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THE RECIPROCITY OF DEDEKIND SUMS AND
THE FACTOR SET FOR THE UNIVERSAL

COVERING GROUP OF SL(2, R)

TETSUYA ASAI

Dedicated to Professor Katuzi Ono on his 60th birthday

By explicit studying on theta-multipliers (i.e. the multipliers which appear
in theta-transformation formulas under general modular substitutions), we can
naturally get the reciprocity law of Gauss sums or quadratic residue symbols.
This remarkable fact, by Cauchy, Kronecker, Hecke and others, is very clas-
sical, but its theoretical meaning has not been sufficiently clear yet.

Recently, Kubota made some investigation on this subject and he suggested
a certain new point of view that these relations between reciprocity laws and
automorphic forms are based on the "automorphic property" of the residue
symbol itself (not necessarily quadratic) which leads to somewhat generalized
reciprocity law.

Now, a similar discussion is possible even in the case of Dedekind sums.
In fact, we shall show in the present paper, briefly to say, the following: the
generalized reciprocity law of Dedekind sums is equivalent to the proposition that

SL(2, Z) is a splitting** subgroup for the factor set of the universal covering group of

SL% R).

Since Dedekind sums, unlike Gauss sums, were primarily introduced for
the purpose of the explicit and finite description of log ̂ -multipliers, the
above assertion may be rather classical results. By our method, however,
the mechanism of the subject about Dedekind sum and its reciprocity be-
comes very clear and simple. Furthermore, as a by-product, we shall get
in the sequel, the explicit form of /^^-multipliers by purely arithmetical
steps without the theory of functions.

Received December 5, 1968
** The term "splitting" is used in a slightly wider sense than usual.
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In the case of quadratic residue symbols there is an adelerized expression

for the reciprocity, namely, the product formula of Hubert symbols. But in

our case it is an open question if such interpretation is possible or riot.

The author wishes to express his gratitude to Professor Kubota who gave

him many valuable advices very kindly.

1. The universal covering group of SL{2,R) and its factor set.

In this section, we shall construct a universal covering group of SL{2,R);

the 2 x 2 special linear group over the real number field R, with a con-

venient parametrization for our purpose, and we shall give the explicit value

of the factor set for that extension over SL(2,R), which has a very simple

expression.

In the notation used here, we especially notice about the choice of argu-

ment of a complex number, i.e. for an arbitrary complex number z^O), arg{z)

is always chosen in the fixed interval [—π, π). Moreover, for any real number

θ, a symbol θr means a unique number in [—:r,π) such that Θ'Έ=Θ (mod. 2π).

For instance, arg(eiθ) is equal to θ'. For the abbreviation, we denote the

group SL(2,R) and the above interval [—π,π) by G and T, respectively.

1-1. First, let us recall a non-matric representation of G based on Iwasawa

decomposition. Any element σ of G is uniquely decomposed as follows:

b\_(l x\(jy \(cqsθ -sinθ\
d)-\ l Λ χ j \ θ cosθ)

xsinθ + ycosθ xcosθ — ysinθ\

where, z = x + iy = at ~\ J — ̂  <O is a point of the upper-half-plane

(hereafter, the operation of a e G on z e J$Γ is expressed by σ<z>, i.e.

σ<z> = a

c

ZΛb

d for σ= (* ^ ) ) , and θ=arg(ci + d) is a point of T with torus

topology. In this way, the group G can be identified with the ̂  x T as

a topological group, while an element σ is also parametrized as (z, 0).

By a short calculation, we can see the group multiplication on G =

J%? X T under the (z,#)-parametrization to be as follows:

For σv = (zu,θv), v = 1, 2, 3, and σισ1 — σ3,

z - ^(siMMfl! + yicosθx) + {x1cosθί — y1sinθ1)
3 z2sinθx + cosθx

θz = (02 + arg(z<Lsinθι
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Because of the notation θ', the difference between θz and θ2 + arg{z2ύnθ1

+ cosθ1) must be an integral multiple of 2π. We represent this integer by

w{σ19σ2), i.e.

Θ3 = Θ2 + arg{z2sinθί + cosθx) — 2πw(σ19σ2).

