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IDEALS WITH SLIDING DEPTH

J. HERZOG, W.V. VASCONCELOS<*> AND R. VILLARREAL

Introduction

We study here a class of ideals of a Cohen-Macaulay ring {R, m}
somewhat intermediate between complete intersections and general Cohen-
Macaulay ideals. Its definition, while a bit technical, rapidly leads to the
development of its elementary properties. Let I = (xu -,xn) = (x) be
an ideal of R and denote by H*(x) the homology of the ordinary Koszul
complex K*(x) built on the sequence JC. It often occurs that the depth
of the module Ht, i > 0, increases with i (as usual, we set depth (0) = oo).
We shall say that I satisfies sliding depth if

(SD) depth H^x) > dim (R) - n + i, i > 0.

This definition depends solely on the number of elements in the sequence
JC. This property localizes (cf. [9]) and is an invariant of even linkage
(cf. [10]).

An extreme case of this property is given by a complete intersection.
A more general instance of it is that where all the modules Ht are Cohen-
Macaulay, a situation that was dubbed strongly Cohen-Macaulay ideals
(cf. [11]).

These ideals have appeared earlier in two settings:
( i ) The investigation of arithmetical properties of the Rees algebra

of J

S = 0t{J) = Θ Is,

and of the associated graded ring

It was shown in [7], [8] and [16] that for ideals satisfying (SD) and
such that for each prime P containing I, height (P)=ht(/) > v(Ip) =
minimum number of generators of the localization Ip, both S and G are
Cohen-Macaulay. In addition, if jR is a Gorenstein ring, G will be Goren-
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stein precisely when I is strongly Cohen-Macaulay ([9, (6.5)]).
(ii) The other context is that of a generalization and corrections by

Huneke ([11]) of a result of Artin-Nagata on residual Cohen-Macaulayness
([1]), i.e. conditions under which for a subideal J a I, J: / is Cohen-
Macaulay, (J : /) Π / = J and ht ((J : I) + /) > ht (J). It connects with
the notion of linkage—when J is a complete intersection—by requiring
that J be a strongly Cohen-Macaulay ideal. In turn our extension shows
that the assertions of the theorem are intertwined with the sliding depth
condition.

Our goals here are the following:

( i ) In Section 1 we demark more precisely the distinction between
strongly Cohen-Macaulay ideals and ideals with (SD). This is more con-
veniently done if I is generated by a d-sequence—for ideals with (SD) this
is essentially equivalent to requiring that v(Ip) < ht (P), for prime ideals
P 3 I. If one further assumes that R is Gorenstein, and v(Ip) < ht(P) — 1
for primes with ht (P) > ht (J) + 2, then I is strongly Cohen-Macaulay.
This was proved by Huneke ([11]) using the duality of [6]. We reinforce
this result by replacing the last inequality by v(Ip) < ht (P). It still
follows from [6] but depends on some quirks of the Koszul complex. The
next case—i.e. v(Ip) < ht (P)—is however critical. What precisely over-
comes it is not well-known. Some conditions we impose involve the
conormal module I/P.

(ii) In Section 2 we discuss examples of Cohen-Macaulay prime
ideals of codimension three in a regular local ring R, that have (SD), but
are not strongly Cohen-Macaulay. It will rely on properties of the divisor
class group of R/L In particular we shall see that if I is the ideal
generated by the n — 1 sized minors of a generic, symmetric, n X n matrix
then I is syzygetic (cf. [7]). For n — 3 we have the desired example. Its
Rees algebra £%(I) is even integrally closed.

We also record an extension of a result of Serre asserting that
Gorenstein ideals of codimension two are complete intersections. More
generally, one can show that if I is a Cohen-Macaulay of codimension two,
then the canonical module of R/I cannot have 2-torsion.

(iii) In Section 3 the generalization of Huneke's theorem to ideals
with sliding depth is given. Some of its elements may be used to con-
struct ideals with sliding depth of a fixed height and various projective
dimensions.



