R. Ware

Nagoya Math. J.
Vol. 61 (1976), 117-125

HASSE PRINCIPLES AND THE u-INVARIANT OVER FORMALLY REAL FIELDS

ROGER WARE

0. Introduction

In this paper we investigate the connection between the u-invariant, $u(F)$, of a formally real field F as defined by Elman and Lam [2] and certain Hasse Principles studied by Elman, Lam and Prestel in [3].

In section 2 the notion of an effective diagonalization of a quadratic form is introduced and in section 3 it is shown that if F is a field having at most a finite number of orderings such that every form over F has an effective diagonalization (which happens, for example, if F is any field having at most one ordering) then the finiteness of the u-invariant is equivalent to the Hasse Principle H_{n} holding for all n larger than some fixed integer m.

In section 4 we present two generalizations of a theorem of Kneser which states that if F is a non-formally real field then $u(F) \leq q$, where q denotes the number of distinct square classes of F. If F is a formally real field such that every form over F can be effectively diagonalized then it is shown that $u(F) \leq t$ where t is the number of distinct square classes of totally positive elements of F and H_{n} is satisfied for all $n>\frac{1}{2} q$.

I would like to express my thanks to T. Y. Lam who pointed out the improved bounds in the proof of Theorem 3.1 and the statement of Theorem 4.4.

1. Notations and terminology

The terminology and notations will primarily follow [2,3,6]. All fields F will have characteristic different from two, \dot{F} denotes the multiplicative group of F, \dot{F}^{2} the subgroup of non-zero squares, and $\Sigma \dot{F}^{2}$ the

[^0]subgroup consisting of all sums of squares ($=$ totally positive elements). Isometries of quadratic forms over F will be written as $\cong, \phi \perp \psi$ and $\phi \otimes \psi$ will denote, respectively, the orthogonal sum and tensor product of two forms ϕ and ψ, and for any natural number m the form $\phi \perp \phi$ $\perp \cdots \perp \phi\left(m\right.$ times) will be denoted by $m \phi$. We will write $\phi=\left\langle a_{1}, a_{2}\right.$, $\left.\cdots, a_{n}\right\rangle$ to mean ϕ has an orthogonal basis $e_{1}, e_{2}, \cdots, e_{n}$ with $\phi\left(e_{i}\right)=$ $a_{i} \in \dot{F}$. The Witt ring of non-singular quadratic forms over F will be denoted by $W(F)$ and its torsion subgroup by $W_{t}(F)$. The u-invariant of F is defined to be $u(F)=\max \{\operatorname{dim} \phi\}$ where ϕ ranges over all anisotropic forms in $W_{t}(F)$ [2].

If F is a formally real field then any ordering $<$ on F induces a ring homomorphism $\sigma_{<}: W(F) \rightarrow Z$ via $\sigma_{<}(\phi)=\sum_{i} \sigma_{<}\left(a_{i}\right)$, where $\phi=\left\langle a_{1}\right.$, $\left.\cdots, a_{n}\right\rangle$ and $\sigma_{<}\left(a_{i}\right)=1$ if $0<a_{i}, \sigma_{<}\left(a_{i}\right)=-1$ if $a_{i}<0$. If ϕ is a form over $F, \sigma_{<}(\phi)$ is called the signature of ϕ relative to the ordering $<$. From [7, Satz 22] it follows that $W_{t}(F)$ consists precisely of those forms which have signature zero relative to all orderings on F. A form ϕ is called totally indefinite (or locally isotropic) over F if $\left|\sigma_{<}(\phi)\right|<\operatorname{dim} \phi$ for all orderings $<$ on F. Thus a form ϕ is totally indefinite if and only if ϕ is isotropic over all real closures $F_{<}$of F as $<$ runs through the orderings of F. The formally real field F satisfies the Hasse Principle H_{n} (for some $n \geq 2$) if every totally indefinite form of dimension n over F is isotropic [3].

