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1. Throughout this paper all functions are single-valued. Let R be a
Riemann surface. We shall denote by ¢~ the least harmonic majorant of a func-
tion ¢ defined in R if it has the meaning. We define the families H,(R) (for
p >0) and S(R)(= D(R) in [17]) of analytic functions in R by the following:

S is in H,(R) if and only if the subharmonic function |f|? has a
harmonic majorant in R;
f is in S(R) if and only if the subharmonic function log*(|f|/p)
has a harmonic majorant in R for some positive constant
(and consequently for all x>0) and (log*(lfl/u))~(z,) = as
g+ oo, where z, is a fixed point in R ([17]).
We shall call H, = H,(R) (resp. S = S(R)) the Hardy class (resp. the Smirnov
class) in R .

A harmonic function # in R is said to be quasi-bounded ([13]) if it can
be represented as: u = u, —u,, where u,;(j =1,2) is the limiting function
of a monotone non-decreasing sequence of non-negative and bounded har-
monic functions in R.

A closed polar set E in a Riemann surface R is a closed set in R such
that for every open parameter disc V in R, there exists a superharmonic
function sy >0 defined in V with the property that s, =4 at every
point in V N E, or equivalently, V N E is a set of capacity zero in V ([1],
[2). It is known that R — E is connected.

Tumarkin and Havinson [17] (resp. Parreau [13]) investigated the null
set £ in a plane domain (resp. in a Riemann surface) R for the class S
(resp. H,) under the condition that £ is a compact set of logarithmic capa-
city zero (resp. a closed, not necessarily compact, polar set) and proved: if
an analytic function f defined in R — E belongs to the class S(R—E)
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(resp. H,(R— E)), then there exists an analytic function f defined in R
belonging to the class S(R) (resp. H,(R)) such that the restriction of 7 to
R — E coincides with f.

In this paper we shall show, using the notion of quasi-bounded harmonic
functions, that in these theorems the well-known fact that the closed polar set

E is removable for bounded and harmonic functions ([1], [2]) is essential.

As for S—part we shall prove the following:

THEOREM 1. Any analytic function f in a Riemann surface R belongs to the
Smirnov class S(R) if and only if the subharmonic function log*|f| has a quasi-
bounded harmonic majorant in R.

Using a version of Garding and Hoérmander’s theorem [7] as a lemma,
we shall prove:

THEOREM 2. Any analytic function f in a Riemann surface R belongs to the
Hardy class H,(R) (for p >0) if and only if the subharmonic function |f|* has a
quasi-bounded harmonic majorant in R .

Seeing the above characterizations for the two classes, we are tempted to
say the following:

THEOREM 3. Let U(r) be a continuous extended real-valued function defined for
r =0 satisfying the condition that for any finite positive real number c, the set of r
such that the inequality ¥(r) < c holds is bounded (from above). Let R be a Rie-
mann sutface, E be a closed polar set lying in R and f be an anaylytic function
defined in R — E such that the composite function ¥(| f]) has a quasi-bounded harmonic
majorant in R —E .

Then there exists an analytic function f defined in R such that the composite
Sfunction W(|f|) has a quasi-bounded harmonic majorant in R and the restriction of f
to R — E coincides with the function f.

As corollaries we have an extension of Tumarkin-Havinson’s theorem and

a new proof of Parreau’s.

At the end, we shall give an example for the classification theory of open
Riemann surfaces, which admits a non-constant analytic Lindeléfian function
[9] and no non-constant analytic function in the Smirnov class.

2. Let R be a Riemann surface, HP'(R) be the family of all the har-
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monic functions # in R such that the subharmonic function |«#| has a
harmonic majorant in R. It is well-known (see for example, [3]) that
HP’(R) forms a vector lattice under the lattice operations:

u V v = (the least harmonic majorant of max (u,v));
uAhv=—(—u)Vy(—0v)
for u,v in HP'(R). For u in HP'(R) we define Mu as follows:

Mu=uVO0—uAO.

