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SEQUENTIAL GAUSSIAN MARKOV INTEGRALS*

JOHN A. BEEKMAN

I. Introduction

In [6] R.H. Cameron defined and studied a sequential Wiener integral.

This was motivated by the function space integral R.P. Feynman used in

[12] to give a solution to the Schroedinger equation. In [5] the present

author studied sequential Gaussian Markov integrals with a positive para-

meter. This paper gives sufficient conditions on the integrand for such

integrals to exist, when the parameter is complex. These sequential integrals

are related to ordianry Gaussian Markov integrals through a Fourier trans-

form type formula extended from [5]. We shall show that such integrals

are equal to conditional Wiener integrals of suitably modified functionals.

As is well-known, function space itegrals are used in many fields. We

will use the sequential integrals in certain applications in physics, but it is

believed they will prove useful in other areas. Specifically, we shall show

that sequential integrals of appropriate functionals satisfy generalized Sch-

roedinger equations and Dirac delta function conditions. We shall also

prove that certain sequential integrals solve integral equations formally

analogous to the differential equations of [5]. Our use of the word potential

is the quantum mechanics use—see [5], for example.

For completeness, several references will be mentioned. References [1]

through [5] consider the connection between Gaussian Markov stochastic

processes and generalized Schroedinger equations. Reference [20] discusses

the same connection, with heavy emphasis on the physics involved. R.H.

Cameron's papers [6] through [9] have contributed much to this area.

II. Sequential Integrals

Let {X{τ), s^Lτ^Lt] be a Gaussian Markov process with transition

density function
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(2.1) P(SB,S; y, t) = -j-P[X(t)^y\X(s) = x]

= {2πA(s, t)}-»> exp ( -

where

(2.2) 4(s, 0 =

(2.3)

(2.4) w"(τ), v"(τ) are continuous, s ^ τ ^ t

(2.5) [tKτ)w'(τ) - w(τM (τ)] > 0, S^τ^t.

The 2/ and v functions for the Wiener, Doob-Kac, and Ornstein-Uhlenbeck

processes are given in [3], The transition density function determines a

stochastic process with X(s) = xfX{t)— y with probability one since

fi, y>χ
VιmP[X(t)^y\X(s)= a] =
^ 5 + 10, y<x.

Almost all of the sample functions of the process are continuous, since there

is a transformation of the process to the Weiner process—see Lemma 2 of

[2] and its references. Denote the expected value of a functional F[X] for

this process by

E{F[X]\X(s)= x,X(t) = y}.

Expectations not tied down at t can be obtained thruogh the equation

(2.6) E{G[X]\X(s) = * * } = [ " E{G[X]\X(s) = x,X(t) = y}p(x, s; y, t)dy.

I n [61, a complex variance parameter λ was used to consider an analytic

Feynman integral. We will now introduce a parameter λ which serves es-

sentially the same purpose. Let p*(x,s;y,t) equal p{x,s;y9t) with A(s,t)

replaced by A{s,t)Jλ, where Reλ^.% 2¥=0.

Let τ = [τi, , τn] be a variable vector of a variable number of di-

mensions whose components form a subdivision of [5, t] so that τ0 = 5 < n

< τ 2 < < τ»Ξ=*. Let ||r|| = maxj=1 n{τ5 — ry-i). Let £ = [&, ,6»-i]

denote an unrestricted real vector, where w is determined by r, and let

f0 = x, ξn^y. Let ^r.ί(τi) = ξi9 i = 0,1, ,n and ^ r > e be linear on [*•<_!,TJ.

Then we define the sequential Gasusian Markov integral
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(2.7) El{F[X]\X(s) = x,X(t) =y} = lim

where

(2 8) G ^ ξ ) = w W Kp^-" *-; ft τί)

Assume that ζn is unrestricted. Then we make the definition

(2.9) El{F[X]\X(s) = x] = lim^5S i t.Π p*(ξt.lt r,_,; l ί ; τt) F(φt.t)dξ.

Clearly we have

(2.10) £ί{F[Z]|Z(s) = * } = [" £I{F[X]|Z(s) = *, ΛΓ(ί) = y}p*(x,s; y,t)dy.

Let C[x, s y, f] denote the space of continuous functions with x and y

endpoints. Let C[s,t] denote the space of continuous functions with X(s) = 0.

For X&C[x,s;y,t] or X^C\_s,t], let \\X\\ = sup \X(τ)\.