We denote by $X=X(F)$ the topological space of orderings on F [1,5]. The space X is compact, Hausdorff, and totally disconnected with a subbase of the topology given by the sets $W(a)=\{<$ in $X \mid a<0\}$, $a \in F$. We say F (or X) satisfies the Strong Approximation Property (SAP) if given any two disjoint closed subsets U, V of X there exists an element a in F which is positive at the orderings in U and negative at the orderings in V.

2. Effective diagonalization of quadratic forms

A form $\phi=\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle$ over a formally real field F is said to be effectively diagonalized if $W\left(a_{i}\right) \subset W\left(a_{i+1}\right), i=1,2, \cdots, n-1$. The field F is said to satisfy $E D$ if every form over F can be effectively diagonalized.

Lemma 2.1. Suppose F is a formally real field and ϕ is a form which
can be effectively diagonalized. Then
(i) If ϕ is totally indefinite then we can write $\phi=\beta \perp \phi^{\prime}$ where $\beta=\langle a, b\rangle$ is a binary form with a totally positive and b totally negative,
(ii). If ϕ is totally indefinite then there exists an integer $m \geq 1$ such that $m \phi$ is isotropic (i.e. ϕ is weakly isotropic in the sense of $[3,8]$).
(iii) If $\phi \in W_{t}(F)$ then $\phi=\beta_{1} \perp \cdots \perp \beta_{n}$ where $\beta_{i}=\left\langle a_{i}, b_{i}\right\rangle \in W_{t}(F)$ with a_{i} totally positive and b_{i} totally negative. In particular, ϕ is strongly balanced in the sense of [7].
(iv) If $\phi \in W_{t}(F)$ with $\operatorname{dim} \phi=2 n$ then $\phi=\phi_{1} \perp \phi_{2}$ with $\operatorname{dim} \phi_{i}=n$, $i=1,2$, and where ϕ_{1} has signature n and ϕ_{2} has signature $-n$ relative to all orderings on F.

Proof. (i) Write $\phi=\left\langle a_{1}, a_{2}, \cdots, a_{k}\right\rangle$ with $W\left(a_{i}\right) \subset W\left(a_{i+1}\right)$ for all i. Since ϕ is totally indefinite $W\left(a_{1}\right)$ must be empty and $W\left(a_{k}\right)=X$. Thus a_{1} is totally positive and a_{k} is totally negative so we can take $\beta=\left\langle a_{1}, a_{k}\right\rangle$.
(ii) Write $\phi=\beta \perp \phi^{\prime}$ with $\beta=\langle a, b\rangle \in W_{t}(F)$. Choose $m \geq 1$ so that $m \beta=0$ in $W(F)$. Then $m \phi$ is isotropic.
(iii) Write $\phi=\left\langle a_{1}, a_{2}, \cdots, a_{k}\right\rangle$ with $W\left(a_{i}\right) \subset W\left(a_{i+1}\right)$ for all i. Since F is formally real and $\phi \in W_{t}(F)$ it follows that $k=2 n$ is even, a_{1}, \cdots, a_{n} are totally positive and a_{n+1}, \cdots, a_{k} are totally negative. Hence we can take $b_{i}=a_{n+i}$ for $i=1,2, \cdots, n$.
(iv) follows immediately from (iii).

Corollary 2.2. If F is a formally real field satisfying $E D$ then F satisfies SAP.

Proof. This is a consequence of Lemma 2.1 (ii), [3, Th. C], and [8, Satz 3.1] (see also [9, Th. 3.1]).

Examples. (i) If F has a unique ordering then F satisfies ED.
(ii) Let $F=\boldsymbol{Q}((t))$ be the field of formal power series over \boldsymbol{Q}. As observed by Elman, Lam, and Prestel [3], the form $\langle t,-2 t\rangle \in W_{t}(F)$ does not represent a totally negative element and consequently cannot be effectively diagonalized. Thus F does not satisfy ED. Since F has only two orderings, F does satisfy SAP. Thus SAP does not imply ED.

However, we do have the following
Proposition 2.3. A formally real field F satisfies SAP if and only
if for any form ϕ over F there exists an effectively diagonalized form $\psi=\left\langle b_{1}, b_{2}, \cdots, b_{n}\right\rangle, n=\operatorname{dim} \phi$, such that $\phi-\psi \in W_{t}(F)$.