We know that Mu =u V (—u) and M(Mu) = Mu. A function = in HP/(R)
is, by definition, quasi-bounded if

My = lim (Mu) A n,

n— + oo

or equivalently ,

lim (Mu—n)V0=0,

7n—> 4 oo

where n are positive numbers which can be considered as elements in HP/(R)
and the limit is taken in the sense of the lattice operation, namely, (Mu) A =
(resp. (Mu —n)V 0) tends to Mu (resp. 0) non-decreasingly (resp. non-
increasingly) in R. A function # in HP/(R) is called singular if

lim (Mu) An=0.

n— 4 o

It is shown by Parreau [13] that any # in HP/(R) can be decomposed
uniquely as:

u=up+ug,

where #p is quasi-bounded and ug is singular. The operator u —uy (resp.
u —>ug) from HP'(R) into itself is linear, positive, i.e., # =0 implies u;=0
(resp. #s=0) and idempotent, i.e., (uz)s = up (resp. (us)s = us). Of course,
u is quasi-bounded (resp. singular) if and only if us=0 (resp. uz =0).

In the remainder of this paper we shall assume that the Riemann surface
R is hyperbolic since the situation is obvious in the parabolic case.

A subharmonic function » in R having a harmonic majorant in R can
be decomposed uniquely as:

v=0v"—0p,
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where v+ is the least harmonic majorant of » and p =0 is a Green’s potential
in R (F. Riesz’s decomposition).

We shall say that a subharmonic function v in R is quasi-bounded if v+
in the above decomposition is in HP/(R) and quasi-bounded. A subharmonic
function v having a quasi-bounded harmonic majorant # and a quasi-
bounded harmonic minorant w simultaneously is quasi-bounded for
0=ws<(")s<us=0. Especially, a non-negative subharmonic function is
quasi-bounded if and only if it has a quasi-bounded harmonic majorant.

Let {R,},> 1 be a normal exhaustion of R in Pfluger’s sense, R, =1,
be the boundary of R, (consisting of a finite number of piecewise analytic
closed Jordan curves), z, be a fixed point in R, and w,,, be the harmonic
measure of I', with respect to the domain R, measured at the point z, (for
n=12...). Then obviously we have:

v*(2,) = lim

. Srn 0(2)dwn (7).

An extended real-valued function f(z) defined for points z in R is said
to be uniformly absolutely integrable with respect to the system {(I's, @n,z0)}nt
(we shall say simply “U.A.L for 2z, and {R,}”) if the followings are satisfied:

(a) sup | 1/(2)1do,,.e) < o,

and

(b) for any e >0, there exists a § >0 such that
[, f@don. )] <

uniformly for n =1,2, ..., if only A, c I', and o, ,(4,)<3d.

According to de la Vallée Poussin [18] and Doob [4], [6], a function
f(z) in R is U.A.L for 2z, and {R,} if and only if there exists a non-negative
monotone non-decreasing convex function @(r) defined for =0 satisfying
the conditions:

(1) limr_>+ooq)(r)/r= + oo

and

(i) sup | 0(17(2))dwn o (z) < .
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We shall call this de la Vallée Poussin-Doob’s lemma.
In particular, if a subharmonic function »(2)=0 in R is U.A.L for ¢,
and {R,}, then the condition (ii) above can be read as:

(it The subharmonic function @(v) has a harmonic majorant in R.

We state some lemmas which will be used later.

Lemma 1. Let v be a quasi-bounded subharmonic function in a Riemann
surface R. Then v is U.AL for arbitrary point z, in R and arbitrary exhaustion
{R.}, 2, in R,. Conversely assume that a subharmonic function v in R is U.A.L
Jor at least one point z, and at least one exhaustion {R,}, 2z, in R,. Then v is

a quasi-bounded subharmonic function in R.

