NOTE ON THE BEHAVIOR OF SOLUTIONS OF PARABOLIC EQUATIONS WITH UNBOUNDED COEFFICIENTS*

LU-SAN CHEN

To Professor Katuzi Ono on the occasion of his 60th birthday

1. Let

$$L = \sum_{i,j=1}^{n} a_{ij} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}} + c - \frac{\partial}{\partial t}$$

be a parabolic differential operator defined in $\Omega = \mathbb{R}^n \times (0, \infty)$, where \mathbb{R}^n is the *n*-dimensional Euclidean space, the point $x \in \mathbb{R}^n$ is represented by its coordinates (x_1, \dots, x_n) and $a_{ij}(=a_{ji})$, b_i and c are functions in $(x, t) \in \Omega$. We assume that there exist constants $k_1(>0)$, K_1 , $K_2(>0)$, $K_3(>0)$ and K_4 such that

(1)
$$\begin{cases} k_1(|x|^2+1)^{1-\lambda}|\xi|^2 \leqslant \sum\limits_{i,j=1}^n a_{ij}\xi_i\xi_j \leqslant K_1(|x|^2+1)^{1-\lambda}|\xi|^2, \\ |b_i| \leqslant K_2(|x|^2+1)^{1/2}, & (1 \leqslant i \leqslant n), \\ c \leqslant -K_3(|x|^2+1)^{\lambda}+K_4 \end{cases}$$

for some $\lambda \in (0, 1]$.

Consider the Cauchy problem

(2)
$$\begin{cases} Lu = 0 & \text{in } \Omega, \\ u(x,0) = f(x). \end{cases}$$

2. Throughout this note, we shall say that u(x,t) is a solution of the problem (2) when u(x,t) is continuous in $\overline{\Omega} = \mathbb{R}^n \times [0,\infty)$, twice continuously differentiable in Ω and satisfies (2).

Received October 21, 1968

^{*)} This research was supported by the National Science council in Taiwan.

In this note we shall prove the following which is a general form of Krzyżański's theorem [2].

THEOREM. Let u(x,t) be a solution of the Cauchy problem (2) and $|u(x,t)| \le K_5 e^{\mu(|x|^2+1)\lambda}$ for some constants K_5 and μ . Assume that the coefficients of L satisfy (1). If the Cauchy data f(x) is bounded in R^n and if

(3)
$$\frac{1}{2K_1} \left[2K_1(1-\lambda) - k_1 n \right] \left(\sqrt{K_2^2 n^2 + 4K_1 K_3} - K_2 n \right) + K_4 < 0,$$

then u(x,t) tends to zero uniformly in $x \in \mathbb{R}^n$ as t tends to infinity.

In the case of the differential operator

$$L_0 = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} + (-K_3|x|^2 + K_3') - \frac{\partial}{\partial t},$$

we may take $k_1 = K_1 = 1$, $K_2 = 0$, $K_4 = K_3' - K_3$ and $\lambda = 1$ in Theorem. So the solution u(x, t) of the Cauchy problem

$$\begin{cases}
L_0 u = 0 & \text{in } \Omega, \\
u(x,0) = f(x)
\end{cases}$$

for a bounded Cauchy data f(x) tends to zero uniformly in $x \in \mathbb{R}^n$ as t tends to infinity, if

$$\sqrt{K_3}n > K_3' - K_3$$

3. To prove our theorem, we use the following.

Lemma. Let α be a positive root of the quadratic equation $AX^2 + BX + C = 0$, where $B \ge 0$ and C < 0. Then the function

$$\varphi(t) = \alpha \tanh A \alpha t$$

satisfies the inequality

$$\varphi'(t) + A\varphi^2(t) + B\varphi(t) + C \leq 0$$

The proof is given by the direct calculation, so we may omit it here. Now we shall give the proof of Theorem.