Proof. (\Rightarrow) As in [9, Th. 3.1] we let $Y_{k}=\left\{<\right.$ in $\left.X \mid \sigma_{<}(\phi)=-n+2 k\right\}$, $k=0,1, \cdots, n$. Then the family $\left\{Y_{k} \mid k=0,1, \cdots, n\right\}$ is a partition of X and each Y_{k} is an open and closed subset of X. Since F satisfies SAP, there exist elements $b_{1}, b_{2}, \cdots, b_{n+1}$ in \dot{F} such that $W\left(b_{i}\right)=Y_{0} \cup Y_{1}$ $\cup \cdots \cup Y_{i-1}, i=1,2, \cdots, n+1$. Then $W\left(b_{i}\right) \subset W\left(b_{i+1}\right)$ for all i and one readily checks that $\sigma_{<}\left(\left\langle b_{1}, b_{2}, \cdots, b_{n}\right\rangle\right)=\sigma_{<}(\phi)$ for all orderings $<$ in X. Hence $\phi-\left\langle b_{1}, b_{2}, \cdots, b_{n}\right\rangle$ lies in $W_{t}(F)$.
(\Leftrightarrow) By [3, Th. C] and [8, Satz 3.1] it is enough to show that if ϕ is totally indefinite then there exists $m \geq 1$ such that $m \phi$ is isotropic. Let $\psi=\left\langle b_{1}, b_{2}, \cdots, b_{n}\right\rangle, n=\operatorname{dim} \phi$, be an effectively diagonalized form with $\phi-\psi \in W_{t}(F)$. Then there exists an integer $r \geq 1$ such that $r \phi \cong r \psi$. Since ϕ is totally indefinite, this implies ψ is also totally indefinite so by Lemma 2.1 (ii) there exists an integer $s \geq 1$ such that $s \psi$ is isotropic. Hence if $m=r s$ then $m \phi$ is isotropic.

Theorem 2.4. For a formally real field F the following statements are equivalent:
(i) F satisfies $E D$.
(ii) If ϕ is a form over F which represents 1 over all real closures of F then ϕ represents a totally positive element of F.

Proof. (i) \Rightarrow (ii). Write $\phi=\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle$ with $W\left(a_{i}\right) \subset W\left(a_{i+1}\right)$. Since ϕ represents 1 over all real closures it follows that $W\left(a_{1}\right)=\phi$, i.e. a_{1} is totally positive.
(ii) \Rightarrow (i). We first show that any totally indefinite form over F is weakly isotropic and hence, in view of [3,8], F satisfies SAP. If ϕ is totally indefinite then ϕ represents 1 over all real closures and hence we can write $\phi=\langle a\rangle \perp \phi_{1}$ where a is totally positive element of F. But then ϕ_{1} represents $\mathbf{- 1}$ over all real closures so ϕ_{1} represent a totally negative element b in \dot{F}. Since $\langle a, b\rangle \in W_{t}(F)$ it follows that $\phi=\langle a, b\rangle \perp \psi$ is weakly isotropic.

Now let ψ be any form over F. Since F satisfies SAP there exists b in \dot{F} such that $W(b)=\left\{<\in X \mid \sigma_{<}(\psi)=-\operatorname{dim} \psi\right\}$. If $W(b)$ is empty then ψ represents 1 over all real closures and hence represents a totally positive element. In this case the proof is finished by induction on $\operatorname{dim} \psi$. Hence we can assume that $W(b)$ is non empty. Now $W(b) \subset W(c)$ for
all elements $c \neq 0$ represented by ψ and $\psi \perp\langle-b\rangle$ represents 1 over all real closures. Thus $\psi \perp\langle-b\rangle$ represents a totally positive element d. Since $-b$ is not totally positive we can write $d=a-b x^{2}$ where $a \neq 0$ is represented by ψ. Then $W(a) \subset W(b)$ so that $W(a) \subset W(c)$ for all c in \dot{F} represented by ψ. Thus induction on $\operatorname{dim} \psi$ completes the proof.