Or, by using θr = arg(eie)9 w{σ19σ2) can be represented such as

(2) w{σί9 σ2) = -^- {arg(c2i + d2) + argidfaφ) + dt) - arg(czi + dz)}>

It should be remarked that w(σ19σ2) is a rational integer, and more

precisely, its value is 1, 0 or —1, determined only by σι and σ2.

More generally than (2), the following lemma is valid:

LEMMA 1. For any choice of z in βg"',

(3) w{σ19 σ2) = - ^ L {arg{c2z + d2). + arg{Cl{σ2<z» + dx) - arg{czz + d3)}.

Proof. Set wz(σ19σ2) for the right-hand-side of (3), and let f(z) be the

function exp{2πirwz{σ19σ2)) for any fixed r e Λ. Then, /(«) is analytic on J3?Γ

and its absolute value is 1. So, /(&) must be a constant function, and

especially f(z)=f{i)9 i.e. for any r^R9 rwz{σ19σ2)^rw{σ19σ2) (mod. 2). There-

fore, wz{σl9σ2) must be equal to w(σ19σ2).

LEMMA 2. w fo, σ2) satisfies factor set relation, i.e.

(4) w(σί9 σ2) + w(c&29 σ3) = te ί^, o 2σ3) + w(σ29 σ3)

for any σv e G, y = 1, 2, 3.

/. Because of lemma 1, it can be easily seen by direct calculation.

Remark 1. The factor set w{σ19σ2), that will play an important role in

our discussion, was firstly investigated by Hans Petersson in a different

way ([5]).

Remark 2. Lemma 2 results also from the associativity of the group

multiplication (1), under lemma 1. On the other hand, lemma 1 follows

directly from lemma 2, too.
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1-2. Now, we define a new group G whose multiplication is defined simi-

larly to (1), and that becomes a universal covering group of G, besides its

factor set as the group extension G over G will coincide exactly with w(σ19σ2)

introduced above.

Let G be the product set J^ x R = {(z9 θ); z <= <^f, Θ<=R}. On the

topological space G, we define a multiplication as follows:

For σv = {zv9θv) ε G , v = 1, 2, 3, then σxσ2 = σ3 means that

= z2{x1sinθ1 + y1cosθ1) + {%ιcosθι — yιsinθι)
. 3 z2sinθ1 + cosθι

(5)
• #3 = #2 + arg{z2sinθ1 + cosθx) + θx — 0/,

As compared with (1), it can be easily seen that G with the above

multiplication becomes a group, for instance, the associativity of 0-part

follows from lemma 1. Moreover, because of the multiplication (5) which

is some different from (1) in 0-part, G is surely a topological group. In this

way, we have obtained a simply connected group G, which is homeomorphic

to RK On the other hand, it is obvious that the mapping:

/^ —^ ~ /„ /j\ v [ „ Af\ r— f~~*
KJΓ z3 (J — \Z9 u) 7 G — \Zf 0 ) cr \jr

is a locally-isomorphic homomorphism from G onto G. And its kernel is

{{i,2kπ); k^Z}9 which is contained in the center of G and isomorphic to

the additive group of rational integers Z.

Thus G is a universal covering group of G, while G is a central group

extension of G with the kernel Z.

For the purpose of inquiring into the factor set of that extension, we

denote an element (z9 θ) = (z9 θ
r + 2kπ) of G by (σ9k) afresh, where σ = {z9θ')

is an element of G, i.e. we identify G with G x Z. By calculating the

multiplication under this parametrization as following: let σv — {zv9θv) =

((2v,#y), ku) = {σV9kv) ε G , v = 1, 2, 3, then, by using (5) for σxσ2 = σZ9

ΰ3 = 02 + arg{z2sinθ1 + cosθx) + θx — θ[

= Wi + arg(z2sinθ1 + cosθi) — 2πw{σίfσ2)} + 2π{kι + k2 + w(<ri,σ2)}

we get

h — h + k2 + w(σ!, σ2).
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Namely, it was proved that the factor set of the group extension G over G

is nothing but w(σl9σ2) of (3) itself.

