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HASSE PRINCIPLES AND THE u-INVARIANT

OVER FORMALLY REAL FIELDS

ROGER WARE

0. Introduction

In this paper we investigate the connection between the ̂ -invariant,
u(F), of a formally real field F as defined by Elman and Lam [2] and
certain Hasse Principles studied by Elman, Lam and Prestel in [3].

In section 2 the notion of an effective diagonalization of a quadratic
form is introduced and in section 3 it is shown that if F is a field hav-
ing at most a finite number of orderings such that every form over F
has an effective diagonalization (which happens, for example, if F is any
field having at most one ordering) then the finiteness of the ̂ -invariant
is equivalent to the Hasse Principle Hn holding for all n larger than
some fixed integer m.

In section 4 we present two generalizations of a theorem of Kneser
which states that if F is a non-formally real field then u(F) < q, where
q denotes the number of distinct square classes of F. If F is a for-
mally real field such that every form over F can be effectively diago-
nalized then it is shown that u(F) < t where t is the number of distinct
square classes of totally positive elements of F and Hn is satisfied for

all n > -q.
Li

I would like to express my thanks to T. Y. Lam who pointed out
the improved bounds in the proof of Theorem 3.1 and the statement of
Theorem 4.4.

1. Notations and terminology

The terminology and notations will primarily follow [2,3,6]. All
fields F will have characteristic different from two, F denotes the multi-
plicative group of F,F2 the subgroup of non-zero squares, and ΣF2 the
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subgroup consisting of all sums of squares (= totally positive elements).
Isometries of quadratic forms over F will be written as ^ , φ _L ψ and
φ ® ψ will denote, respectively, the orthogonal sum and tensor product
of two forms φ and ψ, and for any natural number m the form φ J_φ
_1_ JL φ (m times) will be denoted by mφ. We will write φ = (alf a2,
• > any to mean φ has an orthogonal basis e19 e2, 9en with φ{e^) —
di e F. The Witt ring of non-singular quadratic forms over F will be
denoted by W(F) and its torsion subgroup by Wt(F). The u-invariant
of F is defined to be u{F) — max {dim φ) where φ ranges over all aniso-
tropic forms in Wt(F) [2].

If F is a formally real field then any ordering < on F induces a
ring homomorphism <7<: W(F) -> Z via σ^φ) = 2 σ<(α<), where φ = (al9

• ,αn> and σ^a^ = 1 if 0 < a^σ^ai) — — 1 if a€ < 0. If ^ is a form
over F, σ<(̂ ) is called the signature of φ relative to the ordering <.
From [7, Satz 22] it follows that Wt(F) consists precisely of those forms
which have signature zero relative to all orderings on F. A form φ is
called totally indefinite (or locally isotropic) over F if |σ<(^)|<dim^ for
all orderings < on F. Thus a form φ is totally indefinite if and only
if φ is isotropic over all real closures Fκ of F as < runs through the
orderings of F. The formally real field F satisfies the Hasse Principle
Hn (for some n > 2) if every totally indefinite form of dimension n over
F is isotropic [3].

We denote by X = X(F) the topological space of orderings on F
[1,5]. The space X is compact, Hausdorff, and totally disconnected with
a subbase of the topology given by the sets W(ά) = {< in X | α < 0 } ,
a e F. We say F (or X) satisfies the Strong Approximation Property
(SAP) if given any two disjoint closed subsets U, V of X there exists
an element a in F which is positive at the orderings in U and negative
at the orderings in V.

2. Effective diagonalization of quadratic forms

A form φ = (al9 a29 , an} over a formally real field F is said to be
effectively diagonalized if W(at) c W(ai+1),i = 1,2, ,n — 1. The field
F is said to satisfy ED if every form over F can be effectively diago-
nalized.

LEMMA 2.1. Suppose F is a formally real field and φ is a form which
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can be effectively diagonalized. Then

( i ) If φ is totally indefinite then we can write φ = β J_ φr where

β = (a, b} is a binary form with a totally positive and b totally nega-

tive,

(ii) // φ is totally indefinite then there exists an integer m>l

such that mφ is isotropic (i.e. φ is weakly isotropic in the sense of [3,8]),

(iii) If φ e Wt(F) then φ = βλ J_ . J_ βn where βt = (at9 bt} e Wt(F)

with at totally positive and bt totally negative. In particular, φ is

strongly balanced in the sense of [7].

(iv) If φe Wt(F) with dim φ = 2n then φ = φλ J_ φ2 with d i m ^ = n,

i = 1,2, and where φx has signature n and φ2 has signature —n relative

to all orderings on F.

Proof. ( i ) Write φ = (ax,a2, >,aky with W(at) c W(ai+1) for all

i. Since φ is totally indefinite W(a^ must be empty and W(ak) = X.