Proof. We know that any harmonic function belongs to HP'(R) and is
quasi-bounded if and only if it is U.A.L. for one point z, and for one ex-
haustion {R,}, 2, in R, (and consequently for all) (see [4]). It is easy to
check that Green’s potential p =0 is always U.A.L for 2, and {R,} since

Sr P(2)dwy, () >0 as n—>+ oo,

n

Using the above two facts, we have immediately the assertions.

Lemma 2. A subharmonic function v is quasi-bounded if and only if there
exists a non-negative monolone non-decreasing convex jfunciion @(r) defined for r=0
satisfying the conditions (i) and (ii).

Proof. This is a consequence of de la Vallée Poussin-Doob’s lemma and

Lemma 1.

3. Here we remark the relations between some families of analytic
functions defined in a Riemann surface R. We define the families AB(R)
and AL(R) of analytic functions in R by the following:

S is in AB(R) if and only if |f]| is bounded in R;

f is in AL(R) if and only if the subharmonic function log*|f|
has a harmonic majorant in R.

Then the following inclusion relations:
AB(R) ¢ H,(R) c S(R) c AL(R) (for p» >0)

are proved by the inequalities:
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log*(1 f1 | ) < | f17 [ (pep")

and

log*| f1 <log* (1 f| | p) + log*p.

Remark. The functions f in the class AL(R) are Lindelofian analytic
functions in the sense of Heins [9] and in the special case where R is the
unit open disc, are analytic functions of bounded type in Nevanlinna’s sense
[12].  'The Smirnov class S(R) was first investigated by V.I. Smirnov [16].

Now we give
Proof of Theorem 1. Let p=1. Then we obtain

log*(|f|/ #) = max (log*| f| — log ¢, 0).
Consequently we have
(log*(1f1 | p))* = (max (log*| f| — log z, 0))*
= (max ((log*| f])* — log g, 0))*
= ((log*| f1)» =n) VO,

where #n =log # and ¢+ is the least harmonic majorant of ¢ (see §1). Hence
the condition that

(log*(1f1/ #)* (29) >0 as p—+ o

is equivalent to the condition that

limn (log*1f1)~—n)V0=0

- 4 oo

by Harnack’s theorem, or (log*|f|{)~, the least harmonic majorant of log*|f]|,
is quasi-bounded. Q.E.D.

Remark. It is easy to show that log*|f| has a quasi-bounded harmo-
nic majorant in R if and only if log|f| has a quasi-bounded harmonic
majorant in R.

By Lemma 1 with v = log*|f| and by Theorem 1 we have

COROLLARY 1. (An extended form of Theorem 1 in [17]) Any analytic function
f is in the Smirnov class S(R) if and only if the subharmonic function log*|f| is
U.A.L for arbitrary fixed point z, in R and arbitrary exhaustion {R,}, z, in R,.
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COROLLARY 2. (An extended form of Theorem 2 in [17]) Any analytic function
[ is in the Smirnov class S(R) if and only if the subharmonic function log*| f| has
a harmonic majorant which is U.A.L. for arbitrary fixed point z, in R and arbitrary

exhaustion {R,}, 2z, in R,.

The following corollary shows that Gehring’s class N* in [8] is a special

case of the Smirnov class S(R) where R is the unit open disc.

CoROLLARY 3. Any analytic function f is in the class S(R) if and only if
there exists a non-negative monotone non-decreasing convex function O(r) satisfying the
condition (1) in §2 and the subharmonic function ®(log*|f|) has a harmonic majorant
n R.

Proof. This is a consequence of Theorem 1, Lemma 2 and (i)’ in §2.

4. In this section we shall study the Hardy class H,(R).

Let 4 be Martin’s boundary of a hyperbolic Riemann surface R and
4, be the totality of minimal points on 4. Let K(z,{) be Martin’s kernel
with respect to the fixed reference point z, in R, namely, K(z,{)=1 for
any point { in RU 4. Then it is known that to any function # in the

family HP'(R), there corresponds a unique signed Baire measure dp on 4,

of total mass finite such that
u@) = | K@ 0du(@).

