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LONG EXACT SEQUENCES AND THE
TRANSGRESSION RELATION

A. BERKSON AND ALAN McCONNELL

§1. Introduction. Throughout what follows, let H be a normal sub-
group of the group G, G be G/H, M a left G module, and Homy(G, M)
= M a left G module via (c¢)(@) = ¢(o7)

In [1] the present authors compared the 5-term Hochschild Serre

sequence to the long exact sequence arising from the short exact
1

sequence of modules 0 M )Ny /M — 0. Since by Shapiro’s
Lemma, [3, p. 114, Corollary], the following diagram commutes and the
vertical map is an isomorphism,

HYG, M)-255 HYH, M)

|

HYG, M)

then H"(G,J\ZI/M) ~ H"*(G, H ; M), i.e. the usual cohomology of pairs [5,
Lemma 1.1, p. 230]. In this paper we extend the comparison in [1] to
the seven term sequence, and compare these two sequences to a third
arising from the short exact sequence of complexes 0 — C(G, M%) —
C(G, M) - Q(G;M)— 0. It is also shown that @ is cohomology isomor-
phic to a subcomplex 2 of C(G, ). 9 consists of transgressive co-
cycles, and, for each transgressive cocycle class Z, 2 contains at least
one distinct 2 cocycle class for each element in ¢(z) (¢‘¢”’ is transgres-
sion) ; moreover, under the identification of H*(2) with H*(Q), 6*(x) € t(%).
Thus one may use transgression as a function in a natural way (§2
below).
The principal result of this paper is:

MAIN THEOREM If H/(H,M) =0, 0<j<mn, then there are u,,
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i1=1,---,7 and v, 1 =1, ... making the following diagram commute.
The sixth column is exact, and 6*v;* is the transgression relation.

0 — H™G,M") LN H“(G,M) — HG,H"(H, M)) N H**Y(G, M*™)
" " ST
0 — HY(G,M") — H"G,M) — H"(2) — H"*'Y(G, M*¥)

0— HYG,H; M) — H*G,M) —> H"H,M) —— H"'NG,H;M)

s PHMG, M) — HNG, HYH, M) —> H™*(G, M¥)
#5l Fsl #7l
J_) H"“(G,M) N Hn+1(9) _5*_> Hn+2((_;’MH)

yﬁl ”“l V7l

— H"'Y(G,M) — H"*H,M) —— H"*¥G,H;M)

By the above discussion, we can, and shall henceforth, identify H/(H, M)
witn H/(G, M), and H/(G,H ; M) with Hf‘l(G,M/M). In the above dia-
gram, the maps u,, p, 4, t, and vy, are the appropriate identities, y; is
inclusion, g and v, are isomorphisms, and u;, g v; and v, are monomor-
phisms, while v,; are induced by inclusion of complexes under the above
identification.

The main theorem extends to Amitsur cohomology as in [1], and
the ¢’s can be extended to the Childs sequence [2, Theorem 1, p. 1122]
in the obvious way.

It is felt that, in addition to the characterization of the transgres-
sive cocycles, the surprisingly simple description of the largest subcom-
plex on whose cohomology transgression is a function, is desirable in
view of the well known utility of ¢ where it is a function.

Throughout, the following usage will be employed: Homy (4, B),
where A is a G bimodule and B is a left G module, will be considered
a G module by (r¢(@) = ¢(az), and a G module by “p(a) = gopoa(a).
We denote the face maps by ¢: Hom; (G*, M) — Hom, (G**!, M), where
e f @y oy Xny) = f(@y, oo+, Ly, -+, Xny). By C*(G,M) we shall mean the
homogeneous cochains Homg (G"*!, M) with coboundary operator df =

232 (— 1)i*1(e,f). Functions on G* will often be identified with their
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images under inflation.

§2. The Second and Third Rows. We start with some general
observations on diagrams of complexes; in most cases the proofs are
routine and will be omitted. Let

0 0 0
I |
0-A' A 4750
U l
0—-B —-B —->B"—-0 €))
Lo
0-C—-C—-C"—0
Lol !
0 0 0

be a commutative diagram of cochain complexes with exact rows and
columns. This ensures that BN A = A’ in B. Let us assume also that
H*(A) =0 for all » > 0. Then H™(A”) ~ H**(A") and H"(B) ~ H*(C)
for all » > 0. If we identify B’ and A with their images in B, then
0-B +A—-B—-(C"—-0 is a short exact sequence. Comparing this
with the bottom row, we get a map of short exact sequences

0—-B 4+A—>B—->C"->0

b

0—- ¢ —-C-—-0"-0

and so a map of long exact sequences of cohomology. By the Five
Lemma, H*(B’ + A) ~ H¥(").