1-3. We show here that the factor set ιv{σ19σ2) does not split, and more

strongly, never split even modulo any natural number n^2.

THEOREM 1. There exists no mapping v's from G into R, suck that: for

any σv e G, v = 1, 2,

(6) w(σ19 σ2) = v{σ1σ2) — v(σι) — v(σ2) (mod. ή).

We prove the theorem after the next lemma, which can be verified by

the direct calculation using (3).

LEMMA 3. For any σv e G, v = 1, 2, and any τ e H9 where H is a subgroup

of all elements of the type fa •, j a > 0,

w{σ19 σ2) = w(τσi9 σ2) = w{σ19 σ2τ)9

w{p\τ9σi) = w(σ19τσ2)9

u τ) = w{τ9 σ2) = 0.

Proof of theorem 1. Let v be a mapping satisfying the relation (6).

Because of lemma 3, for any τv e H, v = 1, 2,

rf. n).

In particular, from the following matrices' equality

(2 \(1 l/3\ (1 4/3 V2 \
V 1/2Λ 1/"V lA l/2>

we get

•(C D)-(C 4/i))-KC "?))-
On the other hand, we can prove by another method which we shall mention

about in lemma 4, 12υ (\~ Yn is congruent to 1 {mod. n). This is a con-

tradiction, for n^.2. This completes the proof.

Remark. Theorem 1 gives a way to construct an n-fold covering group

of G. Namely, we can define the group Gn as the image of the homo-

morphism:



72 TETSUYA ASAI

G 3 a = (σ, k) > {σ, k (mod. n))>

then, Gn is surely an w-fold covering group of G. Since its factor set

w(σ19σ2) (mod. n) does not split, Gn is a non-trivial covering of G. The

universal covering group G can be considered as the projective limit of these

1-4. Finally in this section, let us determine the explicit value of our

factor set of (3). It was firstly given by H. Petersson in [5], but his results

are not handy but rather complicated. These are caused by the choice of

arg(cz + d), and Petersson calculated it by choosing arg(cz + d) in (— π9π\.

On the contrary, we choose arg{cz + d) in [—π,π) as stated at the first of

this section, then the results become in a wonderfully simple form. Before

our statement, it is convenient to introduce the following notation: for any

two numbers c, d, we define a symbol c(d) to be equal to c whenever c¥=0,

and to d only when c = 0.

Now, our results are as follows:

THEOREM 2. The explicit value of w{σ19σ2) is given by the following table,

where σv= (a» bj) , v = 1, 2, 3, and σxσ2 =

Ci(rfi) c2{d2) c3{d3)

+ + ~
- - +

otherwise

w{σ19 σ2)

+ 1
- 1

0

Proof. For any σ = 0 G, the following decomposition is easily

seen:

-e
*"ΰ *«»•

and if c = 0, <τ or —o is an element of the subgroup H defined in lemma

3. Combining these decompositions with lemma 3, the calculation of an

arbitrary w(σί9σ2) is reduced to the cases of σ2 = /, —/, S and — S; where /

is the unit matrix and S is the matrix Λ ~~ 1 j . And by direct calcula-
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tions of these cases with the expression (2), all results are summarized as

above. Of course, the method by Petersson in [5] can be applicable, too.

COROLLARY. In particular, for S = ( χ ~ 1 ) , T = Q J) , / = (X

 χ )

and for any σ = (a K) e G:

w(σ,I) = w(I,σ) = 0,

w(a9 — I) = w{~I,σ) = — 1 if c(d) < 0, and 0 z/ c(d) > 0,

w{Tn,<τ) = w{σ,Tn) = 0 ,

w(<r, S) = 1 z/ c(rf) > 0, β«rf J(—c) < 0, and 0 otherwise,

w{σ, — <j) = 0,

wfo,^) = ^(^2*^) whenever σxσ2 = <r2oΊ.

This corollary will be used in the next section.

Remark 1. By theorem 2, it can be easily verified that the factor set

for the double covering group w(σί9σ2){mod. 2), or equivalently (—1)̂ (̂ 1.̂ 2)

in multiplicative expression, does exactly coincide with Kutoba's factor set

β(tfi,o 2) ΐ n Λ e real number field case ([4]).