A subset S of C[x, s; y,t] or C[s, t] is a Borel set if it is a member of

the smallest o -ring containing the quasi-intervals

[X(ΞC[x,s;y,t] or C[s,f\: a, < XfaX βi9 i = 1,2, ,n}

where τ ranges over all subdivision vectors of [s, f] and ai9 β 6 range over

the extended reals. F[X] is a Borel functional if it is measurable with res-

pect to the (7-ring of Borel measurable subsets of C[x,s; y,t] or C[s,f],

THEOREM 1. Let A be any open set of complex numbers λ^Reλ > 0, Λ =̂= 0.

Let Λ* denote the closure of A with λ = 0 omitted. Let p{x, s y, t), p*(x,s; y,t)

and their related integrals be as specified earlier. Let F[X] be a Borel functional

for X^C[x,s; y,t]. Assume that F also satisfies the following two conditions.

(2.11) F[X] is a continuous function of X in the uniform topology almost everywhere

in C[x,s; y,f\.

(2.12) For all X in C\x,s\y,ϊ\, \F[X~\\ ^ A exp(M\\X\\r) where A and M are

given positive integers, and 0 < T < 2.

Then for λ^A*, and functionals for which the right side exists and is analytic

in A, and continuous in A*, we have

(2.13) EΪ{F[X]\X(s)=x, X(t)=y}p*(x,s;y,t) =
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= G\dμ.

Proof. By obvious changes in Theorem 1 of [5],

Eϊ{F[X]\X(s) = x, X(t) = y} = E*{F[X]\X(s) = x, X(t) = y)

for λ v> 0, where the second integral uses p* as the transition density func-

tion. Hence from (3.2) of [5], (2.13) holds for ^ > 0 .

Now we will prove that the left hand side of (2.13) is analytic in A.

First we show that for each subdivision vector

(2.14) \ Gλ(τ, ζ)F{ψτ ζ)dξ is an analytic function in Λ.
jRn-ί

(2.15) \p*(x,s; v,t)\\G1(r,ξ)F(φt.t)\\λ\-»'tl(2x) A(s,tύ i4(f„.,.*.)]"«

- v(tt)ξt-Mtt-i)?
</lexp(Mmax \ξt|') exp - Reλ Σ

i = l,...,n I ί = l

This is integrable over R^i for each λ in ^.

Now we can integrate (2.14) around a contour in Λ, and exchange

order of integration by the Fubini Theorem. Because of the analyticity of

the integrand of (2.14) in λ, the repeated integral vanishes, and by Morera's

Theorem, (2.14) is an analytic function in Λ.

As in Cameron, [6], Theorem 2, the limit of the finite dimensional

integrals is also analytic in A and continuous in A*.

Then the two sides of (2.13) are equal for Reλ>Q by analytic con-

tinuation. We get equality for Re λ > 0, λ ψ 0, by continuity in λ of the

two sides.

EXAMPLE 1 OF THEOREM 1. Let F[X~\ = 1, corresponding to a potential

V = 0. Assume Reλ>0 as the only requirement for

EΪ{l\X(s)=x, X(t)=y}p*(x,s;y,t)

= _A_ Γ e~iβly-χυ{t)/κs^E[e^x^^ \X(s) = 0]dμ
Δiz J —oo

= -JL- Γ ri/tiι-w(0M*)]Γ eiμ*H~Γlp{09 s: y, t)dydμ
Δπ J -co J -oo

l eχp ( - 4"
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(by the Lemma of [5]).

= P*{%,s; y , t )

This is analytic in λ in Λ. For Reλ = 0, one also obtains p*{x, s y, t) by

using Fresnel integrals. (See [10], pages 114-115, for example.) Clearly

p*(x9 s; y, t) is continuous in λ in A*. For λ = — i,

v*(χ, s;y,t) = ί- il(2*A(s, t)ψ* eχ P

satisfies a pair of generalized Schroedinger equations:

(2.16) iA{t) - | J £ - - B(t) -A-[yp*J - iV(y, t)p

(2.17) M(s) - | ^ + xB(s) ^£- - iV{x, s) ** = -

where

(2.18) A(t) = [υ{t)u'{t) ~ u{t)vf{t)]/2,

(2.19) B{t) = υ\t)lυ{t)9

The A(ί) and 5(ί) functions for the Wiener, Doob-Kac, and Ornstein-

Uhlenbeck processes are given in [3].

It would be desirable to establish a class of functions g(y) such that

the following Dirac delta function property holds:

(2.20) lim Γ g{x)[- il(2πA{s, t))]ί/2 exp {i[y - xv{t)lυ(s)JI{2A{s, t))}dx

= 9{y), — ° °< y< °°.