Thus aλ is totally positive and ak is totally negative so we can take

β=(a19ak}.

(ii) Write φ = β_Lφ' with β = (a, b} e Wt(F). Choose m > 1 so that

mβ = 0 in W(F). Then mφ is isotropic.

(iii) Write φ = (a19 a2, , aky with Wia^ c W(aί+1) for all i. Since

F is formally real and φ e Wt(F) it follows that k = 2n is even, α lf ,

an are totally positive and an+ί, ••-,«* are totally negative. Hence we

can take bt = an+i for i = 1,2, , n.

(iv) follows immediately from (iii).

COROLLARY 2.2. If F is a formally real field satisfying ED then F

satisfies SAP.

Proof. This is a consequence of Lemma 2.1 (ii), [3, Th. C], and [8,

Satz 3.1] (see also [9, Th. 3.1]).

EXAMPLES, ( i) If F has a unique ordering then F satisfies ED.

(ii) Let F = Q((t)) be the field of formal power series over Q. As

observed by Elman, Lam, and Prestel [3], the form (t, —2ΐ)e Wt(F) does

not represent a totally negative element and consequently cannot be ef-

fectively diagonalized. Thus F does not satisfy ED. Since F has only

two orderings, F does satisfy SAP. Thus SAP does not imply ED.

However, we do have the following

PROPOSITION 2.3. A formally real field F satisfies SAP if and only
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if for any form φ over F there exists an effectively diagonalized form
ψ = (bu b2, , bny, n = dim φ, such that ^ - ψ e Wt(F).

Proof. (=φ) As in [9, Th. 3.1] we let Yk = {< in X|σ<($ = - t i + 2fc},
& = 0,1, , n. Then the family {Yk \ k = 0,1, , n} is a partition of
X and each Yk is an open and closed subset of X. Since F satisfies
SAP, there exist elements b19 b2, , bn+ι in F such that W(&*) = Yo U Γx

U U Γ,_!, ί = 1,2, , n + 1. Then W(bz) c T7(&<+1) for all ί and one
readily checks that σ<«61, 62> > &n» = <r<(φ) for all orderings < in X.
Hence φ — ζbί9 b2, , bny lies in T7t(F)
(4=) By [3, Th. C] and [8, Satz 3.1] it is enough to show that if φ is
totally indefinite then there exists m > 1 such that mφ is isotropic. Let
ψ = ̂ ftj, &2, , δ^^, w = dim 3̂, be an effectively diagonalized form with
φ — ψ e Wt(F) Then there exists an integer r > 1 such that r^ ̂  r-ψ .
Since ^ is totally indefinite, this implies ψ is also totally indefinite so
by Lemma 2.1 (ii) there exists an integer s > l such that sψ is isotropic.
Hence if m = rs then mφ is isotropic.

THEOREM 2.4. For a formally real field F the following statements
are equivalent:

(i) F satisfies ED.
(ii) // φ is a form over F which represents 1 over all real closures

of F then φ represents a totally positive element of F.

Proof, (i) ̂  (ii). Write φ = <ax, α2, , an> with W(at) C W(aί+1).
Since φ represents 1 over all real closures it follows that W(a^) — φ, i.e.
aι is totally positive.
(ii) => (i). We first show that any totally indefinite form over F is weakly
isotropic and hence, in view of [3,8], F satisfies SAP. If φ is totally
indefinite then φ represents 1 over all real closures and hence we can
write φ = (a) J_ φx where a is totally positive element of F. But then φx

represents —1 over all real closures so φx represent a totally negative
element b in F. Since <α, b} e Wt(F) it follows that φ = <α, 6> J_ ψ is
weakly isotropic.

Now let ψ be any form over F. Since F satisfies SAP there exists
b in F such that W(b) = {< eX|σ<(ψ) = -dimψ}. If W(b) is empty
then ψ represents 1 over all real closures and hence represents a totally
positive element. In this case the proof is finished by induction on dimψ.
Hence we can assume that W(b) is non empty. Now W(b) c W(c) for
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all elements cΦO represented by ψ and ^_L< —&> represents 1 over all

real closures. Thus ψ _[_ < — &> represents a totally positive element d.

Since — b is not totally positive we can write d = a — bx2 where a Φ 0

is represented by ψ. Then W(a) c W(b) so that W(a) c Ψ(c) for all c

in i*7 represented by -ψ . Thus induction on dimψ completes the proof.

COROLLARY 2.5. If F is a formally real field satisfying some Hasse

Principle Hn with n > 4 then F satisfies ED.

Proof, Let φ be a form over F which represents 1 over all real

closure of F. Then φj_n( —1> is totally indefinite whence isotropic.

Thus there exists x19 , xn in F such that φ represents the totally posi-

tive element x\ + + x\ e F.