Remark 2. Furthermore, if we define a new symbol <β, b} like Hubert

symbol, to be equal to 1 only when a < 0 and b < 0, and to 0 otherwise,

then by theorem 2,

w(<7!,<r2) = — <Ci(rfi), c2(J2) > + < - c1{dί)c2{d2), c3{d3)>.

This expression is quite similar to the construction of a{σί9σ2) by Kubota

(M).

2. The splitting formula of w(σlf σ2) on &Z(2, Z) and Dedekind

sums.

As we have observed in theorem 1, the factor set w{σ19σ2) does not split

on the whole group G. It, however, may split on a certain subgroup of

G, and especially, we are interested in the case of an arithmetic subgroup.

In particular, we shall deal with the very case of SL{29Z) (hereafter, we

denote this group by Γ) in this section. We should notice here that the

term "splitting" is used in a wider sense than usual, i.e. in the sense of

theorem 3. In fact, there does not exist ^-valued C V satisfying the relation

(9), but only rational valued C V. And such C V is very interesting in our
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discussion, for it is naturally related to the theory of Zog^-multipliers or

Dedekind sums.

2-1. We here fix the branch of log(z) for an arbitrary complex number

z(φθ) as follows: log(z) — log\z\ + iarg(z), where log\z\ is in the real branch

and —π<arg{z)<π as before. Then, log{cz + d) is a one-valued analytic

function of z on the upper-half-plane J3?% for any real pair (c, d) ψ (0,0).

In the above notation, (3) can be stated in another way, i.e.

(7) w(σί9 σ2) = - ^ - {log(c2z + d2) + log(Cl(σ2<z» + dx) - log(csz + d3)} .

Now, let us quote a little from the theory of modular forms. It is well-

known that there is a unique (up to constant multiple) cusp form Δ{z) of

dimension —12 for Γ and that is expressed as 24-th power of Dedekind ψ

function:

η{z) = eπiz/12 Π (1 - e2πinz), 2

We need only the following transformation-equality:

Δ{σ(z» = (cz + d)12Δ(z), for any σ = Q J ) e Γ.

Next, we choose the branch of logΔ{z) independently as follows:

logΔ(z) = 2πiz - 2 4 Σ Σ e

2iτimnzlm,
n = l m — 1

then logΔ(z) is also a one-valued analytic function. Therefore

(8) N(σ) = -±- {logΔ(σ<z» - logΔ(z) - 12log(cz + d)}

is a rational integer determined only by σ, and independent of z

Now, let <?v = (a

r

v bj), v = 1, 2, 3, and (r^2 = <τ3, then,
\CV Uv/

logΔ{σ3(z» = logj{z) + 12log{c3z + di) + 2πiN{σ3).

On the other hand, the right-hand-side is also equal to

Iogj(σ1<σz<z») = logΔ{σz(z» + 12 log (Cl(σz<z» + dj + 2πίΛΓ(<τ1)

= logJ(z) + 12{log(c,z + dt)
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Combining with (7), these imply the following:

Ί2w{σί9 σ2) = Λ/W2) - N{σx) - N{σ2).

In this way, we obtain the splitting theorem as follows:

THEOREM 3. The factor set w{σ19σ2) does split in the unique way on

Γ=SL{2,Z), i.e. there exists only one mapping v from Γ into R such that

(9) w(σ19 σ2) = v(σισ2) — v(σx) — v{σ2), for σί9 σ2 e Γ.

Furthermore, this v is rational-valued, in fact, 12z;(<τ) e Z.

Proof For the existence and the last assertion, it is enough that we put

1/12 of N(σ) in (8) as v(σ). Secondly, if there exist two i 's satisfying the

relation (9), their difference u satisfies the following property: u(σ1σ2) = u{σ1)Λ

u{σ2) for any σ19 σ2 e Γ. On the other hand, since S = L ) and T =

(X 1) have relations S4 = (ST)5 = I, we have 4u(S) = 6(«(S)+«(Γ)) = «(/) = 0

i.e. #(S) = u(T) = 0. It is also well-known that Γ is generated by these S

and T, and so, u(σ) = 0 for arbitrary <τ e Γ. Thus the uniqueness was

proved.