Let do be the measure on 4, corresponding to the constant function 1,
that is,

1= S K(z, D)dw(C)
4,

for any point z in R. Any function # in HP/(R) has the fine limit u#*({)»
at do-almost every point { in 4, and the quasi-bounded part u#s of u is

given by
us(e) = || Klz, OuQ)dol0).

On the contrary, the singular part us of # in HP/(R) is represented as

D In this section we shall denote by «* the fine limit of any function « if it has the
meaning.
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us(e) = || K, 0dn(0),

where dpg is a singular measure on 4, with respect to deo and ug has the
fine limit zero at dw-almost every point in 4,. In conclusion:

du(f) = u*(Q)dw(Q) + dp(l),
u* is integrable with respect to dw.

Let v be a subharmonic function in R and have a harmonic function
in HP'(R) as a majorant. Then F. Riesz’s decomposition of v becomes:

v=0v"—0p,

where, in this case, v~ is in HP'(R). Green’s potential p has the fine limit
p

zero at de-almost every point in 4,.  Consequently we may write in this
case
v¥ = (v*)* = ((v")p)*.
As to the notion of the fine limit at Martin’s compactification, see Naim

[11] and Doob [5].

Now we are ready to state a generalization of Garding and Hérmander’s
theorem ([7]).%

LemmA 3. Let v be a subharmonic function defined in R. Let ¢(r) be a
non-negative monotone non-decreasing convex function defined for — oo <r<<+ oo
satisfying the condition

() Hm _ glr)/r=+eo

and assume that

(B) the subharmonic function ¢(v) has a harmonic majorant in R, where we
set @p(— o0) = limr%_;p(r).

Then

(C) the least harmonic majorant v~ of v exists and is in HP'(R),

(D) the singular measure dps on 4, corresponding to the singular part (v*)s

of v~ s non-positive,

2) E.D. Solomentsev proved partly the same results as Garding and Hérmander’s in his
paper: Izv. Akad. Nauk SSSR (1938), pp. 571-582.
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(E) the least harmonic majorant (¢(v))~ of the subharmonic function ¢(v) exists
and is quasi-bounded,

and
(F) (W)~ (=) = SA; K(z, Q)o@*(())do(() .

Proof. There exists a finite number ¢ >0 such that ¢(r) is strictly
increasing for » >¢ —1. Set v. = max(v,c). Then v, and consequently ¢(v,)
are subharmonic. Let I',,. be the set of points z on I, = 43R, such that
v(z)=c holds ( =1,2,...). Then we have

o) = 002w, 2)

n

={  00M0n + 60 T = )
rn

v e

I\

- e()da,,., + ¢(c)

=< h(z,) + ¢(c)

for arbitrary point 2z, in R, where % is a harmonic majorant of ¢(v) in R.
Hence ¢(v,)< %+ ¢(c) in R and we have v, < ¢~'(k + ¢(c)), the right hand
side being superharmonic, so that (v,)* << ¢~ '(h + ¢(c)), or ¢((w.)*)<<h + ¢(c).
The assertion (C) is immediate since v << v, << (v.)" .

Let @(r) be the restriction of ¢(r) to =0 and set u = (v)~. Then
from above

D(u) = ¢((ve)*) = h + ¢(c).

By de la Vallée Poussin-Doob’s lemma, # is U.A.IL for z, and {R,} so that
u is a non-negative quasi-bounded harmonic function in R. This shows
the assertion (D) for v~ <u implies (v*)s<<us=0.

