A CLASS OF RIEMANNIAN MANIFOLDS SATISFYING $\mathbf{R}(\mathbf{X}, \mathbf{Y}) \cdot \mathbf{R}=\mathbf{0}$

SHÛKICHI TANNO

1. Introduction

Let (M, g) be a Riemannian manifold and let R be its Riemannian curvature tensor. If (M, g) is a locally symmetric space, we have

$$
\begin{equation*}
R(X, Y) \cdot R=0 \quad \text { for all tangent vectors } X, Y \tag{*}
\end{equation*}
$$

where the endomorphism $R(X, Y)$ (i.e., the curvature transformation) operates on R as a derivation of the tensor algebra at each point of M. There is a question: Under what additional condition does this algebraic condition (*) on R imply that (M, g) is locally symmetric (i.e., $\nabla R=0$)? A conjecture by K. Nomizu [5] is as follows: (*) implies $\nabla R=0$ in the case where (M, g) is complete and irreducible, and $\operatorname{dim} M \geq 3$. He gave an affirmative answer in the case where (M, g) is a certain complete hypersurface in a Euclidean space ([5]).

With respect to this problem, K. Sekigawa and H. Takagi [8] proved that if (M, g) is a complete conformally flat Riemannian manifold with dim $M \geq 3$ and satisfies ($*$), then (M, g) is locally symmetric.

On the other hand, R.L. Bishop and B.O'Neill [1] constructed a wide class of Riemannian manifolds of negative curvature by warped product using convex functions. For two Riemannian manifolds B and F, a warped product is denoted by $B \times{ }_{f} F$, where f is a positive C^{∞}-function on B. The purpose of this paper is to prove

Theorem A. Let (F, g) be a Riemannian manifold of constant curvature $K \leq 0$. Let E^{n} be an n-dimensional Euclidean space and let f be a positive C^{∞} function on E^{n}. On a warped product $E^{n} \times{ }_{f} F$, assume that
(i) the condition (*) is satisfied, and
(ii) the scalar curvature is constant.

[^0]Then $E^{n} \times{ }_{f} F$ is locally symmetric. The converse is clear.
In theorem A, if $n \geq 2$, we see that $E^{n} \times{ }_{f} F$ is not of constant curvature. If $n=1$, we have

Theorem B. Let (F, g) be a Riemannian manifold of constant curvature $K \leq 0$. Let E^{1} be a Euclidean 1 -space and let f be a non-constant positive C^{∞} function on E^{1}. Then $E^{1} \times{ }_{f} F$ satisfies the condition (*) if and only if $E^{1} \times{ }_{f} F$ is of constant curvature.

Concerning theorem B, it is remarked that, as is stated in [1], p. 28, a hyperbolic m-space is expressed as $H^{m}=E^{1} \times{ }_{f} E^{m-1}$ for $f=e^{t}$ or $=E^{1} \times{ }_{f} H^{m-1}$ for $f=\cosh t$.

The author is grateful to his colleague Dr. J. Kato with whom the author had serveral conversations on differential equations.

2. The Riemannian curvature tensor of $\boldsymbol{E}^{n} \times{ }_{f} \boldsymbol{F}$

Let (F, g) be a Riemannian manifold and let E^{n} be a Euclidean n-space. We consider the product manifold $E^{n} \times F$. For vector fields A, B, C, etc. on E^{n}, we denote vector fields $(A, 0),(B, 0),(C, 0)$, etc. on $E^{n} \times F$ by also A, B, C, etc. Likewise, for vector fields X, Y, etc. on F, we denote vector fields $(0, X),(0, Y)$, etc. on $E^{n} \times F$ by X, Y, etc.

We denote the inner product of A and B on E^{n} by $\langle A, B\rangle$. Let f be a positive C^{∞}-function on E^{n}. Then the (Riemannian) inner product \langle, for $A+X$ and $B+Y$ on the warped product $E^{n} \times{ }_{f} F$ at (a, x) is given by (cf. [1])

$$
\begin{equation*}
\langle A+X, \quad B+Y\rangle_{(a, x)}=\langle A, B\rangle_{(a)}+f^{2}(a) g_{x}(X, Y) . \tag{2.1}
\end{equation*}
$$