Let $\varphi(t)$ and $\psi(t)$ be functions twice continuously differentiable in $[0, \infty)$. Putting

(4)
$$H(x,t) = \exp[-\varphi(t)(|x|^2 + 1)^{\lambda} + \psi(t)],$$

we see from (1) that

$$\begin{split} \frac{LH}{H} &= 4\lambda^2 \varphi^2(t) \left(\|x\|^2 + 1 \right)^{2\lambda - 2} \sum_{i, j = 1}^n a_{ij} x_i x_j + 4\lambda (1 - \lambda) \varphi(t) \left(\|x\|^2 + 1 \right)^{\lambda - 2} \sum_{i, j = 1}^n a_{ij} x_i x_j \\ &- 2\lambda \varphi(t) \left(\|x\|^2 + 1 \right)^{\lambda - 1} \sum_{i = 1}^n \left(a_{ii} + b_i x_i \right) + c + \varphi'(t) \left(\|x\|^2 + 1 \right)^{\lambda} - \psi'(t) \\ &\leqslant (\|x\|^2 + 1)^{\lambda} [\varphi'(t) + 4K_1 \lambda^2 \varphi^2(t) + 2K_2 n \lambda \varphi(t) - K_3] \\ &+ [4\lambda (1 - \lambda) K_1 \varphi(t) - 2\lambda k_1 n \varphi(t) + K_4 - \psi'(t)]. \end{split}$$

So, if

(5)
$$\varphi(t) = \alpha \tanh 4K_1 \lambda^2 \alpha t$$

for the positive root

$$\alpha = \frac{-K_2 n + \sqrt{K_2^2 n^2 + 4K_1 K_3}}{4K_1 \lambda}$$

of the quadratic equation $4K_1\lambda^2X^2 + 2K_2n\lambda X - K_3 = 0$, then we see from Lemma that

$$\varphi'(t) + 4K_1\lambda^2\varphi^2(t) + 2K_2n\lambda\varphi(t) - K_3 \leq 0.$$

Further, it is easy to see that

(6)
$$\psi(t) = \frac{2K_1(1-\lambda) - k_1n}{2K_1\lambda} \log[\cosh 4K_1\lambda^2\alpha t] + K_4t$$

satisfies

$$4\lambda(1-\lambda)K_1\varphi(t)-2\lambda k_1n\varphi(t)+K_4-\psi'(t)=0$$

for $\varphi(t)$ given by (5). Thus H(x,t) given by (4) for $\varphi(t)$ in (5) and $\psi(t)$ in (6) satisfies

$$LH \leq 0$$

in Ω . It is evident that H(x,0)=1.

As the Cauchy data f(x) in (2) is bounded, we may assume |f(x)| < M in R^n . If we put

$$w_{+}(x,t) = MH(x,t) + u(x,t),$$

then $Lw_+ = MLH + Lu = MLH \le 0$ in Ω and $w_+(x,0) = M + f(x) \ge 0$. Moreover, we have clearly $|w_+(x,t)| \le K'_4 e^{\mu(|x|^2+1)\lambda}$ in Ω for some constants K'_4

and μ' . The maximum principle due to Bodanko [1] implies that $w_+(x,t) \ge 0$ in Ω , that is,

$$-MH(x,t) \leqslant u(x,t)$$

in Ω . We apply the same argument to $w_{-}(x,t) = MH(x,t) - u(x,t)$ as the above, we get

$$MH(x,t) \geqslant u(x,t)$$
.

Thus we obtain

$$|u(x,t)| \leq MH(x,t)$$

$$\leq M \exp\{[4K_1\lambda(1-\lambda)\alpha - 2\lambda k_1na + K_4]t\}$$

for α in (5) throughout Ω . From the assumption (3), it is obvious that u(x,t) tends to zero uniformly in $x \in \mathbb{R}^n$ as t tends to infinity.

Remark. Krzyżański [2] considered the case $\lambda = 1$ in our Theorem and gave an analogous result.

REFERENCES

- [1] W. Bodanko, Sur le problème de Cauchy et les problèmes de Fourier pour les equations paraboliques dans un domaine non borné, Ann. Polo. Math., 18 (1966), 79–94.
- [2] M. Krzyżański, Evaluations des solutions de l'equation lineaire de type paraboliques à coefficients non borné, Ann. Polo. Math., 11 (1961-62), 253-260.

Department of Mathematics
Taiwan Provincial Cheng-Kung University, China, and
Mathematical Institute
Tohoku University, Sendai, Japan