Corollary 2.5. If F is a formally real field satisfying some Hasse Principle H_{n} with $n \geq 4$ then F satisfies $E D$.

Proof. Let ϕ be a form over F which represents 1 over all real closure of F. Then $\phi \perp n\langle-1\rangle$ is totally indefinite whence isotropic. Thus there exists x_{1}, \cdots, x_{n} in F such that ϕ represents the totally positive element $x_{1}^{2}+\cdots+x_{n}^{2} \in \dot{F}$.

Corollary 2.6 (cf. [1, Th. 5.3]). For a formally real pythagorean field F the following statements are equivalent:
(i) F satisfies $S A P$.
(ii) F satisfies $E D$.
(iii) F satisfies H_{n} for all $n \geq 2$.

Proof. The equivalence of (i) and (ii) is a consequence of Proposition 2.3 and the equivalence of (ii) and (iii) follows from Lemma 2.1 (i) and Corollary 2.5.

3. Hasse principles and the u-invariant

Any non-formally real field vacuously satisfies ED since $X=X(F)$ is empty but need not satisfy H_{n} for any n. In fact, for F non-formally real, F satisfies H_{n} for some $n \geq 2$ if and only if $u=u(F)$ is finite. For formally real fields we have

THEOREM 3.1. Let F be a formally real field having at most a finite number of orderings. Then the following statements are equivalent:
(i) F satisfies H_{n} for some $n \geq 4$.
(ii) F satisfies $E D$ and $u(F)<\infty$.

Before proving Theorem 3.1 we introduce some terminology. A quadratic form ϕ over F will be called totally positive if every non zero element of F represented by ϕ is totally positive. Thus ϕ is totally positive if and only if $\phi=\left\langle a_{1}, \cdots, a_{n}\right\rangle$ with $a_{i} \in \Sigma \dot{F}^{2}, i=1, \cdots, n$, if and only if $\sigma_{<}(\phi)=\operatorname{dim} \phi$ for all orderings $<$ of F. Denote by h the exponent
of $W_{t}(F) . \quad h$ is called the height of F and (when finite) $h=2^{m}$ where $m \geq 0$ is the smallest integer such that every totally positive element of F is a sum of 2^{m} squares in F [6, p. 311]. It follows immediately that if $u(F)$ is finite then h is finite and $h \leq u(F)$.

The proof of Theorem 3.1 will use the following lemma:
Lemma 3.2. Suppose F is a field with $u=u(F)<\infty$. If ϕ is a totally positive form over F with $\operatorname{dim} \phi>4^{m}(u+1)$ for some $m \geq 0$ then there exists a in $\Sigma \dot{F}^{2}$ such that $\phi=2^{m+1}\langle a\rangle \perp \psi$.

Proof. We proceed by induction on m. If $m=0$ then $\operatorname{dim} \phi>u+1$ so there exists an integer n with $u+1 \leq 2 n \leq \operatorname{dim} \phi$. Write $\phi=\left\langle a_{1}\right.$, $\left.\cdots, a_{n}, b_{1}, \cdots, b_{n}\right\rangle \perp \phi^{\prime}$. Then $\left\langle a_{1}, \cdots, a_{n},-b_{1}, \cdots,-b_{n}\right\rangle \in W_{t}(F)$ and has dimension larger than u. Hence $\left\langle a_{1}, \cdots, a_{n}\right\rangle$ and $\left\langle b_{1}, \cdots, b_{n}\right\rangle$ represent a common element $a \in \Sigma \dot{F}^{2}$. Thus $\phi=2\langle a\rangle \perp \psi$.

Now assume $m>0$ and choose ϕ_{1} of biggest dimension such that $\phi=2 \phi_{1} \perp \phi_{2}$. Then the foregoing argument shows that $\operatorname{dim} \phi_{2} \leq u+1$. Hence $\operatorname{dim} \phi_{1}>\frac{1}{2}\left(4^{m}-1\right)(u+1)$. But $m>0$ implies that $\frac{1}{2}\left(4^{m}-1\right)>4^{m-1}$ so $\operatorname{dim} \phi_{1}>4^{m-1}(u+1)$. Hence by the induction hypothesis there exists a in $\Sigma \dot{F}^{2}$ such that $\phi_{1}=2^{m}\langle a\rangle \perp \psi_{1}$. But then $\phi=2^{m+1}\langle a\rangle \perp \psi$ where $\psi=2 \psi_{1} \perp \phi_{2}$.