We note that if b’ + a e B’ + A C B is a cocycle, then db’( = —da in
B'NA = A’ is a cocycle of A’. From the first column of (I) we obtain
a long exact sequence ... — H"(4A’) - H*(B’) - H*(C’) — ---. Since we
want to replace H*(C’) by H™(B’ + A), we observe that if H*B’ + A)
— H"*'(A’) is defined by cl(b’ + a) — cl(dd’) then the following commutes:

HY(B' + A)
H®Y | )
me) -

Thus we have a new long exact sequence ... — H*(A') — HB') —
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H"(A 4+ B’y - H**'(4") — .-.. Since HY(A") ~ H**'(4’), we get a map
H"*'(A’) - HYB"). Thus

oo — H"A) — HYB') — H"(B' + A) — H""(A') — - ..

ll. lz. 13. l

+— H"(B") - HB) » H“B) — H"B") —---

is commutative is squares 1. and 2., anticommutative in square 3. If
for H"(B’ + A) — H"*'(4’), we had chosen cl(b’ + a) — cl(da), square 3
would commute. We have more or less arbitrarily chosen to put the
anti-commutativity here.

We apply the above to the following diagram II.

0 0 0

- - ! ! 3
0—C(G,Homy(G,M))—C(G,Homy(G,M))—C(G, Hom (G, M)/ Hom(G,M))—0

! l !
0—C(G,Hom,(G,M))— C(G,Homy(G,M))—C(G, Hom4(G,M)/Hom,(G,M))—0

! ) !
0—Q(G,Homy(G,M)—Q(G,Hom (G, M))—Q(G,Hom 4(G,M)/Hom(G,M))—0

| ! )

0 0 0

(ID

In (II) all coefficient modules have right multiplication on the domain as
their module structure for both G and G.

We note that Hom, (G, M) ~ M¥; Homy (G, M) ~ Homy (G, M¥) ~
Hom (G, M¥) ; Hom, (G, M) ~ M ; and Homy (G, M%) N Hom(G, M¥) ~ MH,
Hence it is easily seen that elements « ¢ C(G, M) and v ¢ C(G, Hom(G, M#))
have the same image in C(G, M) iff they are images of the same element
in C(G,M#). This pull-back property in the upper left hand square of
(II) guarantees that (II) is a 3 X 3 commutative diagram of complexes
with exact rows and columns. Also, since Hom(G, M¥) is coinduced [6,
p. 1201, HYG,Hom(G,M#)) = 0. Thus (II) satisfies the hypothesis of
(I) and we record our results.

THEOREM 1. Let 9 = C(G, Hom(G, M%) + C(G, M) be identified with
its image in C(G, ). Then there are maps which make the following
diagram commutative with exact rows.
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i HMGLMT) —— HYG M) — HMD) ——s H G, M%) — - - -

l | l l

. s H* G, § M) — HYG, M) —> H"(G, IT) == H™G, M /M) — - - -

The sign of =* has been changed to get rid of the anticommutativity.
The map from H™(2) — H*G, M) is induced by the inclusion of com-
plexes.

THEOREM II. The relation 5*v;;! is exactly the transgression relation
[3, p. 129].

Proof: Routine verification.

§3. The Spectral Sequence. In order to establish the notation and
setting for the remainder of this paper, it is necessary to recapitulate
in the first two paragraphs of this section some of the classical results
of Hochschild and Serre [3]. Let E™* = Hom,(G™*' x G**', M), which
implies that Em»c Er-br+l Define 'd: E" — Eprtt* and "d: Ep" —
E(r)n,nﬂ by

n+2

df = ’g(_ Ditte,f,  df = > (— Ditief .

t=m+2

We have "“d'd + 'd”’d = 0, "d"’d =0 and ’'d’d = 0; this defines a double
complex and an associated single complex Tot, where Tot™ = >, ;. .E?.
Tot can be filtered by rows or columns, giving rise two spectral
sequences ‘E, and “E,. We now observe that each row has a contract-
ing homotopy s: Ef" — Er--"(n =0, m > 0) given by (sf) (x, -+, Zn,
Yo+ s Yns) = S@1 @y Pis Y15+ +» Ynun) 5 hence Ep =0 for m >0,
n = 0, and the second spectral sequence collapses. Whence H"(Tot) ~
“E%*, Furthermore, the kernel of ‘d: Ey" — E}» can be identified with
Hom,(G"**, M) so that "E¢" ~ H*(G,M). Thus the chain of inclusions
C(G,M) — E%" — Tot induces an isomorphism of cohomology H™(G,M) —
H"(Tot).