This does not seem possible. However, to indicate that the class is rather

broad, two examples will be considered.

Let g(y) = 1, — oo < y < oo. Using Fresnel integrals, and the continuity

of υ(t),

lim Γ [-H(2πA(s9tWexp{i[y-xv(t)lυ(sm(2A(sft))}dx

= lim Γ [- HπY/2e™2v{t)lv{s)dw = 1.

Let g(y) = e~y2/2, — oo < y < oo. Then completing the square, and using

the Lemma of [5],
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β(»)l- H(2πA(s, tW* exp [i[y - xv{t)lv{s)YI{2A{s, t))} dx
a

[A{s, t) - iv2(t)lv2(s)1m Θ X P I ΆA{s, t) - iv2(t)lv2{s)li

Using the continuity of v(t), and the fact that lim A(s, t) = 0, the limit

as t -> 5 + of the previous quantity equals e~y2/*.

One can also prove that

(2.21) lim Γ g(y)[- U(2πA(s, *))]1/2 exp {i[y - XΌ(t)lυ(s)7l (2A(s, t))}dy

= ^(aJ^ — oo < ίc < oo

for the above g's and other suitable functions.

EXAMPLE 2 OF THEOREM 1. Let F[X] = exp (-f

where /(0) = 0, f(T) = 0, and /(τ)eI2[0,Γ]. The calculations of Section V

of [5] can be carried out and the result is analytic for Re λ > 0, using the

analyticity of Dr(μ) and Rr{a,b; μ). See [18], pages 215-216. It is also con-

tinuous for Reλ^iO if at the point where we assume Reθ >0, one uses

instead Fresnel integrals as in Example 1. This indicates that for this

example the true solution to the generalized Schrόedinger equation, subject

to the initial conditions (2.20) and (2.21), is a complex sequential integral

with λ = — i.

III. Approximation of Integrals.

The following theorem was motivated by a paper by L.D. Fosdick, [14],

which derives an approximation for the conditioned Wiener integral which

could be used in electronic computer work. One could split the right hand

side functional into real and imaginary parts and approximate the resulting

integrals.

Other papers on this subject of Monte Carlo approximations of Wiener

integrals and their relations to differential equations are [13] by Fosdick, [15]

by Fosdick and Jordan, and [17] by Tsuda, Ichida, and Kiyono.

THEOREM 2. Let A be any open set of complex numbers λ such that Reλ>0,

U I ^ ; i o > O . Let Λ* denote the closure of Λ. Let p{x,s;y,t), p*{x,s;y9t) and

their related integrals be as specified earlier. Let F[X] be a Borel functional for

Xt=C[x,s; y,f] and let the integrand of the right side of (3.1) be Borel measurable
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for {λ,X,x,y) in AxC[0,0; 0,l]x(— oo, oo)χ(~- oo, oo). Assume that F satisfies

(2.11) for both C[x, s; y, t] and C[0,0; 0,1]. Assume that for all X in C[x, s; y, t]

or in C[0,0; 0,1], \F[rJ-1/2X( ) + r 2 ] | < A(rz)e*<rMW'r for 0 < r < 2, where there

exists a number B such that 0< r^B but — oo< r 2 < oo. Here A(r2) and M{r2)

are positive nondecreasing functions of r2 alone, so that for fixed r2 they may be taken

to be constants. Assume F is such that the right side of (2.13) exists for λ > 0.

Assume that F[λ~1/2X{')'] is analytic in λ throughout A for each X in C[x, s; y,f]

and continuous in λ throughout Λ* for each X in C[x9s;y,f\. Let Ew{G[X']\X{0)

= 0, X(l) = 0} denote the expectation of G[X] over the Wiener process conditioned by

X{0) = 0, X(l) = 0 (i.e. u(τ) = τ, v{τ) = 1 — τ in (2.1) and (2.2); this is sometimes

called the Doob-Kac process. See [3]).

Then for λ<ΞΛ*,

(3.1) El{F[X]\X(s)=x,X(t) =

υ*(t) A(s, •) \ , y y( -) A( , t)•) \ ,
,t)J'T

v(t) iλ\ι/2 \v2(-) A{s,t) / ι v(s) A(s,t)

υ(t) A(s, )
1 * υ( ) A(s,t)

Proof Equation (3.1) is true for λ > 0 by (4.1) of [5].

Now the hypotheses insure that the left hand side of (3.1) is analytic

for Reλ>0, continuous for Reλ^O, \λ\^λ0. This was proved in Theo-

rem 1.