Remark 1. The factor set for the ^-fold covering group w(σί9 σ2) (mod.

n) also splits on Γ9 but not uniquely, in fact, it can be shown that there

are 12 different ways of splitting for any case of n >̂ 2.

Remark 2. In a certain sense, Γ is a maximal splitting subgroup for

w(σ19σ2). In fact, we can prove that w{σ19σ2) never splits on any subgroup

of SL{29Q) (Q: the rational number field) which contains Γ properly.

Remark 3. For the existence proof of theorem 3, we used the property

of modular forms, but essentially owing to Rademacher and others, it can

be proved only by arithmetical means as we will be mentioned later.

2-2. Let us now investigate v{σ) in theorem 3, in detail. This v{σ) is

represented by means of Dedekind sums, and we here show it by purely

arithmetical steps. Hereafter, v(σ) is always in the sense of theorem 3.

First, we need the values of v(σ) for the special elements:

LEMMA 4. v{I)=09 ι;(-J) = 1/2, ι;(S) =-1/4, v(T) = l/12, where I=Q

S = L " " 1 ) , and T = Γ1 £) as before.
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Proof. The relations; (-/) 2 = /, S2 = (ST)3 = - / are well-known. On

the other hand, the value of w{σ19 σ2) can be found by theorem 2 immediately.

Thus we have the following equalities:

- 2υ (- /) = w(-I, - / ) = - l ,

*(-/)-2ι;(S) = w(S,S) = l,

v{-I) - i (SΓ) - f((SΓ)2) = w(ST, (ST)2) = 1,

v((ST)η - 2v(ST) = ιι;(ST, ST) = 0,

v(ST) - υ(S) - υ(T) = w(S,Γ) = 0.

If we solve the above as simultaneous equations, we get the assertion of the

lemma. Moreover, if we solve them as congruence equations (mod. w), an

equality

12Z;(T)ΞΞ1 (mod. n)

can be obtained, which was used in the proof of theorem 1.

LEMMA 5. For σ = (

(10) v{-σ) = v(σ) + U2sgn(c(d))f

(11) v(Tnσ) = v(σTn) = v(σ) + n/12,

(12) v(σS) = ί v(σ) + 3/4, if c(d) > 0 and d(-c) < 0,

( v(σ) — 1/4, otherwise,

(13) z;(<τ-'
1) = J -v(σ) + l,ifc = 0andd<0,

[ —υ(σ)9 otherwise.

Proof. Because of theorem 2, its corollary and lemma 4, the lemma

can be easily shown.

LEMMA 6. For σ = (* *) e Γ, ίMcΛ that cψO, or c = 0 and d>0, the

equality

v(σ) = —v{σ) holds, where σ ̂  (̂ _ ~ " ^ .

Proo/. Rather more complicated than lemma 5. But, the assertion is

obvious for σ = T or S, and the general case can be treated by induction,

because Γ is generated by T and S, and βγσz =
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Now, for tf = (c j ) in the case of c = 0, i.e. σ = Tn or —Tn, ι;(<r) is

easily calculated by the use of (10), (11) of lemma 5:

Next, let us consider the case of c ψ 0. By (11) of lemma 5 it is verified

that

υ(σ) — a~T is dependent only on c and d(mod. c).

In consideration of (10) of lemma 5, it is natural to put as follows:

(14) t{d,c) = υM-J!±jL + JiψL.

Then, particularly putting S = L ) in σ, we have

(15) f(0,l) = 0.

In general, we have the following formulas on t{d,c):

LEMMA 7. For any c ^ 0, d such that {c, d) = 1,

(16) t{d,c) = t{d',c), if d = d'(mod.c),

(17) t(d, -c) = -t(d, c) = t(-d, c),

(18) t{d,c) = t(a,c), if adzΞ-1 {mod.c).

Proof All assertion are got from lemma 5, lemma 6, and the definition

(14).