We extend the function f on E^{n} to that on $E^{n} \times{ }_{f} F$ by $f(a, x)=f(a)$. The Riemannian connections defined by \langle,$\rangle on E^{n}$ and $E^{n} \times{ }_{f} F$ are denoted by ∇^{0} and ∇, respectively. The Riemannian connection defined by g on F is denoted by D. Then we have the identities (cf. Lemma 7.3, [1])

$$
\begin{align*}
& \nabla_{A} B=\nabla_{A}^{0} B \tag{2.2}\\
& \left.\nabla_{A} X=\nabla_{X} A=\langle A f| f\right) X \tag{2.3}\\
& \nabla_{X} Y=D_{X} Y-(\langle X, Y\rangle \mid f) \operatorname{grad} f \tag{2.4}
\end{align*}
$$

By (2.2) we identify ∇^{0} with ∇ in the sequel. In (2.4) $\operatorname{grad} f$ on E^{n} is identified with grad f on $E^{n} \times{ }_{f} F$ and we have

$$
\langle\operatorname{grad} f, A\rangle=d f(A)=A f .
$$

The Riemannian curvature tensors by ∇ and D are denoted by R and S respectively. We use both notations $R(X, Y)$ and $R_{X Y}$, etc.:

$$
R(X, Y)=R_{X Y}=\nabla_{[X, Y]}-\left[\nabla_{X}, \nabla_{Y}\right], \text { etc. }
$$

Then, noticing that E^{n} is flat, we have (cf. Lemma 7.4, [1])

$$
\begin{align*}
& R_{A B} C=0, \tag{2.5}\\
& R_{A X} B=-(1 / f)\left\langle\nabla_{A} \operatorname{grad} f, B\right\rangle X, \tag{2.6}\\
& R_{A B} X=R_{X Y} A=0, \tag{2.7}\\
& R_{A X} Y=R_{A Y} X=(1 / f)\langle X, Y\rangle \nabla_{A} \operatorname{grad} f, \tag{2.8}\\
& R_{X Y} Z=S_{X Y} Z-\left(\langle\operatorname{grad} f, \operatorname{grad} f\rangle \mid f^{2}\right)(\langle X, Z\rangle Y-\langle Y, Z\rangle X) . \tag{2.9}
\end{align*}
$$

3. The condition (*)

From now on ($\S 3 \sim \S 8)$ we assume that (F, g) is of constatn curvature $K \leq 0$. Then we have

$$
\begin{aligned}
S_{X Y} Z & =K(g(X, Z) Y-g(Y, Z) X) \\
& =\left(K / f^{2}\right)(\langle X, Z\rangle Y-\langle Y, Z\rangle X) .
\end{aligned}
$$

In this case, (2.9) is written as

$$
\begin{equation*}
R_{X Y} Z=P(\langle X, Z\rangle Y-\langle Y, Z\rangle X), \tag{3.1}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
P=(K-\langle\operatorname{grad} f, \operatorname{grad} f\rangle) / f^{2} \leq 0 . \tag{3.2}
\end{equation*}
$$

Now by definition we have

$$
(R(X, Y) \cdot R)(Z, V) W=R_{X Y} R_{Z V} W-R\left(R_{X Y} Z, V\right) W-R\left(Z, R_{X Y} V\right) W-R_{Z V} R_{X Y} W
$$

which vanishes by (3.1). Likewise, by (2.5) $\sim(2.8)$, (3.1), we have

$$
\begin{aligned}
& (R(X, Y) \cdot R)(Z, A) W=0, \\
& (R(X, Y) \cdot R)(Z, B) A=0, \\
& (R(X, Y) \cdot R)(C, B) A=0,
\end{aligned}
$$

from which we have

$$
(R(X, Y) \cdot R)(A, Z) W=-(R(X, Y) \cdot R)(Z, A) W=0,
$$

$$
\begin{equation*}
(R(X, Y) \cdot R)(Z, W) A=-(R(X, Y) \cdot R)(A, Z) W-(R(X, Y) \cdot R)(W, A) Z=0, \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
(R(X, Y) \cdot R)(C, B) W=-(R(X, Y) \cdot R)(W, C) B-(R(X, Y) \cdot R)(B, W) C=0 . \tag{3.4}
\end{equation*}
$$

Next, by similar calculations we have

$$
\begin{equation*}
(R(X, A) \cdot R)(Z, V) W= \tag{3.5}
\end{equation*}
$$

$\left(f P \nabla_{A} \operatorname{grad} f+\nabla_{Q} \operatorname{grad} f\right)(\langle V, W\rangle\langle X, Z\rangle-\langle Z, W\rangle\langle X, V\rangle) \mid f^{2}$,
where we have put $Q=\nabla_{A} \operatorname{grad} f$.

