

dt
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Then the solutions s = ¢*(t) with ¢=(0) = 5 are given by

o*(t) = (77 exp w’) / (1 F £y J-t (epr. w') du) .
¢[0,¢] 0 cfo,u]

LEMMA 3.2.4. Let £ be the same positive number as in 3.1. Let gy
be a real number such 0 < |y < 1. Let c:[0,c] —V be a tangential, C*
curve such that ||¢(D)| = 1, o’ (&) < 0 for every te[0,z], and such that

the inequality
J‘T (expj (t)/) du < }:M
0 €[0,u] £|y]

is satisfied. Then ¢ has the n-lift, whose height parameter o = o(t)
satisfies the inequalities

a (t) < alt) < a*(t) for all te(0,],

where

o*(t) = <77 exp a)') / (1 F Ky j%expf w’) du) .
¢[0,¢] 0 c[0,u]

Proof. For simplicity we assume » >0, the proof in the case 7 <0
being similar. By Lemma 3.2.3, the solutions of the differential equa-
tions ds/dt = o'(é(t))s = ks* with initial condition s(0) = 5, are given by
s = o*(t). It is clear that 0 < ¢ (t) for te[0,z]. Since, by assumption,

f‘ (expf a)’) du < (1 — p)/(ky) for t € [0, ], we see that ¢¥(f) < exp o
0 c[0,u] ¢[0,¢]
for te[0,7], and therefore ¢*(t) < 1 for tc[0,z]. Note that by Lemma

3.2.2, the following inequalities hold:
@' (¢(8)s — kst < —alp;, (1) < o' (E(E))s + ks°

for se(0,1] and te[0,7z]. Using these inequalities and Lemma 3.2.1,
and comparing the functions ¢*(f) and the solution s = ¢(¢) of the dif-
ferential equation ds/dt = —w(y,,.i(t)) with initial condition s(0) = 5, we
can conclude that the curve ¢ has the #-lift, whose height parameter o
satisfies the inequalities ¢~ (t) < o(t) < ¢*(t) for te (0, <], as desired.

Proof of Lemma 3.1.1. Using Lemma 3.2.4, we can easily prove
our lemma.

3.3. Admissible tangential curves. For the Riemannian, foliated mani-
fold (V,w,q), it is clear that there is a vector field Y (of class C>) on V
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satisfying the following conditions:

(i) w(¥) =0 (.e., 0,(Y;) =0 for all xeV);

(i) o’(@) = g(Y,v) for all vew(0), i.e., o,(v) = g(Y,, v) for every
eV and every tangent vector v at x such that w,(v) = 0.
We observe that for each leaf L of (V,w), the vector field Y induces a
vector field Y|L on L, which is the dual vector field of o’ with respect
to the Riemannian structure g|L, and hence that, by Lemma 2.1.1, the
vector field Y is determined independently of the choice of X.

DEFINITION 3.3.1. This vector field Y is called the leaf-gradient
field of (V,w,q).

By Lemma 2.1.1, we note that the set of singular points of Y coincides
with the critical cycle X of (V,w).

DEFINITION 3.3.2. Let Y be as above. A tangential curve a will
be called an admissible tangential curve of (V,w,g) if a is piecewise C!
and if, for any x = a(t) at which Y does not vanish, the tangent vector
a(t)(exists and) coincides with —Y,/||Y .||

PrOPOSITION 3.3.1. Let Y be the leaf-gradient field of (V,w,g). Let
Z be the vector field on V — X defined by

for xeV — 3. Let W be an open subset in V such that CIW N 2 = ¢.
Then for any positive number e, there exists a positive number h hav-
ing the following property: for any ne(—h,h) and any integral curve
2:[0,7] = W of Z, there is the 3-lift of 2, whose height parameter o
satisfies

7] e~ < |a(t)| < [l e~ for all tel0,7].