IDEALS WITH SLIDING DEPTH 161

We thank Craig Huneke and Aron Simis for several conversations,

and also Giuseppe Valla for raising one of our motivating questions.

§ 1. Strongly Cohen-Macaulay ideals

The rings considered throughout will be Noetherian, commutative

with an identity. For notation, terminology and basic results—especially

those dealing with Koszul complexes and Cohen-Macaulay rings—we shall

use [13].

It is convenient to rephrase the condition (SD) for an ideal I in terms

of the depths of the cycles and boundaries of the associated Koszul com-

plex. Assume that R is a Cohen-Macaulay local ring of dimension d and

that / is generated by the sequence x = {xu — ,xn}; put g = ht(I).

Denote by Zt and Bt the modules of cycles and boundaries of the associated

Koszul complex K^. If one uses the defining exact sequences

0 > Zί+1 > Kί+1 > Bi > 0

0 > B, > Zt > Ht • 0

the depth conditions (SD) and (SCM = strongly Cohen-Macaulay) translate

as follows:
d>d-n+i+1}> for(SD)

We look at the case i = n — g to examine the role of duality. From

now on we assume that R is a Gorenstein ring.

PROPOSITION 1.1. Let R be a Gorenstein local ring of dimension d and

I be a Cohen-Macaulay ideal of height g generated by n elements. Then

depth {Zn.g) > min {d, d - g + 2}.

Proof If g = 0, Zn = 0 : 1 = HomΛ (R/I, R) is Cohen-Macaulay since

Rjl is a Cohen-Macaulay module and R is Gorenstein.

If g = 1, the exact sequence

0 • B n _, • Zn_, — • Hn_t • 0

yields (*E denotes the i?-dual Kom(E,R))i

0 • Zti • B*_i > Ext1 (Hn_u R) • Ext1 (Zn,l9 R) • 0

Since B*_i = R and Ext1 (#„_!, R) = Rjl by duality, we get an exact

sequence
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0 —> RjZ^-^RjI —^ Ext1 (ZU R) —> 0 .

Since Zn_1 is a second syzygy module, the last module has support at

primes of height greater than two. In the identification JB*_X = R, φ

maps Z*.! maps exactly onto I: To see this it suffices to localize at any

prime P (necessarily of height 1) associated to either Z*_λ or I. Thus φ

is essentially the multiplication of Rjl into itself via a regular element

of the Cohen-Macaulay ring Rjl. By the remark above on the support

of Ext1 (Zn_u R), φ is an isomorphism.

If g > 1, consider the sequence

0 > Bn_g > Zn_g -—> Hn_g > 0 .

Here Bn_g has depth d — g+1 while Hn_g has depth d — g being the

canonical module of Rjl. The exact sequence says that depth (Zn_g) >

d — g. We now test the vanishing of the modules Ext* (Zn_g, R) for i =

g, g — 1. From above we obtain the homology sequence

Ext*-1 (Hn_g, R) > Ext* 1 (Zn_g, R) > Ext* 1 (Bn_,, R) >

Ext* (Hn_g, R) • Ext* (Zn.g9 R) > Ext* (Bn_g, R).

Here Ext*""1 (Bn_g, R) = R/I from the exactness of the tail of the Koszuί

complex. On the other hand Ext^(Bn_^ R) = Ext*"1 (Hn_g, R) = 0, while

Έxtg(Hn_g, R) = R/I since R is a Gorenstein ring. Thus we have the

exact sequence

0 > Ext* 1 (Zn_g, R) > RII~^> R/I > Ext* {Zn_g, R) > 0 .

Localizing at primes of height g and g + 1, we get that φ is an isomorphism

since Zn_g is a second syzygy module and the desired assertion follows. •

COROLLARY 1.2 (see [2]). Lβί I be a Cohen-Macaulay ideal of height g

that can be generated by n = g + 2 elements. Then I is strongly Cohen-

Macaulay.