$$
\begin{gather*}
(R(X, A) \cdot R)(Z, B) W= \tag{3.6}\\
\left(\left\langle f P \nabla_{A} \operatorname{grad} f, B\right\rangle+\left\langle\nabla_{A} \operatorname{grad} f, \nabla_{B} \operatorname{grad} f\right\rangle\right)(\langle X, W\rangle Z-\langle Z, W\rangle X) \mid f^{2}, \\
(R(X, A) \cdot R)(Z, B) C= \\
\langle X, Z\rangle\left(\left\langle\nabla_{B} \operatorname{grad} f, C\right\rangle \nabla_{A} \operatorname{grad} f-\left\langle\nabla_{A} \operatorname{grad} f, C\right\rangle \nabla_{B} \operatorname{grad} f\right) / f^{2}, \\
(R(X, A) \cdot R)(C, B) G= \tag{3.8}\\
\left(\left\langle\nabla_{A} \operatorname{grad} f, B\right\rangle\left\langle\nabla_{C} \operatorname{grad} f, G\right\rangle-\left\langle\nabla_{A} \operatorname{grad} f, C\right\rangle\left\langle\nabla_{B} \operatorname{grad} f, G\right\rangle\right) X \mid f^{2} .
\end{gather*}
$$

Finally we have $R(A, B) \cdot R=0$, since $R_{A B}=0$.
Lemma 3.1. On $E^{n} \times{ }_{f} F$, the condition (*) is equivalent to
$f P \nabla_{A} \operatorname{grad} f+\nabla_{Q} \operatorname{grad} f=0, \quad Q=\nabla_{A} \operatorname{grad} f, \quad$ and
$\left\langle\nabla_{B} \operatorname{grad} f, C\right\rangle \nabla_{A} \operatorname{grad} f=\left\langle\nabla_{A} \operatorname{grad} f, C\right\rangle \nabla_{B} \operatorname{grad} f$.
Proof. $R(X, Y) \cdot R=0$ and $R(A, B) \cdot R=0$ hold always. If (*) holds, then (3.5) and (3.7) imply (3.9) and (3.10). Conversely, (3.5) and (3.9) imply $(R(X, A) \cdot R)(Z, V) W=0 . \quad$ Since

$$
\begin{aligned}
\left\langle\nabla_{Q} \operatorname{grad} f, B\right\rangle & =\left\langle\nabla_{B} \operatorname{grad} f, Q\right\rangle \\
& =\left\langle\nabla_{B} \operatorname{grad} f, \nabla_{A} \operatorname{grad} f\right\rangle,
\end{aligned}
$$

(3.6) and (3.9) imply $(R(X, A) \cdot R)(Z, B) W=0$. (3.7) and (3.10) imply $(R(X, A) \cdot R)(Z, B) C=0$. Similarly, (3.8) and (3.10), together with the fact that $\left\langle\nabla_{A} \operatorname{grad} f, B\right\rangle=\left\langle\nabla_{B} \operatorname{grad} f, A\right\rangle$, imply $(R(X, A) \cdot R)(C, B) G=0$. Finally we have $(R(X, A) \cdot R)(Z, V) B=0$ and $(R(X, A) \cdot R)(C, B) W=0$ in the same way as (3.3) and (3.4).

4. The condition for $\nabla R=0$

Using the identity

$$
\left(\nabla_{X} R\right)(Y, Z) W=\nabla_{X}\left(R_{Y Z} W\right)-R\left(\nabla_{X} Y, Z\right) W-R\left(Y, \nabla_{X} Z\right) W-R_{Y Z}\left(\nabla_{X} W\right),
$$

together with (2.3), (2.4) and (2.8), we get

$$
\begin{equation*}
\left(\nabla_{X} R\right)(Y, Z) W= \tag{4.1}
\end{equation*}
$$