Proof of Theorem 3.1. (i) \Rightarrow (ii). This follows from Corollary 2.5 and the fact that if H_{n} holds for some $n \geq 2$ then $u(F)<n$.
(ii) \Rightarrow (i). Let $s<\infty$ be the number of orderings on F. Since $u=u(F)$ is finite the height h of F is also finite (with $h \leq u$) so we can write $h=2^{m}$ for some integer $m \geq 0$. We now assert that if $n>(s+1)\left(\frac{h}{2}\right)^{2}$ $\cdot(u+1)$ then H_{n} holds. To see this let ϕ be a totally indefinite form over F with $\operatorname{dim} \phi>(s+1)\left(\frac{h}{2}\right)^{2}(u+1)$. Since F satisfies ED we can find elements $a_{i j}$ in $F, 1 \leq i \leq k, 1 \leq j \leq n_{i}$, such that for each $i, W\left(a_{i 1}\right)$ $=\cdots=W\left(a_{i n_{i}}\right), W\left(a_{i 1}\right) \subsetneq W\left(a_{i+1,1}\right)$, and $\phi=\phi_{1} \perp \phi_{2} \perp \cdots \perp \phi_{k}$ where $\phi_{i}=$ $\left\langle a_{i 1}, a_{i 2}, \cdots, a_{i n_{i}}\right\rangle$. Then by choosing orderings in $W\left(a_{i+1,1}\right)-W\left(a_{i 1}\right), i=$ $1,2, \cdots, k-1$ we see that $s \geq k-1$. Hence $\operatorname{dim} \phi=n_{1}+n_{2}+\cdots+n_{k}$ $>(s+1)\left(\frac{h}{2}\right)^{2}(u+1) \geq k\left(\frac{h}{2}\right)^{2}(u+1)$. Thus there must exist some i
with $n_{i}>\left(\frac{h}{2}\right)^{2}(u+1)=4^{m-1}(u+1)$. Now $W\left(a_{i 1}\right)=\cdots=W\left(a_{i n_{i}}\right)$ so the form $\left\langle a_{i 1}\right\rangle \phi_{i}=\left\langle a_{i 1}\right\rangle \otimes \phi_{i}$ is totally positive and hence by Lemma 3.2, $\left\langle a_{i 1}\right\rangle \phi_{i}$ $=2^{m}\langle a\rangle \perp \psi$ for some a in $\Sigma \dot{F}^{2}$. Hence $\left\langle a_{i 1}\right\rangle \phi=2^{m}\langle a\rangle \perp \phi^{\prime}$ for some subform ϕ^{\prime}. Let $\phi^{\prime}=\left\langle b_{1}, b_{2}, \cdots, b_{r}\right\rangle$ be an effective diagonalization of ϕ^{\prime}. Then $\left\langle a_{i 1}\right\rangle \phi=2^{m}\langle a\rangle \perp\left\langle b_{1}, b_{2}, \cdots, b_{r}\right\rangle$ is an effective diagonalization. Since ϕ is totally indefinite so is $\left\langle a_{i 1}\right\rangle \phi$ so b_{r} must be totally negative. But $h=2^{m}$ implies that $2^{m}\langle a\rangle$ represents all totally positive elements of F. Thus $\left\langle a_{i 1}\right\rangle \phi$ is isotropic whence ϕ is also isotropic.

Remark. For many fields the bound $\left(n>(s+1)\left(\frac{h}{2}\right)^{2}(u+1)\right)$ obtained in the proof of Theorem 3.1 is not very precise. In the case that $F=$ Q, the proof shows that H_{n} holds for all $n>40$ while it is well known that $n \geq 5$ suffices. Moreover, there exist fields having an infinite number of orderings (for example, the pythagorean closure of Q) which satisfy the equivalent conditions of the theorem.