Remark. If n — g + 3 even the condition (SD) may fail to hold; see

Section 2.

COROLLARY 1.3. Let I be an ideal satisfying (SD). If Rjl satisfies

Serre's condition S2, then I is Cohen-Macaulay.

Proof. (SD) implies that the canonical module of Rjl, Hn_g, is Cohen-

Macaulay. But the argument above shows that Rjl = Ext* (Hn_g, R) given
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the condition S2. •

The main result of this section is the following criterion for (SCM).

THEOREM 1.4. Let R be a Gorensteίn local ring and let I be a Cohen-

Macaulay ideal. If I satisfies (SD) and v(Ip) < max {ht (/), ht (P) — 1} for

each prime ideal P D /, then I is strongly Cohen-Macaulay.

Proof. Since (SD) and the other conditions localize (cf. [9]), we may

assume that I is (SCM) on the punctured spectrum of R. By adding a set

of indeterminates to R and to 7, we may assume the height g of / is larger

than n — g + 1, n — minimum number of generators of the new ideal.

This clearly leaves the Koszul homology and (SD) unchanged. The net

effect however is that we have a Koszul complex K^ whose acyclic tail is

longer than the remainder of the complex.

( i ) In the conditions above, Hn_g_ί is the Hn_g-dual of Ht [11]; to

use the theorem of duality of [6]—see also [11]—one has to verify that the

left hand side of the inequality

depth (Ht) + depth (Hn_g_z) >(d-n+ΐ) + (d-n+n-g-i)

= (d-g) + (d-ή)

exceeds (d — g) + 1. If, therefore, n < d — 1, it will follow that each Ht

is Cohen-Macaulay.

(ii) To set the tone of the argument in case n — d — 1, we examine

Ht. Here depth(Hn_g_l) > d — g — 1 and depth (i^) > 2; we will strengthen

the first inequality. Suppose it cannot be done and consider the exact

sequence

0 > Bn_g_ί —-> Zn_g_x > Hn_g_x > 0 .

By (1.1) depth (Bn_g.,) >d-g+l so that if depth (Hn_g.x) = d - g - 1

then depth (Zn_g_t) = d — g — 1 as well. It will follow that depth (Bn_g_2)

= d — g — 2. A similar sequence for i = n — g — 2, again by duality,

says that depth(Hn_g_2) = d — g or d — g — 2. In either case we get that

depth (Zn_g_2) = d — g — 2. We repeat this argument until we get

depth (Bd = depth (Bn_g_^g_x)) = d - g - ( n - g - l ) = d - n + l = 2.

Since depth(Zt) — d — g + 2 > 2 , we get a contradiction.
(iii) To set up the induction routine, suppose we have shown that Hk

and Hn_q_k are Cohen-Macaulay; we show that depth(Zn_g_k) > d —g + 2.
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The argument is similar to (1.1). We have the exact homology sequence

0 > Ext*-ι(Zn_g_k9 R) • Ext*"1 (Bn_g_k, R) • Ext*(Hn_g_k, R)

>ExV{Zn_g_k,R) >0,

since depth (Bn_g_k) > d — g + 1, by induction. But we also have the

isomorphisms Ext *"> (£„_*-*, R) = Ext*~2 (Zn_g_k+ί, R) = Ext^2(Bn_g_k+l9 R)

= = Extg-k-ι{Bn.gf R). (This is possible by our 'increase' in g.) This

last module however, from the self-duality in the Koszul complex, is

nothing but Hk. Since Extg (Hn_g_k9 R) is also a Cohen-Macaulay module,

as in (1.1) we conclude that depth (Zn_g_k) > d — g + 2. •

It is clear that one only needs this strengthened (SD) to hold in the

lower half range of L In this regard we have

COROLLARY 1.5. Let I be a Cohen-Macaulay ideal with (SD). If I is

a syzygetίc ideal and I/P is a torsion-free R/I-module then H1 is a Cohen-

Macaulay module.