Proof. Let ¢ > 0. Applying the mean value theorem to the func-
tion

s> —wlpsZ,) — o' (Z)s
where z e Cl W, and using the identity

(;'Zl;) 09, 20) = —o/(Z,)

and the compactness of Cl W, we can find a positive number % such that
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l_w(GDs,*Zz)S—l — ((/(Z:,;), e

for any e Cl W and any nonzero se (—h,h). Hence, for this number
h, we have

—e— 1< —olps Z)s'<e—1

for xe ClW and nonzero se (—*h,h), because o' (Z,) = —1. Let z:[0,7]
—W be an integral curve of Z. It is clear that

—e— 1< —alp;2(0)s' <e—1
for nonzero se (—h,h), and therefore

—(1 4+ s < —aps2(1) < —(1 — o)s for se(0,h) ,
—(1 + &8s > —alps,2(1) > —(1 — ¢)s for se(—h,0).

Let pne(—h,h). Similarly to the proof of Lemma 3.2.4, using Lemma
3.2.1 and comparing the functions ne~"*¢ and the solution of the dif-
ferential equation ds/dt = —a(p;,2(t)) with initial condition s(0) =z, we
can conclude that the curve z has the y-lift, whose height parameter ¢
satisfies |p|e "+t < |a(t)| < || e *2¢ for te[0,z], as desired.

§4. w-preferred Riemannian structures

4.1. @-preferred Riemannian structures. We shall say that (U, f; ',
co, 2™ is an F-chart (at p) of class C* A <s<r + 1) if (2!, ..., 2™
is a local coordinate system of class C°® in a neighborhood U of peV,
and if the identity o|U = fdz"*' holds for some positive-valued C**
function f on U.

DEFINITION 4.1.1. Let A be an integer on the range 0,1, -.--,n.
An F-chart (U, f; ', --.,2"*) of class C* is said to be of type (1) if U
is mapped onto a neighborhood of the origin in R"*!, by (!, ..., 2"}
and if the identity

log f = g@™*) — @) — - — @) + @) + -+ + @)

holds throughout U, where g is some suitable function defined on an open
set in R.

Let ¢ be an integer on the range 0,1,-.-.,n —1. An Z-chart (U,
St -, avh) of class C* is said to be of type (x,p) if U is mapped
onto a neighborhood of the origin in R**!, by (z, -.-,2*") and if the
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identity
log f = g(a", n"*) — (@) — -+ — (@) + @) + -+ + (@)

holds throughout U, where g is some C°® function which is defined on an
open set U, is R® and satisfies the following conditions:
(i) the set X(g) defined by

2(9) = {(z", z"*Y) e U,|ag(x, **) [oz™ = 0},
coincides with either the set
{(xr, 2" e U,| (@")? — 2! = 0}
or the set
(@, &) e U, | (2 + a2 = 0} ;
() oglan,amh)/@Gam? =0  at (z", 2" = (0,0),
o*g(xr, 2 /(0x™)? = 0 at (z", 2" = (0,0) ,

o*g(x™, x™*Y) ez o™t = 0 at (2*, 2 = (0,0) ,
gz, ) [/(@x™)* #+= 0 at any (2, 2"*) e 2(9) — {(0,0)} .
DEFINITION 4.1.2. A Riemannian structure g of class C?* on V will
be called an o-preferred Riemannian structure if for any pe 2, there

exists an &-chart-at-p (U, f;z', -.-,2""") of class C* satisfying one of
the following conditions:

(i) W, f;a, .-,z is of type (1) for some 2 and satisfies

y —— | = 04 for 1<, 1< n;
g<axi ox’ ! !

3 W, iy ---, 2" is of type (x,p) for some p and satisfies

0 0 ) ..
y ——— | = 04y for 1 <4, j<n—1,
g(axi ox ! =v17

g( a,, a):0 forl<i<n—1.
oxt " ox™

(6;; is the Kronecker delta.)

ProPOSITION 4.1.1. If o satisfies Condition (T), then V admits an
w-preferred Riemannion structure.

We shall prove this proposition in § 8.
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The following three lemmas are important for the proofs of the main
theorems. Let X,o” be as in §3.

LEMMA 4.1.2. Suppose that an w-preferred Riemamnnion structure g
is given on V. Then there exist two positive constants a,,t, such that
for any admissible tangential curve a:[0,z1 -V of (V,w,q), the follow-
ing inequality holds:

J o < —ayt for any t satisfying =, <t <.
a[0,t]

This lemma will be proved in 4.3. The following lemma concerning
the lifts of admissible tangential curves is fundamental.