Let I be the right side of (3.1), and let its integrand be H[X; X]. To

apply the bound on H[X; λ] we note that 0 < g^Lv{τ)^G, s^τ^t, and

A{s,θ)^G2A(s,τ)lυ2{τ), θ^τ^t, a n d A{s9τ)^A{θ9τ), s^θ. L e t r2= \x\GJ

v(s) + \y\G2l[gv{t)]. Then by well-known Wiener integral results, (see [5],

Theorem 1 for example),

\Ew{H[X;λ-]\X(0) = 0}\

But

EW{H[X; X]\X(0) = 0} = j°° EW{H[X; λ]\X{0) = 0, X{1) = x] ~φ= dx.

Hence the real and imaginary parts of the right integrand are finite almost

everywhere. By continuity in x (this uses 2.7), we get finiteness for all x9

including x = 0. Now we can integrate / around a contour in A and ex-
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change order of integration by the Fubini Theorem. Because of trie analy-

ticity of the integrand of / in λ, the repeated integral vanishes, and by

Morera's Theorem, / is an analytic function in λ for \λ\^.λQ>0. Using

bounded convergence and the continuity of F in λ, we can show / is con-

tinuous in λ for Reλ^.0, \λ\ ^Λo.

Hence (3.1) follows by analytic continuation for Reλ>0, \λ\^.λo, and

by continuity for Reλ>§, \

IV. An Integral Equation.

The following integral equation (4.2) is formally analogous to the

differential equations (3.3) and (3.4) of [5] for complex λ9 Reλ> 0. Let us

proceed in a formal fashion to show that.

- B{t)y -ψ*- -B(t)p*jdadτ by (4.2) (which follows)

by (3.3)

of [5] for its V= 0 (r* = p*). This holds for complex λ such that Re λ > 0.

From (4.2)

- d f C r -*xr,5; α,τ)F(α,τ)ί?*(α,r; 2/, t)dadτ

r*(x,s; a,θ)V(a,θ)p*(a,θyy, t)da - i

= - ^ - ir*(x, s;y,t) V(y91) - iQ~j*γJ£Ldadτ

by the singular nature of p* at a = y, θ — t.

This completes the formal derivation.

The backwards equation would proceed similarly, except one uses the

assumed singular nature of r* at a = x, θ = s (See (3.8) of [5] for the case

λ>0).

T H E O R E M 3. Let A be the open set of complex numbers "BReλ > 0, \λ\^λ0 > 0.

Let A* denote the closure of A. Let p(x,s;y,t) and p*{x,s; y,t) and their related
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integrals be as specified earlier. Assume that V{z, τ) is defined for S: Q^τ^T < 00,2

any complex number. Let V{z, τ) be an analytic function of z for each TG[0, T] and

zφF, F a bounded subset of (— 00, 00). Let V be continuous over S,z$F and let

V(x,τ) be continuous for O^τ^T, #<=(— 00, 00) — E, E a finite set of real points,

and for x ε £ , let V be continuous in τ.

Assume that for complex z, and any τe[0,T], \V{z,τ)\ <A + N\z\ for some

positive integers A and N.

For λ<^Λ*, let

(4.1) , s; y, t).

Then r*{x9 s; y,t) satisfies the following integral equation

(4.2) r*(x, s; y,t) = p*(x,s; y9t) — i\ J_ r*(x9s; a,τ)V(a,τ)p*(a9τ; y,t)dadτ

for

Proof of Theorem 3.

For λ > 0,

Ei{F[X]\X(s) = x,X(t) = y} = Er*{F[X]\X(s) - x,X(t) = y}.

For λ >0, (4.2) is true by [11] provided we show that [*Er*{\V(X(Θ), θ)\

\X(s) = x,X{t) = y}dτ< co9 which is requirement (2.1) of reference [11].

Assume that s<θ< t. Then by hypothesis,

Er*{\V(X(θ),θ)\ \X(s)= x,

which by Theorem 3 of [5]

- Δ ^

\X(s) = x,X(t) = y}

Ί>*(x,s;y,t) 2π
r \

i/λ v{s)
X{s) =θ]dμ

.