$(\langle X, Y\rangle\langle Z, W\rangle-\langle X, Z\rangle\langle Y, W\rangle)(f P \operatorname{grad} f+\nabla \operatorname{grad} f \operatorname{grad} f) / f^{2}$, where we have used $\nabla_{X} P=X P=0$. Similarly we get

$$
\begin{equation*}
\left(\left(\nabla_{A} \operatorname{grad} f\right) f+f P A f\right)(\langle Y, W\rangle X-\langle X, W\rangle Y) \mid f^{2} \tag{4.2}
\end{equation*}
$$

$$
\begin{gather*}
\left(\nabla_{A} R\right)(B, Y) W= \tag{4.3}\\
\langle Y, W\rangle\left(f \nabla_{A} \nabla_{B} \operatorname{grad} f-f \nabla_{T} \operatorname{grad} f-A f \nabla_{B} \operatorname{grad} f\right) / f^{2}, \quad T=\nabla_{A} B, \tag{4.4}\\
\left(\nabla_{X} R\right)(Y, A) B= \tag{4.5}\\
\langle X, Y\rangle\left(B f \nabla_{A} \operatorname{grad} f-\left\langle\nabla_{A} \operatorname{grad} f, B\right\rangle \operatorname{grad} f\right) / f^{2}, \\
\left(\nabla_{A} R\right)(B, X) C=
\end{gather*}
$$

$\left(A f\left\langle\nabla_{B} \operatorname{grad} f, C\right\rangle+f\left\langle\nabla_{T} \operatorname{grad} f, C\right\rangle-f\left\langle\nabla_{A} \nabla_{B} \operatorname{grad} f, C\right\rangle\right) X \mid f^{2}$.
Lemma 4.1. On $E^{n} \times{ }_{f} F, \nabla R=0$ if and only if

$$
\begin{equation*}
f P \operatorname{grad} f+\nabla_{\operatorname{grad} f} \operatorname{grad} f=0 \tag{4.6}
\end{equation*}
$$

$$
\begin{equation*}
f \nabla_{A} \nabla_{B} \operatorname{grad} f-f \nabla_{T} \operatorname{grad} f-A f \nabla_{B} \operatorname{grad} f=0, T=\nabla_{A} B, \text { and } \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
B f \nabla_{A} \operatorname{grad} f-\left\langle\nabla_{A} \operatorname{grad} f, B\right\rangle \operatorname{grad} f=0 \tag{4.8}
\end{equation*}
$$

Proof. Necessity comes from (4.1), (4.3) and (4.4). Conversely, assume that (4.6) $\sim(4.8)$ hold. Then, we have $\left(\nabla_{X} R\right)(Y, Z) W=0$ and $\left(\nabla_{A} R\right)(B, Y) W=0$ by (4.1) and (4.3). We take the inner products of A and both sides of (4.6) to get

$$
\begin{aligned}
0 & =f P A f+\left\langle\nabla_{\operatorname{grad} f} \operatorname{grad} f, A\right\rangle \\
& =f P A f+\left\langle\nabla_{A} \operatorname{grad} f, \operatorname{grad} f\right\rangle \\
& =f P A f+\left(\nabla_{A} \operatorname{grad} f\right) f .
\end{aligned}
$$

Therefore, we have $\left(\nabla_{X} R\right)(A, Y) W=0$ by (4.2). Next we take the inner products of C and both sides of (4.7). Then we have $\left(\nabla_{A} R\right)(B, X) C=0$ by (4.5). By (4.4) and (4.8) we have $\left(\nabla_{X} R\right)(Y, A) B=0$. These, together with the first and second Bianchi identities, imply $\left(\nabla_{X} R\right)(Y, W) A=\left(\nabla_{A} R\right)(X, Y) W=$ $\left(\nabla_{A} R\right)(Y, W) B=\left(\nabla_{Y} R\right)(A, B) W=\left(\nabla_{X} R\right)(A, B) C=\left(\nabla_{A} R\right)(B, C) X=0$.
Finally, $\left(\nabla_{A} R\right)(B, C) G=0$ follows from (2.5).