Set u, = u A n for positive integer n =c so that u, /"« by the definition.
Then we have

(*) limn_>+oo(¢(u"))A = (p(u)" .
In fact, on the one hand, (¢(#,))* <(¢(u))» and on the other hand,

lim . (p(#,))* = ¢(u), this can be shown as follows. From ¢(u.,)< (¢(u,))*
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we have u, << ¢ ' ((¢(n,))*) for u,=c. Consequently #, < ¢~'(lim

7 —> 40
(¢(u#,))") and so uéw“(limnﬁm(w(un)y) or ¢(u)£1imnﬁ+m(¢(un))*.
Now (*¥) means that (¢(z))~ is quasi-bounded. Therefore 0= ((¢(®)*)s
< ((¢(u))*)s = 0 which proves our assertion (E).
The last assertion (F) follows from (E) and the continuity of the func-
tion (7).

Using Lemma 3, we can prove our Theorem 2 which is an extension of
F. and M. Riesz’s theorem ([14], R is the unit open disc and p =1).

Proof of Theorem 2. “‘if’-part is obvious. Let f be in the Hardy
class H,(R) and set v= p(loglfl), e()=e". Apply Lemma 3 to » and
¢(r). Obviously the conditions (A) and (B) are satisfied because ¢(v) = |f]?.
The conclusion (E) proves our Theorem 2.

5. Let E be a closed polar set in a Riemann surface R. It is known
that for any bounded and harmonic function # defined in R— E there
exists a bounded and harmonic function # defined in R such that the rest-
riction of # to R — E coincides with # ([1], [2]). For clarity, we shall show
the following

Lemma 4. Let E be a closed polar set in a Riemann surface R and assume
that u is a quast-bounded harmonic function defined in R — E. Then there exists a
quasi~bounded harmonic function @ defined in R such that the restriction of @ fo
R — E coincides with u .

Proof. We can consider only the case # =0 (Jordan decomposition in
the lattice HP/(R)). By the definition, # is the limiting function of a
monotone non-decreasing sequence of bounded and harmonic functions and
vice versa and hence our assertion is immediate.

Proof of Theorem 3. Let u be a quasi-bounded harmonic majorant
of #(|f]) in R—E. By Lemma 4, # can be continued to R so that the
resulting function # is quasi-bounded harmonic in R. Consequently # is
bounded in any relatively compact open set G in R and hence f is bounded
and analytic in G — E because of the property of the function #(r). Hence
f can be continued analytically to R and we have the assertions.



ON SOME FAMILIES OF ANALYTIC FUNCTIONS ON RIEMANN SURFACES 67

RemarRk. We can take as ¥(r), for example, »? (for p >0), logr,
log 7, log(log*r), (log*log*r)? (for » >0), ..., etc.

CoroLLARY 1. (An extension of Tumarkin-Havinson’s theorem [17]) Let E be
a closed polar set lying in a Riemann surface R. If a function f is in the Smirnov
class S(R — E), then there exists an analytic function f in the Smirnov class S(R)
such that the restriction of f to R — E coincides with f .

Proof. This is a consequence of Theorem 1 and Theorem 3 with
(r) = log*r.

CoroLLARY 2. (Parreau [13), Theorem 20) Let E be a closed polar set lying
in a Riemann surface R. If a function f is in the class H(R — E) for p>0,

then there exists f in the class H,(R) such that the restriction of f to R — E coincides
with f.

Proof. This is a consequence of Theorem 2 and Theorem 3 with
Ur)=r?.

REeEMaRrk. Parreau’s theorem can be proved, using Corollary 1 above,
if we assume the fact that the polar set E is removable for non-negative
superharmonic functions ([1], [2]).

W. Rudin ([15], at p.49) pointed out that the analogous assertion for the
class AL s false.

6. As usual we shall denote by O the totality of open Riemann sur-
faces R (including parabolic types) on which the given family X(R) of functions
consists only of constants. Then we have

041 C 05 C Om, C Oyup (for p >0).

Parreau ([13], p.192) proved that the inclusion relation O,, < On, (for p >0)
is proper, using P.J. Myrberg’s example in [10]. Using the fact that one point
is removable for the Smirnov class S and the inequality: log* |a —g|2<
2(log* || + log* |8] + log 2), for complex numbers « and g, we can prove
that the inclusion relation O, € Oy is proper by the same method as in [10].
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