COROLLARY 2.6 (cf. [1, Th. 5.3]). For a formally real Pythagorean

field F the following statements are equivalent:

( i ) F satisfies SAP.

(ii) F satisfies ED.

(iii) F satisfies Hn for all n > 2.

Proof. The equivalence of (i) and (ii) is a consequence of Proposi-

tion 2.3 and the equivalence of (ii) and (iii) follows from Lemma 2.1 (i)

and Corollary 2.5.

3. Hasse principles and the ^-invariant

Any non-formally real field vacuously satisfies ED since X = X(F)

is empty but need not satisfy Hn for any n. In fact, for F non-for-

mally real, F satisfies Hn for some n > 2 if and only if u = u(F) is finite.

For formally real fields we have

THEOREM 3.1. Let F be a formally real field having at most a finite

number of orderings. Then the following statements are equivalent:

(i) F satisfies Hn for some n > 4.

(ii) F satisfies ED and u{F) < oo.

Before proving Theorem 3.1 we introduce some terminology. A

quadratic form φ over F will be called totally positive if every non zero

element of F represented by φ is totally positive. Thus φ is totally posi-

tive if and only if φ = (ax, , an} with at e ΣF2, ί = 1, , n, if and only

if σ<(φ) = dim φ for all orderings < of F. Denote by h the exponent
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of Wt(F). h is called the height of F and (when finite) h = 2m where m > 0

is the smallest integer such that every totally positive element of F is

a sum of 2m squares in F [6, p. 311]. It follows immediately that if u(F)

is finite then h is finite and h < u(F).

The proof of Theorem 3.1 will use the following lemma:

LEMMA 3.2. Suppose F is a field with u — u(F) < oo. If φ is a

totally positive form over F with dim φ > 4m(u + 1) for some m > 0 then

there exists a in ΣF2 such that φ = 2m+1<α> _[_ ψ.

Proof. We proceed by induction on m. If m = 0 then dim φ > u + 1

so there exists an integer n with u + 1 < 2n < dim φ. Write φ = ζalf

- , a,™ K , bn} J_ φ'. Then <al9 , an, -bί9 . -, -bn} e Wt(F) and has

dimension larger than u. Hence ζal9 , an} and <6X, , bn} represent

a common element a e ΣF2. Thus 0 = 2<α> J_ ψ .

Now assume m > 0 and choose ^ of biggest dimension such that

Φ = 2^! J_ ^2. Then the foregoing argument shows that dim 02 < u + 1.

Hence dim φ, > — (4m - 1 ) ( ^ + 1). But m > 0 implies that —(4m - 1) > 4771"1

so dim ^i > 4:m~ιiu + 1). Hence by the induction hypothesis there exists

a in ΣF2 such that φλ == 2m<α> J_ ψ1# But then ^ = 2m+1<α> J_ ψ where

Proof of Theorem 3.1. (i) =Φ (ii). This follows from Corollary 2.5

and the fact that if Hn holds for some n > 2 then ^(F) < n.

(ii) => (i). Let s < o o be the number of orderings on F. Since u = u(F)

is finite the height h of F is also finite (with h <u) so we can write

( h V— j

•(u + 1) then i ϊ w holds. To see this let φ be a totally indefinite form

( h V
— j {u + 1). Since F satisfies ED we can

find elements aiS in F, 1 < ί < k, 1 < j < ni9 such that for each i, W(an)

= . . . = TF(α<n<), T^ία^) £ T7(α<+1)1), and φ = ^ J_ 02 J_ . . J_ φk where ^ =

ζflil9ai2f -,ainiy. Then by choosing orderings in W(αί+1>1) — W(an), i =

1,2, , k — 1 we see that s > fc — 1. Hence dim^ = nx + n2 + + nk

> (s + ΐ)(—Y(u + 1) > k(—\\u + 1). Thus there must exist some i
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with nt > (—)\u + 1) = ̂ m'Ku + 1). Now W(au) = -. = W(aί7li) so the

form ζμuyψi = <α<1>(8) ̂  is totally positive and hence by Lemma 3.2, <α<1> <̂

= 2m<α> _1_ ψ for some α in ZF2. Hence <α^>^ = 2m<α> J_ #' for some
subform φr. Let ̂  = (b19 62, , 6r> be an effective diagonalization of 0'.
Then <GLίi>Φ — 2m<α> _L <&i> b29 - , br} is an effective diagonalization.
Since φ is totally indefinite so is (a^φ so br must be totally negative.
But h = 2m implies that 2m<α> represents all totally positive elements
of F. Thus (fl^φ is isotropic whence ^ is also isotropic.