Corollary 3.3. Let F be a field having a unique ordering. Then $u(F)<\infty$ if and only if F satisfies H_{n} for some $n \geq 2$. In this case, F satisfies H_{n} for all $n>\frac{1}{2} h^{2}(u+1)$.

Proof. A field having a unique ordering satisfies ED.
Example. If $F=Q((t))$ then F has exactly two orderings and $u(F)=8$ but as observed in [3], F fails to satisfy H_{n} for any $n \geq 2$.

4. Kneser's Theorem

In this section we present two more generalizations (cf. [2, Th. 2.4, Cor. 2.5, and Th. 3.1]) of Kneser's Theorem which states that if F is a non-formally real field and $q=\left|\dot{F} / \dot{F}^{2}\right|$ then $u(F) \leq q$. For this purpose we introduce the following notation. For a form ϕ over F, let $D(\phi)=$ $\left\{a \in \dot{F} / \dot{F}^{2} \mid \alpha\right.$ is represented by $\left.\phi\right\}$.

Lemma 4.1. Let F be a field and ϕ a totally positive form over F. If $D(\phi) \neq \Sigma \dot{F}^{2} / \dot{F}^{2}$ then for any a in $\Sigma \dot{F}^{2}, D(\phi \perp\langle a\rangle) \neq D(\phi)$.

Proof. If $D(\phi \perp\langle\alpha\rangle)=D(\phi)$ then for any integer $n \geq 1, D(\phi \perp n\langle a\rangle)$ $=D(\phi)$. Now if $b \in \Sigma \dot{F}^{2}$ then $a b$ is a sum of k squares in F for some $k \geq 1$ which implies that b is represented by the form $k\langle a\rangle$. Hence
$b \in D(\phi \perp k\langle a\rangle)=D(\phi)$, contrary to assumption.
Theorem 4.2. If F is a formally real field satisfying $E D$ then $u(F) \leq\left|\Sigma \dot{F}^{2} / \dot{F}^{2}\right|$.

Proof. Let $t=\left|\Sigma \dot{F}^{2} / \dot{F}^{2}\right|$. It is enough to show that if $\phi \in W_{t}(F)$ with $\operatorname{dim} \phi \geq t+2$ then ϕ is isotropic. Since F is formally real and satisfies ED we can write $\phi=\left\langle a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{m}\right\rangle$ where $a_{i} \in \Sigma \dot{F}^{2}$, $b_{i} \in-\Sigma \dot{F}^{2}, i=1, \cdots, m$, and $m \geq \frac{t+2}{2}$. Then by Lemma 4.1, $\mid D\left(\left\langle a_{1}, \cdots\right.\right.$, $\left.\left.a_{m}\right\rangle\right) \left\lvert\,>\frac{t}{2}\right.$ and $\left|D\left(\left\langle-b_{1}, \cdots,-b_{m}\right\rangle\right)\right|>\frac{t}{2}$. Thus there exists $a \in D\left(\left\langle a_{1}\right.\right.$, $\left.\left.\cdots, a_{m}\right\rangle\right) \cap D\left(\left\langle-b_{1}, \cdots,-b_{m}\right\rangle\right)$. But then $-a \in D\left(\left\langle b_{1}, \cdots, b_{m}\right\rangle\right)$, whence ϕ is isotropic.

Example. The hypothesis that F satisfies ED is needed here since if we let F_{0} be a formally real field having square classes $\{ \pm 1, \pm 2\}$ (such fields exist by [4, p. 302]) and let $F=F_{0}((t))$ then $u(F)=4$ but $t=\left|\Sigma \dot{F}^{2} / \dot{F}^{2}\right|=2$.

Corollary 4.3. Let F be a formally real field satisfying ED. If $q=\left|\dot{F} / \dot{F}^{2}\right|<\infty$ then $u(F) \leq 2^{-s} q$ where s is the number of distinct orderings of F.