Proof. The syzygetic condition on I (cf. [15]) simply means that the

natural sequence

Hx > (Rliy > IIP > 0

is exact on the left. In such case Ht satisfies S2, and the argument above

goes through. •

Remark. If R is not a Gorenstein ring (1.5) does not always hold,

§ 2. Codimension three

We exhibit examples of Cohen-Macaulay ideals of height 3 in regular

local rings, generated by d-sequences, satisfying (SD) but not (SCM).

Since it is known that ideals in the linkage class of a complete intersec-

tion are (SCM) [10], we look at non-Gorenstein ideals. For an ideal /

with a presentation

0 >Z >Rn >I >0

one has the following exact sequences

0 > Ύor1 (I, R/I) > Z/IZ • (R/I)n > I\P > 0

and

Λ2I > Tor, (/, RII) > δ(I) > 0
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where δ(I) is defined by the associated exact sequence

0 • δ(I) • H, > (R/IY > I\P > 0 ,

cf. [15]. As remarked, / is called syzygetic if δ(I) = 0. If 2 is invertible

in R, we can further add that Tor^I, R/I) = Λ2I®δ(I).

THEOREM 2.1. Let R be a regular local ring of dimension at least 6

with 2R = R and let I be a Cohen-Macaulay ideal of height 3. Denote by

W the canonical module of Rjl and let W* = ϊlomR/I(W, R/I). Assume

that I is syzygetic on the punctured spectrum of R. If VF* has depth at

least 3, then I is syzygetic.

Proof. Let

0 > Rp — U Rm > Rn > I > 0

be a minimal resolution of I. By assumption δ(I) is a module of finite

length so that we only have to show that Tor! (I, R/I) has depth at least

1. Denote by Z the first-order syzygies of /. We have the exact sequence

0 • Tor2 (I, Rjl) > (R/iy ^ ^ i (R/I)m • ZjIZ • 0 .

On the other hand, W = coker (ψ*) = coker (ψ*®(B//)), so that Tor2(7, R/I)

is identified to W* (see [4, supplement] for general comparisons between

these two modules). It follows that Z/IZ—and Torj (I, R/I) along with i t—

has the required depth. •

For the next two corollaries the hypothesis 2R = R is in force.

COROLLARY 2.2. Let I be the ideal generated by the (n—ΐ)-sized (n>ί)

minors of a generic, symmetric n x n matrix. Then I is syzygetic.

Proof. The assumption is that R = k[[xtj]], where k = field and xίj9

1 < i, j < n, are indeterminates and the entries of a symmetric matrix = φ.

The hypothesis on the punctured spectrum follows by induction and the

discussion in [12] of such ideals. On the other hand, Goto [3] proved that

Rjl is integrally closed with divisor class group Z/(2), generated by the

class of W. •

Remark. Let I be the ideal generated by the 2 x 2 minors of a

generic 2 X 4 matrix. In view of the Plύcker relations, / is not syzygetic.

Since / is a complete intersection on the punctured spectrum of the corre-

sponding ring, W* must have depth 2.
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COROLLARY 2.3. Let I be the ideal generated by the 2 X 2 minors of a

generic, symmetric 3 x 3 matrix φ. Then:

(a) I is generated by a d-sequence, satisfies (SD) but not (SCM).

(b) The Rees algebra of I, &(I), is an integrally closed, Cohen-

Macaulay domain.

(c) The associated graded ring of I, gr7 (R), is a non-reduced, non-

Gorensteίn, Cohen-Macaulay ring.

Proof. Let d be the determinant of the matrix φ. It is easily verified

that dxυeP for each entry of φ; since d&P, the class of d in I/P is

annihilated by the maximal ideal of R. Since I is syzygetic by (2.2),

depth (H^ = 1. Furthermore, as d2 e J3, gr7(ί?) is non-reduced.