φ*{x,s;y,t) 2π

Γ Γ
J-ooJ-

-4444
v(s)

[2πA(θ, /)]" 1 / 2 exp {- [2 - wυ{t)Kθ)\1li^A{d91)]} dwdzdμ

AT 1

^ ί ? * ( α ? , 5 ; y , ί ) 2TΓ
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λ Φ)

exp {iμυ(t)wiyTv{θ)] - A{θ9

by the Fubini Theorem and the Lemma of [5]

= A +

w υ(θ)
7 = ~Γ Λ 7 \

. 1 λυ\θ) Γ v{t) v(t) w Ύ
2 v 2 ( ί ) ^ , ί ) r v(s) y + i/Γ υ(θ)Δ

\2πA{s, Θ)T1/2 exp {- w%2A(s, θ)]} dw

by the Fubini Theorem, and the Lemma of [5]

^ A + -^}2π)~TtΛ Vίυ*(θ)l{ύ>(t)A(θ, ί))] 1 Λ

[(2/(^)^(^(5, ^))^2 + \x\v(β)lv(s)]

using the fact that the first factor of the above integrand is ^ 1.

The above bound is integrable in θ between 5 and t by the hypotheses

on υ(θ), u(θ) and inequality (4) of Lemma 6.1 of [3]. A bound is not needed

for the two point set {θ=s, t) but could be furnished by A-\-N max(|cc|, \y\).

Now p*{x,s;y9t) is analytic for Reλ^.0, λ¥=0.

Let D be a closed and bounded subset of Λ — PF where PF = {x: x&F

and x >0}.

Considering r* expressed as in (2.7), it is analytic in D as pointed out

in the proof of Theorem 1.

We now verify that / = \ r*{x, s; a, τ)V{a, τ)p*(α, τ\ y, t)da is continuous

for s<τ<t, i e D . Clearly the integrand is measurable in a. For the

class of V's allowed, one can verify the hypotheses of Theorem 2, including

the existence of the right side of (2.13). So by (3.1)

exp|ivr

where we again recall that 0< g^v(τ)^G, s^τ^t, and A{s,θ) ^ G2Λ(s,τ)l

v2(τ), θ^τ^t, and
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Now there exists a positive integer K such that

\V(a,τ)l \p*(a,τ; y,t)\ <C \λ \ v*K[2πA(τ, t)Γn ^ \λ11/2K[2πA(τ0, t)T1/2, τ

Using Fubini's Theorem, as justified below,

where we have assumed that ^GZ) implies that ;io:< UI ̂ ^ l f Reλ^λ2 > 0.

As in Theorem 2, the Wiener integral is finite, and its bound does not

involve either τ or λ.

Hence / is bounded by a quantity which does not involve r or λ (For

each τ such that s<τ< t, we can find τ0 such that τ ^ r o < t.)

Using (2.7) we see that the integrand of I is continuous in r and 2,

and so by Lebesgue's dominated convergence theorem, / is continuous in τ

and λ for s<τ<t, λ^D.

By minor changes in the previous argument, / converges uniformly for

λ in D by the analogue of Weierstrass' M test. The integrand of / is analytic

in λ for each a since r*(x,s; a,τ) and p*{a9τ; y,t) are and V{a,τ) is indepen-

dent of λ. Using (2.7) we see that the integrand of / is continuous in λ

and a, a^E. The exceptional set E can be worked into the proof on page

108 of Copson, [10], by preliminary steps. (For example if E = {aua2)9

\TF{λ, a)da - [aiF(λ, a)da + p F U , a)da + Γ F U , a)da.

For appropriate F's, each of the three integrals on the right is analytic and

hence their sum is analytic.) Hence / is analytic in D for s < τ< t by

Copson, page 110.

S t
Idτ to be analy-

s

tic in D.

Therefore (4.2) holds for D by analytic continuation. Since any λ^A—PF

can be enclosed by such a D, we obtain (4.2) for A — PF.

Equation (4.2) is true for PF as stated in the opening of the proof.

EXAMPLES. Examples of appropriate potentials are

which corresponds to motion in a homogeneous field when A{τ) and B{τ)

are constants, and
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0, — a< z <a9 z real
V(z) = λ

V, either z not real or \z\^,a9 for z real

corresponding to a square well potential.

Remark. The author conjectures that r* satisfies a pair of generalized

Schroedinger equations plus initial conditions that is, it is believed that

most of Theorem 4 of [5] holds for λ = — i. However, several attempted

proofs failed.

This theorem was partially motivated by Theorem 9 of [9], by Cameron

and Storvick, which considers the Wiener case.

Acknowledgments. The author wishes to thank Professor R.H. Ca-

meron for his help with Theorem 1, and the referee for helpful suggestions.

FUTURE RESEARCH. R. Kallman and the author are currently extending

Theorem 3 to the important case λ = — i. Such an integral equation would

be more equivalent to the generalized Schroedinger equation and would

extend the Cameron-Storvick paper, [9], from the Wiener process to Gaus-

sian Markov processes.
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