Next, one computes 'E". Since E™" may be identified with
Homg(G™*', Homy,(G"*', M)), and Homz(G™*!, —) is an exact functor, one
has 'E™* ~ H™(G, H*H,M)). In particular, H(H,M) = M¥ implies that
'Em0 = H™(G, M®).

Following an idea of Pareigis-Rosenberg [4], we define a cochain
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map ¢: Tot — C(G, M) which induces the isomorphism H*(Tot) — H (G, M)
inverse to the isomorphism induced by the inclusion of complexes.
First we define 6™*: E7" —» C™*"™(G,M) by (@™"fN X s Bmine) =
(—D™f(@yy + -y X1y Xims1s * * s Tmansr). A routine computation shows that
for f e Em™, the following formula holds:

grmdf 4 grntVdf = dgmnf (I1D)

We then set ¢((fo,mins =5 fmino) = O™ "fomon + <+ + 0" fino It
is immediate from (III) that ¢ is a cochain map. Since C(G,M) —
Eyr —— Tot ——¢—> C(G, M) is the identity map, ¢ induces the isomorphism.
We remark that if feE™", then (f™"f) depends only on the cosets
mod H of its first m variables.

Now we impose the hypothesis H{(H,M) = 0 for 0 <7 < n. This
ensures that 'Ef* =0 for 0 <i<m A standard spectral sequence
argument shows that there is an exact sequence

/Eg,n—l — 0 — IE;L,O___)HW,(TOt) — lEg,n — /E;L+1,0 — len+l(T0t) — IE;,n — IE'2/:,+2,0

Here f'H™*'(Tot) is the first filtration group of the filtered total co-
homology group. Using the identification discussed above, we get the
standard T-term fundamental sequence in the first row of the main
theorem.

THEOREM III. There exist maps p;, 1 =1,---,7 which make the
squares of the first two rows of the diagram in the main theorem com-
mute, and which have the properties required, where p, p, t, and u,
are the identities and y is inclusion.

Proof. The problem is to define g, and g. We shall define and
carry out the commutativity argument for g, (the case of x; is analogous
but somewhat easier and will be omitted). The notation established here
will be used later.

Let Ae’Ey™;a,,¢4, ay,eEy®. This means that "“de;,, =0, and
'da,,, € E¥™ is the image under "d of — a,,_, in Ey"'. Exploiting the
vanishing of the vertical cohomology in the double complex for 0 <7<,
we get a sequence of elements «;,,,;, (@=1,-.--,m) such that
‘detyni1i + "dets,nos = 0 (see [1, p. 408] for a more through discussion
of this process). Finally set ‘da,,,, = (— 1)*r € Ep+*°.

Obviously ‘dy=0= (e, sy —en.sr). This says that y ¢ Homy4(G***X G, M)



LONG EXACT SEQUENCES 73

is independent of the last variable. We shall identify y with
B e Homy(G***, M) ~ Homg(G"**, M¥7). B is clearly an n + 2 cocycle in
C(G,M%); indeed cl(f) = p(A) in H***(G,M"). Also, 0"**%(x,, -+, ZTpn,s)
= (= D@, ++ 0 Brysy Bnypd) = (— D"2B(@y, - -+, Ty,

For the n + 1 cochain z = (0;a,,,; ;&0 € Tot**, we have
drot(®) = (0; -+ ;(— D) e Tot**’., Hence [ = ¢(2) has coboundary
df = ¢(dr(?) = . Let p: H(G,HWH,M)) — H**'(Q) be defined by
A — cl(f).

We now construct explicitly the isomorphism +: H™(Q) — H™(2)
inverse to the given projection 7. This will give us the formula for
1:(A) which we will need in the next section. If cl(a) e H™(Q), i.e.
ae C"(G, M) with de in C"*Y(G, M%), then let +» be given by

’\P‘(“)(O'U v ’0m+1)(7)
m+1
= ; (_ 1)i+m2.a(2.—1’ [T ,éb tet 90m+1)

= T“(al’ . "am+1) + (— l)mfda(z'—ly Tyy * v * ’Gm+1) € Cm,(G, HomG(G, M))
+ C™(G,Hom(G, M¥) = 2 .