5. The scalar curvature

In this section, we obtain the expression of the scalar curvature. Let $\left(A_{a}, X_{i} ; \alpha=1, \cdots, n ; i=1, \cdots, r=\operatorname{dim} F\right)$ be vector fields on some open set
on $E^{n} \times F$ such that they make an orthonormal basis at each point of the open set. We denote by R_{1} the Ricci curvature tensor. Then we have

$$
R_{1}(Y, Z)=\sum_{i}\left\langle R\left(Y, X_{\imath}\right) Z, X_{i}\right\rangle+\sum_{\alpha}\left\langle R\left(Y, A_{\alpha}\right) Z, A_{\alpha}\right\rangle,
$$

which is calculated by (2.8) and (3.1), and we get

$$
\begin{aligned}
R_{1}(Y, Z)= & P \sum_{i}\left\langle\langle Y, Z\rangle X_{i}-\left\langle X_{i}, Z\right\rangle Y, X_{i}\right\rangle \\
& +\sum_{\alpha}\left\langle-(1 / f)\langle Z, Y\rangle \nabla_{A_{\alpha}} \operatorname{grad} f, A_{\alpha}\right\rangle \\
= & {\left[(r-1) P-(1 / f) \sum_{\alpha}\left\langle\nabla_{A_{\alpha}} \operatorname{grad} f, A_{\alpha}\right\rangle\right]\langle Y, Z\rangle, }
\end{aligned}
$$

where we have used

$$
\begin{aligned}
\Sigma_{i}\left\langle\left\langle X_{i}, Z\right\rangle Y, X_{i}\right\rangle & =\Sigma_{i}\left\langle Y, X_{i}\right\rangle\left\langle X_{i}, Z\right\rangle \\
& =\Sigma_{i}\left\langle\left\langle Y, X_{i}\right\rangle X_{i}, Z\right\rangle=\langle Y, Z\rangle .
\end{aligned}
$$

Similarly we have

$$
\begin{aligned}
R_{1}(B, C) & =\Sigma_{i}\left\langle R\left(B, X_{i}\right) C, X_{i}\right\rangle+\Sigma_{\alpha}\left\langle R\left(B, A_{\alpha}\right) C, A_{\alpha}\right\rangle \\
& =-(r \mid f)\left\langle\nabla_{B} \operatorname{grad} f, C\right\rangle .
\end{aligned}
$$

Therefore we get
The scalar curvature $=\sum_{i} R_{1}\left(X_{i}, X_{i}\right)+\sum_{\alpha} R_{1}\left(A_{\alpha}, A_{\alpha}\right)$

$$
\begin{equation*}
=r\left[(r-1) P-(2 / f) \sum_{\alpha}\left\langle\nabla_{A_{\alpha}} \operatorname{grad} f, A_{\alpha}\right\rangle\right] . \tag{5.1}
\end{equation*}
$$

6. Two lemmas

Lemma 6.1. On $E^{n} \times{ }_{f} F$, (4.6) is equivalent to $P=$ constant.
Proof. By (3.2) and (4.6) we have

$$
(1 / f)(K-\langle\operatorname{grad} f, \operatorname{grad} f\rangle) \operatorname{grad} f+\nabla_{\operatorname{grad} f} \operatorname{grad} f=0
$$

Since this equation is considered as an equation on E^{n}, we introduce the natural coordinate symtem ($x^{\alpha} ; \alpha=1, \cdots, n$) on E^{n}. Then the last equation is nothing but

$$
\left(K-\Sigma_{\alpha} \frac{\partial f}{\partial x^{\alpha}} \frac{\partial f}{\partial x^{\alpha}}\right) \frac{\partial f}{\partial x^{\beta}}+f \Sigma_{\alpha} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\beta}} \frac{\partial f}{\partial x^{\alpha}}=0,
$$

which implies that each partial derivative of

$$
\begin{equation*}
P=\left[K-\sum_{\alpha}\left(\frac{\partial f}{\partial x^{\alpha}}\right)^{2}\right] / f^{2} \tag{6.1}
\end{equation*}
$$

vanishes. Thus, P is constant. The converse is clear.

Lemma 6.2. On $E^{n} \times{ }_{f} F$, if the condition (*) is satisfied and the scalar curvature is constant, then P is constant.

Proof. If f is constant, Lemma 6.2 is trivial. Therefore we assume that f is not constant. We put $A=\partial / \partial x^{\alpha}, B=\partial / \partial x^{\beta}$ and $C=\partial / \partial x^{\gamma}$, which are parallel on E^{n}. Then (3.9) and (3.10) are written as

$$
\begin{align*}
& f P \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\delta}}+\sum_{\theta} \frac{\partial^{2} f}{\partial x^{\theta} \partial x^{\delta}} \frac{\partial^{2} f}{\partial x^{\theta} \partial x^{\alpha}}=0, \tag{6.2}\\
& \frac{\partial^{2} f}{\partial x^{\beta} \partial x^{\gamma}} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\delta}}=\frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\gamma}} \frac{\partial^{2} f}{\partial x^{\beta} \partial x^{\sigma}} . \tag{6.3}
\end{align*}
$$