LEMMA 4.1.3. Suppose that an w-preferred Riemannian structure g
18 given on V. Then there exist two constants 5, B, such that 0 < 5, <1,
0 < By < 1/9, and such that, if 7 is a real number satisfying 0 < || < 7y,
then any admissible tangential curve a:[0,7z]1 >V of (V,w0,8) has the 7-
lift, whose height parameter o satisfies the following inequalities:
a7 (1) < a®) < 0o (®) for all tel0,7],

where oi(t) are defined by

oi(t) = (7] exp LW] w’)/(l F 7By) -

Proof. Let ay,r, be the same constants as Lemma 4.1.2, and let «
be the same positive number as in 3.1. Put

o=ty +az', Be=1rx0, 79,=1/1 + ka).

Now, let » be a real number satisfying 0 < |y| < 54, and let a: [0,7] —
V be an admissible tangential curve. It is clear that o < (1 — [3)/(x|y),
and that

¢
J (exp w’) du <t, because J o <0.
0 al0,%] a[0,%]

First, we shall prove that

.r (exp a)’) du < a for all te[0,<].
al0,%]

0

In the case ¢ < z,, clearly this inequality holds, because ¢, < a. There-
fore we assume ¢ > r,. From Lemma 4.1.2 we know that
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exp o' < exp (—ayt) for t >z, .
a[0,¢]

Hence, for te[0,z] we have

0

f(exp d) du = f "4 f <oy + f’ (exp (—a,u))du
af0,u] 0 T 0
=, taz'=a, as desired .

Hence, from Lemma 3.1.1 we see that the curve a has the »-lift, whose
height parameter ¢ satisfies the inequalities ¢~ (t) < a(t) < a*(t) for t € (0,7],

where ¢* are the same functions as in Lemma 3.1.1. It is easy to verify
that

az(t) < o™ (), o*(t) < oi(d) for all ¢e[0, 7],

because

/cr (exp w') du < By .
al0,u]

0

Hence we conclude that o3(¢) < o(®) <oi(®) for all te[0,z]. Our lemma
is proved.

Remark 4.1.1. In the preceding lemma, putting pi = 1/(1 F 7.8,),
we observe that 0 < gz <1 < B, and that the inequalities

plnlexp [ o <lo®)] < pi-lplexp [ o
af0,¢] af0,¢]

hold.

The next lemma gives us the existence of the maximal admissible
tangential curves.

LEMMA 4.1.4. Suppose that an w-preferred Riemamnion structure g
is given on V. Then for any point p of V, there exists an admissible
tangential curve a which passes through p and satisfies one of the
following :

(i) a s defined on (—oo, c0);

(ii) a is defined on (—o0,0], and a(0) e 2;;

(iii) a s defined on [0, ), and a(0) e X, ;

(iv) a is defined on a finite interval [0, 7], and a(0) e X,, a(z) € X,.

This will be proved in 4.3.
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4.2. Y-preferred neighborhoods of Y. Let g be a Riemannian structure
on V, and let Y be the leaf-gradient field of (V,w,g) (3.3).

DEFINITION 4.2.1. An open set T* in V will be called a Y-preferred
neighborhood of the critical cycle Y if the following nine conditions are
satisfied:

(i) YcrT*

(ii) There exist two positive constants a¥, a¥ such that, if an admis-
sible tangential curve a:[0,7z] — V satisfies Ima C T*, then ¢ < a¥, and
such that, if an admissible tangential curve a: [—7,7] — V satisfies the
following conditions:

a@eClT*N(V —T% ; < af,
then
either a([—z, 0D NT*=06 or a[0,c)NT*=0.

(iii) For any x e T*, there exists an admissible tangential curve
a: [0,7z] — V such that x ¢ Ima C Cl T*, and such that one of the follow-
ing is satisfied:
a0 eT* and a(r)eT* ;
a0 e, and a(r)eT* ;
a(0)gT* and al(r) e, ;
a(0)e, and a(r)el,.
(iv) There exists a positive constant af such that for any

zeClT*NV —-T%,

there is an admissible tangential curve a: [0,7] — V satisfying the follow-
ing conditions:

> af; ImanNT*=0;
and
either a(0) =z or alr)=x.