Furthermore, t(d9c) has the "reciprocity law":

LEMMA 8. For any c>0, d>0 such that (c,d) = 1,

(19) t(d, c) + t(c, d) = - i- - _ t

. Let ^ = (^ *) be an element of Γ, and o 2 = σ^S = (_^ "

""* " " ^ . Then, w(<τ1,σ2) = 0 by theorem 2. So, v(σ1)+^(<τ2) =

υ(S) = —1/4. Combining this with (14), we get:
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Because of (18) and ad — be = 1, the proof of lemma 8 is completed.

The symbol t(d,c) is characterized by the above relations; (15)~(19).

In fact, for any c ψ 0, d such that (c,d) = 1, we can get the explicit value

of t(d,c) inductively in finite steps by (15)~(19).

On the other hand, the following lemma can be proved only by arith-

metical steps:

L E M M A 9. [Rademacher and others)

f(d,c) =—sgn{c)-s(d,\c\) satisfies all relations ( 1 5 ) ~ ( 1 9 ) . Where, s{d,\c\)

is so-called Dedekind sum, i.e.

<*ι«ι>-
and here, the symbol ((#)) denotes x — [x~\ — -~- or 0, for x is not an integer or an

integer, respectively.

Proof. Well-known. For instance, we can refer to [8],

Therefore, t{d,c) must coincide exactly with t'{d,c). Thus, we have

obtained arithmetically the following theorem on the explicit formula for v{σ)

in (9):

THEOREM 4. The value of v{σ) in theorem 3 is given by

(20) v(σ)=

l~~--sgn(c){^-+s(d,\c\)}, if

Remark. Summarizing all results in 2-1 and 2-2, it has become possible

to represent /^^-multipliers by means of Dedekind sums only by purely

arithmetical steps, although this was firstly done by function theoretical

means (Dedekind, [1]).

2-3. Finally, let us make some reconsideration about the reciprocity law

of Dedekind sums. As it was observed in the proof of lemma 8, the reci-

procity (19) is nothing but stated in other words for the formula:

(A) w{σ19 σ2) = v{S) — vfa) — v{σ2),

w h e r e σxσz = S = L ~J*
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And (A) is a special case of the splitting formula (6):

(B) w(σ19 σ2) = v{σxσ2) — v{σx) — v{σ2).

From these stand points, the very (B) should be called the generalized

reciprocity law. Furthermore, the following modified formula is more con-

venient than (B), by its symmetrical expression:

(C) v{ax) + v{σ2) + v{σz) - —[w{σ19σ2) + w{ϋlλ

9σz)}9

where σiσ&i = /.

In fact, from (C) and (14), we can get the following "generalized reci-

procity law of Dedekind sums":

T H E O R E M 5. For σv = (9? Λ such that σισ2σz = / and c1c2c3 ^=0,

(21) tidvcj + t(d2fc2) + t{di9c,)

= _ sgn(cίc2cz) , JL_ ί cλ + c2 .
4 12 1 cc cc4 12 1 c2cs czcι cxc2

Also the formula (21) was previously proved essentially by Rademacher

([6], see also Dieter, [2]). Besides he proved it by purely arithmetical method.

Therefore, we can conclude that even the existence proof of theorem 3 can

be done only by arithmetical steps, since (21) is equivalent to (C) or (B).

Remark 1. Throughout this section, we considered about the only case

of Γ = SL(2,Z). But an almost similar discussion is possible in the case of

other arthmetic subgroups. For example, for the #-group, we may get the

explicit values for /^^-multipliers by the same method, and the formula

corresponding to (C) may be interesting. On log -^-multipliers, Rademacher

observed it by different ways, too ([7]).

Remark 2. As Kubota already remarked shortly in [3], if we study on

the case of the double covering in the place of the universal covering, we

may reach to the "generalized reciprocity law of quadratic residue symbols"

as (21). And the classical reciprocity is corresponding to such as (A). For

instance, the generalized reciprocity contains the formula as follows:

For σv = (a

n

v A such that axa2σz = I and c19 c29 c3 are all positive odd numbers,
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where the symbol in the left-hand-side is Jacobi symbol.

What appears in the splitting formula for the case of n-fold covering

(wl>3) may be more interesting.
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