Summing with respect to α and γ in (6.3), and substituting the result into (6.2), we have

$$
\begin{equation*}
\left(f P+\Sigma_{\theta} \frac{\partial^{2} f}{\partial x^{\theta} \partial x^{\theta}}\right) \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\sigma}}=0 \tag{6.4}
\end{equation*}
$$

Define a subset Θ of E^{n} by

$$
\Theta=\left\{x \in E^{n} ;\left(\frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\delta}}\right)(x)=0 \text { for all } \alpha, \delta\right\} .
$$

Let Θ_{0} be a component of Θ. If Θ_{0} contains an open set, f is of the form $f=a_{\alpha} x^{\alpha}+b$ on the interior of Θ_{0} for some constant a_{a}, b (if the same letter appears as a subscript and as a superscript, we abbreviate Σ). Since f is positive and C^{∞}-differentiable, $\Psi=E^{n}-\Theta=E^{n} \cap \Theta^{c}$ can not be empty. Since Θ is closed, Ψ is a non-empty open set. On Ψ we have

$$
\begin{equation*}
f P+\sum_{\alpha} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\alpha}}=0 \tag{6.5}
\end{equation*}
$$

On the other hand, the scalar curvature is given by (5.1), which is also written as

$$
\begin{equation*}
\text { the scalar curvature }=r\left[(r-1) P-(2 / f) \Sigma_{\alpha} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\alpha}}\right] \tag{6.6}
\end{equation*}
$$

By (6.5) and (6.6), we get

$$
\begin{equation*}
r(r+1) P=\text { the scalar curvature }=\text { constant } \tag{6.7}
\end{equation*}
$$

which shows that P is constant on Ψ.
On Θ_{0}, if $a_{\alpha}=0$ for all $\alpha=1, \cdots, n$, then P is constant on Θ_{0} too. So we assume that at least one of a_{α} is not zero. Then, by (6.1) and $K \leq 0$,
we get

$$
\begin{equation*}
P=\left(K-\Sigma_{\alpha} a_{\alpha}^{2}\right) /\left(a_{\beta} x^{\beta}+b\right)^{2}<0 . \tag{6.8}
\end{equation*}
$$

We easily see that the function P on Θ_{0} given by (6.8) can not be C^{∞} differentiably extended to P on $\Theta_{0} \cup \Psi$ so that P is constant on Ψ. Therefore Θ can not contain any open set where f is not constant. Hence, we have (6.7) on E^{n}.

7. Proof of Theorem A

Since $E^{n} \times{ }_{f} F$ satisfies the condition (*) and the scalar curvature is constant, P is constant by Lemma 6.2. By Lemma 6.1 we see that (4.6) is equivalent to (6.1) with $P=$ constant. Now we solve (6.1) and show that the solution f satisfies (4.7) and (4.8). Then $E^{n} \times{ }_{f} F$ is locally symmetric by Lemma 4.1. (6.1) is

$$
\begin{equation*}
K-\Sigma_{\alpha}\left(\frac{\partial f}{\partial x^{\alpha}}\right)^{2}-P f^{2}=0 \tag{7.1}
\end{equation*}
$$

We solve the last partial differential equation by Lagrange-Charpit method. First we put

$$
p_{\alpha}=\frac{\partial f}{\partial x^{\alpha}}, \quad \alpha=1, \cdots, n .
$$

Then the characteristic differential equations of (7.1) are

$$
\begin{align*}
\frac{d x^{1}}{-2 p_{1}} & =\frac{d x^{2}}{-2 p_{2}}=\cdots=\frac{d x^{n}}{-2 p_{n}} \tag{7.2}\\
& =\frac{d f}{-2\left(p_{1}\right)^{2}-\cdots-2\left(p_{n}\right)^{2}} \\
& =\frac{-d p_{1}}{-2 f P p_{1}}=\cdots=\frac{-d p_{n}}{-2 f P p_{n}} .
\end{align*}
$$

