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UMBILICAL SUBMANIFOLDS AND MORSE FUNCTIONS
KATSUMI NOMIZU AND LUCIO RODRIGUEZ

Let M™ be a differentiable manifold (of class C~). By a Morse
function on M” we mean a differentiable function whose critical points
are all non-degenerate. If f is an immersion of M™ into a KEuclidean
space R™, we may obtain Morse functions on M™ in the following way.
Let p be a point of B™ and define a differentiable function L, on M" by

Ly@) = d(p, f®@)*, weM"

where d denotes the Euclidean distance in R™. Then, for almost all
pe R™, L, is a Morse function on M"* (see [2], p. 36).

It is a well-known theorem of Reeb that if a compact differentiable
manifold M™ admits a Morse function with exactly two critical points,
then M™ is a topological sphere (see [2], p. 25). In the present note we
shall prove the following results of a geometric nature (in contrast to
a topological nature).

THEOREM A. Let M™ be a connected compact differentiable manifold
(n = 2) immersed in o Euclidean space R™. If every Morse function on
M™ of the form L,,pe R™, has exactly two critical points, then M™ is
imbedded as a Euclidean n-sphere.

Of course, a Euclidean n-sphere in R™ means a hypersphere in a
Euclidean (n + 1)-subspace R**' of R™. As a matter of fact, Theorem
A follows from the following more general result.

THEOREM B. Let M",n = 2, be o connected, complete Riemannion
manifold isometrically immersed in o FEuclidean space R™. If every
Morse function on M™ of the form L,,pcR™, has index 0 or n at any
of its critical points, then M™ is imbedded as a Fuclidean n-subspace or
o Euclidean n-sphere in R™.
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As another corollary, we obtain

THEOREM C. Under the assumptions of Theorem B, if the index
18 always 0, then M"™ is imbedded as a Euclidean n-subspace of R™.

1. Preliminaries.

It is necessary to recall certain concepts and results on focal points,
which can be found in [2, pp. 32-38]. Although this reference treats
submanifolds imbedded in a Euclidean space, the same results hold for
immersed submanifolds.

Let f be an immersion of a differentiable manifold M™ into a
Euclidean space B™. A point of the normal bundle N of M" is denoted
by (x,%), where z is a point of M" and & is a vector normal to f(M")
at f(x). Let F be a differentiable mapping of N into R™ given by
F(x,& = f(x) + & A point pe R™ is called a focal point of M if
p = F(x,%), where (x,8) is a point of N where the Jacobian F, of F is
degenerate. In this case, we also say that p is a focal point of (M, x).
By virtue of Sard’s theorem, the set of focal points of M has measure 0.

It is known that a point p = F(x,£), where (x,£)e N, is a focal
point of (M, %) if and only if the endomorphism I — A, on the tangent
space T.,(M"*) is degenerate. Here I is the identity transformation of
T,(M") and A, is the symmetric endomorphism corresponding to the
second fundamental form of M at x in the direction of é&.

On the other hand, let p e R™ and consider the function L,(x) =
d(f(x),p)* on M*. A point x e M™ is a critical point of L, if and only
if the vector & from f(x) to p is normal to f(M™). In this case, the
Hessian H of L, at x, which is a bilinear symmetric function on T,(M)
X T (M), is given by

HX,Y)=2(I - A(X),Y), X, YeT, M,

where {, ) is the inner product on T,(M) induced from the Euclidean
metric in R™ through the immersion f. Thus H is degenerate at z
(i.e., = is a degenerate critical point of L,) if and only if I — A, is
degenerate (i.e., p is a focal point of (M,z)). If x is a nondegenerate
critical point of L,, the index at z is equal to the number of negative
eigenvalues of I — A,, counting multiplicities, in other words, the number
of eigenvalues of A, that are larger than 1, counting multiplicities.



UMBILICAL SUBMANIFOLDS 199

Finally, let (z,&)e N, where & is a wunit vector. For ¢t> 0, let
p = F(z,t8). Then p is a focal point of (M,x) if and only if 1/t is an
eigenvalue of 4,. Suppose 1/t is not an eigenvalue of A,. Then the
function L, has x as a nondegenerate critical point and the index at «
is equal to the number of positive eigenvalues (counting multiplicities)
that are greater than 1/¢.

We now prove a lemma which is crucial in the proof of our results.

LEMMA. Let pe R™ and assume that the function L, has a non-
degenerate critical point x € M® of index k. Then there exists a point
q € R™ such that L, is o Morse function which has o critical point z of
index k. (¢ and z may be chosen as close to p and x, respectively, as
we want.)