Here in order to describe (v)-(viii), we introduce the following word:
A nonempty subset J* of V will be called a T*-vein if there is a vein
J such that J* coincides with some connected component of the subset
T*NJ in J. For a T*-vein J*, we denote by diam,.(J*) the supremum
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of the distances in J* between any pairs of points of J*.
(v) There exist three positive constants b¥, b¥, b such that

diamj. (J*) < b¥, mes,_, (J*) < b¥
for any T*-vein J*, and such that
mes,_, (J*) > bf

for any noncompact T*-vein J*, where mes,_, (J*) is the total measure
of the (n — 1)-manifold J* — (J* N 3) with the Riemannian structure
induced by g.

(vi) If a T*-vein J* is compact, then there exists an imbedding
2: D — L of a closed unit n-disk to a leaf such that for each e-sphere
S* 1), 0 <e <1, the image #(S*"!(c)) is a vein and #(S*"'(¢)) = J* for
some ¢’.

(vii) (local Y-invariance) Let a: [0,7] — V be an admissible tangential
curve such that Ima C T%*, and let o’: [0,7] — V be another admissible
tangential curve such that

either a’(0) e J*(a(0)) or o' () e J*(a(z)),

where J*(a(0)), J*(a(r)) are the T*-veins containing a(0), a(z), respectively.

If
I o — J o,
@’[0,¢'] af0,]
then Im o’ C T*.

(viii) There exists a positive constant d¥, and for each z e T*, there
exists an imbedded closed n-disk @ in the leaf L(x) through =z, such that
Q contains the connected component of 7* N L(x) containing z, and such
that for a function %4: @ — R satisfying

o' |Q =dh,
the following inequality holds:
df-(hy — R, inf mes,_, (h~'(h,) N T*)) < mes, (A"'([k,, kD) N T*))

tef0,7]
for any admissible tangential curve a:[0,7z] — V such that Ima C T%,
where i, = h(a(t)), and (()) denote the connected components of the sets in
the parentheses, containing the point a(t), and where the right side of the
inequality denotes the total measure of the n-manifold ((~*((%., k) N T*))
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with the Riemannian structure induced by g.
(ix) For any vein J, the subset J — (J N T%*) is-an. (n — 1)-submani-
fold with or without boundary, of J — (J N ).

PROPOSITION 4.2.1. Suppose that an o-preferred Riemannian structure
g s given on V. Let Y be the leaf-gradient field of (V,w,g). Then for
any netghborhood W of X, there exists a Y-preferred neighborhood T* of
2 such that T* C W.

We shall prove this proposition in §8.

4.3. Proofs of Lemmas 4.1.2 and 4.1.4. For the w-preferred Rieman-
nian structure g and the leaf-gradient field Y of (V,w,g), let T* be a Y-
preferred neighbourhood of 3.

Proof of Lemma 4.1.2. Put

nas
2a

)

p= min |Y,||, e=¢af +af, r,=20, a,=
TEV-T*

where a¥,a¥ are the same constants as in (ii) of Definition 4.2.1. Now
let a: [0, 7] — V be an admissible tangential curve. Let ¢, <t <. Choos-
ing an integer % so that 0 <t¢ — ka < a, we have

a 2a ¢
j d:j‘w'(a(u))du:j +f +---+f .
af0,¢] 0 0 a ka

For u [0, 7] such that a(u) e V — T*, we observe that

o'(au)) = &' (=Y, /Il Yo D = (¥, =Y /|| Y Doy
= '—”Ya(u)” S -7.

We also see that o’(a(w)) < 0 for all ue[0,7]. Hence

f o' @w)du < 0 .

ka

By (ii) of Definition 4.2.1, we have for each ¢t =1, ..., k,

f T ) du < —na .

Since k> (t — a)/a, using the fact that (t — @)/t > 1/2, we have

t—a

nay
f o < —kpat < — gait < =1%ot = _at,
a[0,¢] 2a
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which proves our lemma.

Proof of Lemma 4.1.4. Since every admissible tangential curve in
V — T* is an integral curve of the vector field —Y/||Y| defined on
V — T*, the lemma is a direct consequence of the conditions (iii) and (iv)
in Definition 4.2.1.