Since '@ + b) = Y(a) = a + b/, it follows that +7'(a + b) — (@ + D)
= b — b, a cocycle in HG,Hom(G, M¥) = 0. Therefore b’ — b = dp is
a coboundary in 2 and +%’ is the identity on H™(9). Since we know
7’ is an isomorphism, - must be a two sided inverse.

We can now define g(4) = ¥(7A), for if we vary our choices of
the «;,.,_;, We change them by a coboundary in Tot. Since ¢ is a
cochain map and ¢ is an isomorphism of cohomology, p, is well defined.

Next we show that square 6 is commutative. As was pointed out,
p(4) = cl(p). But the definition of H**'(2) — H***(G, M¥) sends cl(v/(f))
to cl(df) = cl(B). It is to be noted here that if we had chosen the sign
of HY(2) — H**(G, M¥) differently, this square would anticommute. It
was remarked previously that we put the anticommutativity elsewhere.

To complete the proof, we show that square 5 is commutative. Let
cl(a) e f'H"*(G, M) where « e C**(G,M); the image of cl(w) in H"*(2)
is ¢l(e + 0). By virtue of the definition of f’H"*Y(G, M), there is a co-
cycle 2 = (0; a0 ++* 5 @niro) € TOt™, cl(¢(2)) = cl(a). Finally, the image
of cl(a) under f'H"*''(G,M) — E}™ is cl(cl(e,,,)). But plcl(cla,, ,))) is easily
seen to be cl(a + 0).
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§4. Exactness of the Sixth Colummn. Given A in HYG, H"(H,M)),
take 2= (0; @ ,; -+ Any) as in the definition of g. Since all the
terms depend only on the H-coset of at least the first two variables,
#(z) = f depends only on the H-coset of its first variable. Let
Wy, -+ 0ns)(@) = (Y0, 5 04,). Then ue CG,M). Now we have
duloy, « 5 Onyd(®) = 202D e f(x7 00, o0y 64 0 0, Onyn) = (= D™(f) =
(— D"ps(A). Hence dm p, C Ker v,

To show that Im y; D Kery, we need to map C™(G, M) into the
double complex by sending ¢ — K(p¢) where K(p)(@,01, " "y0m,) =
6001, *+ +,0ms)(@™). We observe that K(dp) = —”dKp, and that for
cl(x) e HM(Q), Ky (x) = (— D™dx — &x).

If Be H*'(2), v(B) =0, B = (C), and ceC, then, in C*G, M),
ver(c) = du. Let a,, ='dKu + (— 1)**'dc, where dc e Homgz(G"**, M¥) C
Homy(G**! X G***"t{,M). Then

"dot, , = —'d"dKu + (— 1)**"'dde = 'dKdw + (— 1)”d(dc)
='d(Kdw + (— 1)™(dc — ¢¢)) = 'd(Kdw — Ky (c)) =0 .
Also, 'da, , = (—1)"*Vd(de) = (—1)*’d(dc). Hence cl(a, ,) ¢ H(G, H*(H, M)).
One verifies that fg(cl(a, ) = 6"YdKu = —6""*"'dKu = ""*(Kdw) =
0> Y (Ky(e)) = (— D%+ (de — e,¢) = (— 1)**'¢, and consequently we
have that g(cle,,) = (— D" y(c) = (— 1)**'B, proving
THEOREM 4. The sixth column in the main theorem is exact.

The proof of Theorem 4 proves exactly.

PROPOSITION The sequence E%™'— H™(2) — H™(H,M) is ezxact.

Since p is a cochain map, we may consider Ei™ ! to be in E¥™ ! =
HYG,H™"'(H,M)). This gives us

COROLLARY If HYG,H™ '(H,M)) = 0, transgression is single valued.

COROLLARY If HYG,H"*H,M))= H"'H,M)= H"H,M)=0 then
H"G,M¥) ~ HYG,M). If HH,M) =0, n>Fk, then H™G/H,M¥) ~
H"G,M) for n = k + 2 and H**NG/H, M*?) — H**\(G, M) — 0 is exact.
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