If f is constant, Theorem A is trivial. Hence, we assume that f is not constant. Then at least one of p_{1}, \cdots, p_{n} does not vanish. So we assume $p_{1} \neq 0$ (locally, if necessary) and furthermore we can assume that p_{1} is positive. In this case, the last $(n-1)$ equatoins of (7.2) give the first integrals

$$
p_{\alpha}=s_{\alpha} p_{1}, \quad \alpha=2, \cdots, n,
$$

where s_{α} are constants. Then (7.1) is

$$
K-\left(p_{1}\right)^{2}\left(1+s_{2}^{2}+\cdots+s_{n}^{2}\right)-P f^{2}=0 .
$$

If we put $s_{1}=1$, we have

$$
\begin{aligned}
& p_{1}=\left[\frac{K-P f^{2}}{\sum_{\alpha} s_{\alpha}^{2}}\right]^{1 / 2}, \\
& d f=p_{\alpha} d x^{\alpha}=p_{1} s_{\alpha} d x^{\alpha} .
\end{aligned}
$$

Then we get

$$
\begin{equation*}
\frac{d f}{\left[K-P f^{2}\right]^{1 / 2}}=\frac{d\left(s_{\beta} x^{\beta}\right)}{\left[\Sigma s_{\alpha}^{2}\right]^{1 / 2}} . \tag{7.3}
\end{equation*}
$$

By putting $\left[K-P f^{2}\right]^{1 / 2}=\sqrt{-P} f+y$, we have

$$
\begin{gather*}
f=\frac{K-y^{2}}{2 \sqrt{-P} y}, \tag{7.4}\\
\frac{-\left(K+y^{2}\right) d y /\left(2 \sqrt{-P} y^{2}\right)}{\left(K+y^{2}\right) / 2 y}=\frac{d\left(s_{\beta} x^{\beta}\right)}{\left[\Sigma_{\beta} \alpha_{\alpha}^{2}\right]^{1 / 2}} . \tag{7.5}
\end{gather*}
$$

Therefore we have

$$
\begin{equation*}
y=b \exp \left[-\left(-P / \sum s_{\alpha}^{2}\right)^{1 / 2}\left(s_{\beta} x^{\beta}\right)\right] \tag{7.6}
\end{equation*}
$$

If we put $\left[-P / \sum s_{\alpha}^{2}\right]^{1 / 2} s_{\beta}=c_{\beta}$, then, by (7.4) and (7.6), we have

$$
\begin{equation*}
f=\frac{1}{2 \sqrt{-P}}\left[\frac{K}{b} \exp \left(c_{\beta} x^{\beta}\right)-b \exp \left(-c_{\beta} x^{\beta}\right)\right], \tag{7.7}
\end{equation*}
$$

which is a solution of (7.1). Consequently, we see that f satisfies (4.7) and (4.8), which are written as

$$
\begin{aligned}
& f \frac{\partial^{3} f}{\partial x^{\alpha} \partial x^{\beta} \partial x^{r}}-\frac{\partial f}{\partial x^{\alpha}} \frac{\partial^{2} f}{\partial x^{\beta} \partial x^{\gamma}}=0, \\
& \frac{\partial f}{\partial x^{\beta}} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\gamma}}-\frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\beta}} \frac{\partial f}{\partial x^{r}}=0 .
\end{aligned}
$$

8. Proof of Theorem B

Assume that $E^{1} \times{ }_{f} F$ satisfies condition (*). Then (3.9) or (6.2) is written as

$$
\begin{equation*}
\left(f P+\frac{d^{2} f}{d x^{2}}\right) \frac{d^{2} f}{d x^{2}}=0 \tag{8.1}
\end{equation*}
$$

where x is the natural coordinate system of E^{1}. Similarly as in $\S 6$, we define Θ and Ψ. Then on Ψ, by (6.1) and (8.1), we have

$$
\begin{equation*}
\left[K-\left(\frac{d f}{d x}\right)^{2}\right]+f \frac{d^{2} f}{d x^{2}}=0 \tag{8.2}
\end{equation*}
$$

which implies that the derivative of $P=\left[K-(d f / d x)^{2}\right] / f^{2}$ is zero so that P is constant on each component of Ψ. On the other hand, on an open interval contained in θ, f is of the form $f=c x+d$ for some constants c and d. Since P is C^{∞}-differentiable, Θ can not contain any open interval where f is not constant. Thus, P is constant on E^{1}. Since f is nonconstant, P is a negative constant. Now we have

$$
K-\left(\frac{d f}{d x}\right)^{2}-P f^{2}=0
$$

whose solution f is

$$
f=\frac{1}{2 \sqrt{-P}}\left[\frac{K}{b} \exp \sqrt{-P} x-b \exp (\sqrt{-P} x)\right]
$$