Proof. Let p = F(x,&), where & is a normal vector at f(x). By
assumption, p is not a focal point of (M,x), that is, the Jacobian F,
is nondegenerate at (x,£). Thus there exists a neighborhood U of (z,£&)
in the normal bundle N such that F' gives a diffeomorphism of U onto
a neighborhood V = F(U) of p in R™. (Of eourse, U and V may be
chosen as small as we like.) Now V has a point ¢ such that L, is a
Morse function (i.e., ¢ is not a focal point of M), because the set of
focal points of M has measure 0. We have ¢ = F(z,?) for some (2,0 ¢ U.
We show that the index of L, at z is equal to k.

Consider a differentiable family of symmetric endomorphisms I — A
on T,(M"), where (y,7) runs over U. If we denote the eigenvalues by

7

/21(?/, 77) = Rz(y, 77) = e = Zn(?/) 77) ’

then it can be shown that each 1, is a continuous funection on U. Since
F, is nondegenerate at each point of U, none of these functions takes
value 1 on U. The index of L, at = being k by assumption, we have
that 2, ---,1; are greater than 1 at (x,& and A,,,---,1, are less than
1 at (x,8). It follows that the same arrangement holds at (z,{). This
means that the index of L, at z is equal to k. We have thus proved
the lemma.

2. Proof of Theorem B.

Under the assumptions of Theorem B, we shall show the following
fact. If xeM" and if & is a unit vector normal to f(M™) at f(x), then
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A, = c¢I for some constant ¢, that is, A, has only one eigenvalue (of
multiplicity n). Suppose A, has a non-zero eigenvalue, say, a. We may
assume that a¢ > 0, because if @ < 0, then A_, has —a > 0 as eigenvalue;
if we can show that A_, = (—a)I, then we know that 4, = —A_, = al.

Assuming thus that o is the largest positive eigenvalue of A,, take
t >0 such that 1/a <t <1/b, where b is the next largest positive
eigenvalue if any (if a is the only positive eigenvalue, just consider
1/a < t). Then p = F(x,t& is not a focal point of (M,x) and the func-
tion L, has « as a nondegenerate critical point. The index at « is equal
to the multiplicity, say, k, of the eigenvalue a. If L, is a Morse func-
tion, the assumption in Theorem B implies k¥ = n, since k cannot be 0.
Now L, may not be a Morse function (it can have a degenerate critical
point elsewhere). By the lemma in Section 1, however, we know that
there must exist a Morse function of the form L, ¢ ¢ R™, which has a
critical point 2z of index k. Thus we may conclude that k¥ = n. This
means that o is an eigenvalue of A, with multiplicity » so that A, = al.

What we have just shown implies that M"* is umbilical, that is, if
» denotes the mean curvature vector field, then for any normal vector
& at x we have

A =&l .

Equivalently, every X e T, (M™) is a principal vector in the sense that
there exists a 1-form « on the normal space N, such that

AX) =w@X for all £eN, and XeT.(M).

It is known (see [1, p. 231]) that a complete Riemannian manifold
isometrically and umbilically immersed in R™ is actually imbedded as a
Euclidean n-subspace or a Euclidean n-sphere. This completes the proof
of Theorem B.

It is quite easy to derive Theorem A from Theorem B. If a Morse
function L, has exactly two critical points, then one is where L, has a
maximum (hence of index ») and the other is where L, has a minimum
(hence of index 0). Thus every Morse function L, has index » or 0 at
a critical point.

Suppose S* is a Euclidean 7n-sphere in R™ and assume we have
taken a rectangular coordinate system =z, -.-,2, in B™ so that
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n+1
S = @ @ 0,05 D =07

Then we can see that the set of focal points of S* is the Euclidean
(m — (n + 1))-subspace defined by 2, = --- =x,,,=0. If p is not a
focal point, the Morse function L, has exactly two critical points, one
of index n and the other of index 0.

What we have just said is sufficient to derive Theorem C from
Theorem B.

3. Remarks.

Our main results may be formulated without explicitly involving the
notion of Morse functions and, indeed, under a weaker assumption.
Let D be o dense subset of R™. In Theorems A, B and C, we may
replace “every Morse function on M™ of the form L,,pe R™’ by “every
function on M™ of the form L,,pe D”.

The proof of Theorem B under this weaker assumption remains
almost the same as before except for a corresponding change in the
lemma, namely, the conclusion of the lemma should be modified as
follows: “Then there exists a point ge D such that L, has a critical
point z of index k.”

Finally, we note that if M? immersed in R™ is topologically a 2-
sphere, then our original assumption in Theorem A is equivalent to the
spherical two-piece property studied by T. F. Banchoff: The spherical
two-piece property and tight surfaces in spheres, J. Differential
Geometry 4(1970), 193-205 (see, in particular, Theorem 3).
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