Proof. Since F satisfies ED, F also satisfies SAP so it follows from (the proof of) Example 4.10 (iii) in [5] that $\left|\dot{F} / \Sigma \dot{F}^{2}\right|=2^{s}$. Hence $q=$ $\left|\dot{F} / \dot{F}^{2}\right|=\left|\dot{F} / \Sigma \dot{F}^{2}\right|\left|\Sigma \dot{F}^{2} / \dot{F}^{2}\right|=2^{s}\left|\Sigma \dot{F}^{2} / \dot{F}^{2}\right|$.

THEOREM 4.4. Let F be a formally real field which satisfies $E D$ and suppose $q<\infty$. Write $q=2^{s} t$ where $t=\left|\Sigma \dot{F}^{2} / \dot{F}^{2}\right|$ and s is the number of orderings on F. Then F satisfies H_{n} for all $n>s(t-1)+1$. In particular, H_{n} holds for all $n \geq \frac{q}{2}+1$.

Proof. Let ϕ be a totally indefinite form over F and write $\phi=$ $\left\langle a_{11}, \cdots, a_{1 n_{1}}, a_{21}, \cdots, a_{2 n_{2}}, \cdots, a_{k 1}, \cdots, a_{k n_{k}}\right\rangle$ where, for $i=1,2, \cdots, k, W\left(a_{i 1}\right)$ $=\cdots=W\left(a_{i n_{i}}\right)$ and $W\left(a_{i 1}\right) \sqsubseteq W\left(a_{i+1,1}\right)$. Then $n_{1}+n_{2}+\cdots+\dot{n_{k}}=\operatorname{dim} \phi$ and $k \leq s+1$. If ϕ is anisotropic then by Lemma 4.1, $n_{1}+n_{k} \leq t$ since otherwise $D\left(\left\langle a_{11}, \cdots, a_{1 n_{1}}\right\rangle\right)$ and $D\left(\left\langle-a_{k_{1}}, \cdots,-a_{k n_{k}}\right\rangle\right)$ would have an element in common. Moreover, by replacing ϕ by $\left\langle a_{i 1}\right\rangle \phi$ and using effective diagonalization (as in the proof of Theorem 3.1) we see that
$n_{i} \leq t-1$ for $i=2, \cdots, k-1$. Hence $\operatorname{dim} \phi=n_{1}+n_{2}+\cdots+n_{k} \leq t$ $+(k-2)(t-1) \leq t+(s-1)(t-1)=s(t-1)+1$. Thus if $\operatorname{dim} \phi>$ $s(t-1)+1$ then ϕ is isotropic. For the last statement, note that $\frac{q}{2}+1$ $=2^{s-1} t+1>s(t-1)+1$.

Corollary 4.5. Let F be a field having a unique ordering. If $q<\infty$ then H_{n} holds for all $n>\frac{q}{2}$.

Corollary 4.6. Let F be a formally real field satisfying ED. If F has more than one ordering then H_{n} holds for all $n \geq \frac{q}{2}$.

Proof. If $s \geq 2$ then $\frac{q}{2}=2^{s-1} t>s(t-1)+1$.

References

[1] R. Elman and T. Y. Lam, Quadratic forms over formally real fields and pythagorean fields, Amer. J. Math. 94 (1972), 1155-1194.
[2] R. Elman and T. Y. Lam, Quadratic forms and the u-invariant. I, Math. Z. 131 (1973), 283-304.
[3] R. Elman, T. Y. Lam, and A. Prestel, On some Hasse Principles over formally real fields, Math. Z. 134 (1973), 291-301.
[4] H. Gross and H. R. Fischer, Non-real fields k and infinite dimensional k-vector spaces, Math. Ann. 159 (1965), 285-308.
[5] M. Knebusch, A. Rosenberg, and R. Ware, Signatures on semilocal rings, J. Algebra 26 (1973), 208-250.
[6] T. Y. Lam, "The Algebraic Theory of Quadratic Forms", W. A. Benjamin, Reading, Massachusetts, 1973.
[7] A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116-132.
[8] A. Prestel, Quadratische Semi-Ordnungen und quadratische Formen, Math. Z. 133 (1973), 319-342.
[9] A. Rosenberg and R. Ware, Equivalent topological properties of the space of signatures of a semilocal ring, Publ. Math. Debrecen, to appear.

[^0]: Received September 10, 1975.