where $b<0$ is a constant. Then we have

$$
\nabla_{A} \operatorname{grad} f=-f P A
$$

and hence, (2.6), (2.8) are expressed as

$$
\begin{align*}
R_{A X} B & =(-1 / f)<-P f A, B\rangle X \tag{8.3}\\
& =P(\langle A, B\rangle X-\langle X, B\rangle A), \\
R_{A X} Y & =(1 / f)\langle X, Y\rangle(-P f A) \tag{8.4}\\
& =P(\langle A, Y\rangle X-\langle X, Y\rangle A) .
\end{align*}
$$

Thus, (8.3), (2.7), (8.4) and (3.1) show that $E^{1} \times{ }_{f} F$ is of constant curvature $P<0$.

9. Remarks

(i) If (F, g) is a complete Riemannian manifold, then $E^{n} \times{ }_{f} F$ is also a complete Riemannian manifold (cf. Lemma 7.2, [1]).
(ii) Assume that (F, g) is of constant curvature $K<0$. If ($\partial^{2} f / \partial x^{\alpha} \partial x^{\beta}$) is non-singular at some point of E^{n} and n is sufficiently small with respect to $r=\operatorname{dim} F$ (for example, $n=2$), then $E^{n} \times{ }_{f} F$ is irreducible. In fact, by a result due to D. Montgomery and H. Samelson [3] we see that there is no proper subgroup of the orthogonal group $0(n+r)$ of order greater than $(n+r-1)(n+r-2) / 2$, provided $n+r \neq 4$. On the other hand, the holonomy algebra is generated by (cf. [4])

$$
R_{A X}, R_{X Y}, \cdots, \text { etc. }
$$

which are given by (2.5) $\sim(2.8)$, (3.1). And under the circumstance stated above the restricted homogeneous holonomy group at the point is $S O(n+r)$.
(iii) It is an open question if one can get complete solutions of non-linear partial differential equations (6.1), (6.2) and (6.3) (i.e., the condition (*) on $E^{n} \times{ }_{f} F, n \geq 2$). If one can get the complete solutions, then one sees whether the assumption on the scalar curvature is necessary or not in Theorem A.
(iv) The condition (*) is expressed in local coordinates as

$$
\nabla_{r} \nabla_{s} R^{h}{ }_{i j k}-\nabla_{s} \nabla_{r} R^{h}{ }_{i j k}=0 .
$$

In [6], K. Nomizu and H. Ozeki showed that if $\nabla \nabla R=0$ (more generally, $\nabla^{k} R=0$ for some k) on a (complete) Riemannian manifold, then $\nabla R=0$.
(v) Studies concerning $R(X, Y) \cdot R$ were made also by A. Lichnerowich [2], p. 11, P. J. Ryan [7], K. Sekigawa and S. Tanno [9], J. Simons [10], S. Tanno and T. Takahashi [11], etc.

References

[1] R.L. Bishop and B.O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
[2] A. Lichnerowich, Géométrie des groupes de transformations, Dunod Paris, 1958.
[3] D. Montgomery and H. Samelson, Transformation groups of spheres, Ann. of Math., (2) 44 (1943), 454-470.
[4] A. Nijenhuis, On the holonomy groups of linear connections IA, IB, Proc. Kon. Ned. Akad. Amsterdam, 15 (1953), 233-249.
[5] K. Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. Journ., 20 (1968), 46-59.
[6] K. Nomizu and H. Ozeki, A theorem on curvature tensor fields, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 206-207.
[7] R.J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. Journ., 22 (1969), 363-388.
[8] K. Sekigawa and H. Takagi, On the conformally flat spaces satisfying a certain condition on the Ricci tensor, Pacific Journ. of Math., 34(1970), 157-162.
[9] K. Sekigawa and S. Tanno, Sufficient conditions for a Riemannian manifold to be locally symmetric, Pacific Journ. of Math., 34 (1970), 157-162.
[10] J. Simons, On the transitivity of holonomy systems, Ann. of Math., 76 (1962), 213-234.
[11] S. Tanno and T. Takahashi, Some hypersurfaces of a sphere, Tôhoku Math. Journ., 22(1970), 212-219.

Mathematical Institute
Tôhoku University

[^0]: Received June 20, 1970.