Remark. For many fields the bound in > (s + l)ί — j (u + 1) j obtained

in the proof of Theorem 3.1 is not very precise. In the case that F =
Q, the proof shows that Hn holds for all n > 40 while it is well known
that n > 5 suffices. Moreover, there exist fields having an infinite num-
ber of orderings (for example, the Pythagorean closure of Q) which
satisfy the equivalent conditions of the theorem.

COROLLARY 3.3. Let F be a field having a unique ordering. Then
u(F) < oo if and only if F satisfies Hn for some n>2. In this case, F

satisfies Hn for all n > —h\u + 1).
Δ

Proof. A field having a unique ordering satisfies ED.

EXAMPLE. If F = Q((t)) then F has exactly two orderings and
u(F) = 8 but as observed in [3], F fails to satisfy Hn for any n > 2.

4. Kneser's Theorem

In this section we present two more generalizations (cf. [2, Th. 2.4,
Cor. 2.5, and Th. 3.1]) of Kneser's Theorem which states that if F is
a non-formally real field and q = \F/F2\ then u(F) < q. For this purpose
we introduce the following notation. For a form φ over F, let D(φ) =
{aeF/F2\a is represented by φ).

LEMMA 4.1. Let F be a field and φ a totally positive form over F.
If D(φ) Φ ΣF2/F2 then for any a in ΣF2,D(φ _J_ <α» φ D(φ).

Proof. If D(φ J_ <α» = D(φ) then for any integer n > 1, D(φ ± n<a})
= D(φ). Now if 6 eΣF2 then α6 is a sum of k squares in F for some
k > 1 which implies that 6 is represented by the form fc<α>. Hence
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b e D(φ _1_ fc<d» = D(φ), contrary to assumption.

THEOREM 4.2. // F is a formally real field satisfying ED then

u(F) < \ΣF2/F2\.

Proof. Let t = \ΣF2/F2\. It is enough to show that if φeWt(F)

with dim φ > t + 2 then φ is isotropic. Since F is formally real and

satisfies ED we can write φ = ζa19 , am9 b19 , 6m> where at e ΣF2,

bt e ~ΣF2

9 i = l , . . ,m, a n d m > t_+_2^ Then by Lemma 4.1, \D«a19 ,
Δ

α r o » | > | - and |Z>« — &2, . . . , - & m » | > L. Thus there exists aeD«a19
Δ Δ

. , αTO» Π £>« — &!, , — 6TO». But then —α e Z>«&x, , δTO», whence

^ is isotropic.

EXAMPLE. The hypothesis that F satisfies ED is needed here since

if we let Fo be a formally real field having square classes {±1, ±2}

(such fields exist by [4, p. 302]) and let F = FQ((t)) then u{F) = 4 but

t = \ΣF2/F2\ = 2.

COROLLARY 4.3. Lβί F be a formally real field satisfying ED. If

q = | J P / F 2 | < oo then u(F) < 2~sq where s is the number of distinct order-

ings of F.

Proof. Since F satisfies ED, F also satisfies SAP so it follows from

(the proof of) Example 4.10 (iii) in [5] that \F/ΣF2\ = 2s. Hence q =

\F/F2\ = \F/ΣF2\ \ΣF2/F2\ = 2s \ΣF2/F2\.

THEOREM 4.4. Let F be a formally real field which satisfies ED

and suppose q < oo. Write q = 2st where t = \ΣF2/F2\ and s is the

number of orderings on F. Then F satisfies Hn for all n>s(jb — ΐ) + l.

In particular, Hn holds for all n > — + 1.
Δ

Proof. Let φ be a totally indefinite form over F and write φ =

<fln, , aιni9 α21, , α2TO2, , αΛl, , ak7lk} where, for i = 1,2, ., fc, Wία^)

= . . . = TF(α<n<) and TF(α£1) £ ϊF(α i + l f l). Then nλ + n2 + + wfc = dim φ

and fc < s + 1. If 0 is anisotropic then by Lemma 4.1, nλ + nk < t

since otherwise D«μιl9 , α l n i » and D«—α Λ l , , — akny) would have

an element in common. Moreover, by replacing φ by ζatlyφ and using

effective diagonalization (as in the proof of Theorem 3.1) we see that
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Ή>i < t — 1 for ί = 2, , k — 1. Hence dim φ = nx + n2 + + % < ί

+ (fc - 2)(ί - 1) < ί + (β - l)(ί - 1) = s(t - 1) + 1. Thus if dim φ >

s(t — 1) + 1 then φ is isotropic. For the last statement, note that — +1

= 2'-H + 1 > s(ί - 1) + 1.

COROLLARY 4.5. Let F be a field having a unique ordering. If

q < oo then Hn holds for all n > —.

COROLLARY 4.6. Let F be a formally real field satisfying ED. If

F has more than one ordering then Hn holds for all n > —.
LA

Proof. If s > 2 then SL = 2-H > β(ί - 1) + 1.
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