§5. Proof of Theorem I

Throughout § 5, § 6, and § 7, we assume that Condition (T) is satisfied.
Let g be an o-preferred Riemannian structure. (Such a Riemannian
structure exists by Proposition 4.1.1.) Let X be a vector field of class
C” on V gsuch that o(X) =1, and {p,} the one-parameter group of trans-
formations generated by X. Let Y be the leaf-gradient field of (V,w,g)
(see 3.3) and put o = —Z 0.

5.1. Proof of Theorem I. Let 7., 8, be the same constants as in
Lemma 4.1.3. We begin with a lemma.

LEMMA 5.1.1. There exists a positive constant {, having the follow-
ing property: for any x,y eV satisfying dis (x,y) <, there is a real
number y with |y < y, such that the point ¢, (x) is contained in the leaf
through .

This is an easy consequence of local triviality of the foliated structure.

Proof of Theorem 1. Note that X, is a one-manifold and is trans-
versal to leaves. From Remark 2.2.1 we know that there exists a leaf
L containing a point p € 2,, such that the closed one-form o'|L on L is
proper. For ¢=0,1,.-.,n, and g ¢ L, note that ¢ belongs to %, if and
only if ¢ is a nondegenerate singular point of o'|L, with index 4, be-
cause for an Z-chart (U, f;z!, - ---,2*") and qe U N 2, the following
identities hold:

dlogf _ 1 &f ——
W(Q)—7W(Q) for 4,7 =1,.--,n.
Hence we can apply Proposition 2.2.1 to (L, '|L).

We shall prove L is compact. Since X, is transversal to leaves,
there is a positive number é such that for any nonzero s with '|s| <9,
the leaf through the point ¢y(p) intersects 2, — {p}. Suppose that L were
not compact. Then there would exist x ¢ L and < R having the follow-
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ing properties:

0<n<ny, 9/ —1B) <5, g@elL.

By (v) of Proposition 2.2.1, there would exist an admissible tangential
curve a: [0,z] —» V such that x = a(0), p = a(z). By Lemma 4.1.3, there
would exist the »-lift of a, with the height parameter ¢ satisfying

0 <oa(x) <p/A — 7By .

Since the leaf through ¢,.,(p) would be nothing other than L, the leaf
L would intersect 3, — {p}, which contradicts (iv) of Proposition 2.2.1.
Thus L is compact. Since, by (ii) of Proposition 2.2.1, L is simply con-
nected, our theorem follows from the Reeb global stability theorem [1,
(B, III, 11)].

5.2. The orientation of 3. We orient X as follows. Let peJX, and
let (U, f;a'---,2*") be an F-chart at p. Denote by 0 the origin of
R*. Consider the map 9f: U — R" defined by

af(@) = (g—j;(x), gg{ (x)) .

Note that U N 2 = (@/)7'(0). Let
(af)*p: Tp(U) - o(Rn) = R"

be the map induced by af, where T,(U), To(R") are the tangent spaces
of U,R" at p,0, respectively. It follows from Condition (T) that the
map (3f)4, is onto. Since the kernel of (31),, coincides with the tangent
space T,(2) of X at p, we have a direct sum

Ty(0) = Ty(D)+DTp(2),
and we see that the restriction
@) yp | Tp(D)L: TH(2)+ — R

is an isomorphism. This isomorphism and the standard orientation of
R" define an orientation &(p) of T,(2)L. Let &) be an orientation of
T,(U) determined by the base

( a_ ... _Q_>
axt’ T xrtt e
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Then we define the orientation &,(p) of T,(3) so that
§(p) = &(p) @ &) ,

i.e., so that the orientation &(p) agrees with the orientation determined
by a base (v, -+, vy, Vys,) 0of T,(U), where (v, ---,v,) is a representative
of &(p) and v,,, is a representative of &,(p). (Orientation is to be under-
stood as an equivalence class of basis.) It can be checked directly that
the orientation &,(p) of T,(2) is defined independently of the choice of -
charts and varies continuously with pe . Hence &, defines an orien-
tation of Y. In 5.3, we shall suppose that 3 is oriented by this &,.

5.3. Corollaries. Let S' be an oriented, one-dimensional sphere of
class C7, and let 4<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>