(a) We compute the depths of the modules Zi9 i = 1, 2 and 3, of the

Koszul complex on the canonical 6 generators of I. Since depth (H^ = 1,

depth (Z2) = 1 + depth (B,) = 3. On the other hand, depth (Z3) - 5 by (1.1),

so that I satisfies (SD) but not (SCM). Moreover, since I is also a com-

plete intersection on the punctured spectrum of R, the approximation

complex of I is acyclic and thus I is generated by a d-sequence (cf. [8]).

(b) and (c) follow now from [9, (6.5)], for the Cohen-Macaulay asser-

tions. That St(J) is integrally closed can be verified either by a direct

application of the Jacobian criterion—&(I) can be presented as a quotient

R[Tij]IJ, with J derived from the explicit resolution of I—or more rapidly

in the following manner. Since 0tiX) is Cohen-Macaulay, by Serre's nor-

mality criterion it suffices to check the localizations at its height 1 primes.

Let P be such a prime and p = P Pi R. Ί£ p Φ m = maximal ideal of R

there is no difficulty since Ip is a complete intersection. If p = m, P =

mR(I). Let Q be the corresponding prime of R[Ti3] — i.e. Q = miZtΓ^].

Looking at the image of J in the vector space (QIQ2)Q one easily gets that

it has the desired rank 5. •

The crucial hypothesis of (2.2) never occurs in codimension two.

THEOREM 2.4. Let R be a regular local ring and let I be a Cohen-

Macaulay ideal of height 2 which is generically a complete intersection. If

the class of W in the divisor class monoid of Rjl is 2-torsion, then I is a

complete intersection.

Proof. Let

0 >Rn-> >Rn >I >0
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be a resolution of J. Tensoring over with R/I we obtain the exact

sequence

0 —^> Tor, (I, RID > (R/iy-1 > H, > 0 ,

since I is syzygetic (cf. [15]). As in the proof of (2.1), Tor^J, R/I) = W*;

if the class of W is 2-torsion, we have the exact sequence

0 > W > (RII)nί > H, > 0 .

Since Hx is Cohen-Macaulay ([2]) and W is the canonical module of R/I,

this sequence will split—as it does so after reduction modulo a maximal

regular sequence of R/I. Therefore Rjl will be a Gorenstein ring, and

hence a complete intersection by Serre's criterion ([14]). Π

§ 3. Residually Cohen-Macaulay ideals

We prove here the naturality of sliding depth in a theorem of Huneke

([11]) on residual intersections. We also relate (SD) to various notions

of syzygetic sequences (cf. [7]).

In this section (R, m) is a Cohen-Macaulay local ring of dimension d

with infinite residue field.

DEFINITION 3.1. Let I be an ideal of R and let x = {xu , xs} be a

sequence of elements of /satisfying:

(1) h t ( ( Λ r ) : J ) > s > ^ = h t ( / ) .

(2 ) For all primes P z> I will ht (P) < s, one has

( i ) (*)p = / p ;

(ii) !;((*,)< ht(P).

I is said to be residually Cohen-Macaulay if for any such sequence, one has:

( a ) R/(x): I is Cohen-Macaulay of dimension d — s;

(b) ( ( * : i ) Π / = ( * ) ;

( c ) h t ( ( * ) : J ) > h t ((*):/)•

Remark 3.2. Let x = {x1} • • •, xs} I be a sequence satisfying (1) and

(2) above. Then:

( a ) ht(*) = ht(D;

(b) v((x)p) < ht (P) for all primes P 3 (*).

Proof, (a): Let P be a minimal prime of (x). Suppose IφP; then

((JC): I)p = (*)„. It will follow from (1) that ht (P) > s > ht(I).
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(b): If ht(P) > s, the assertion is trivial; if ht(P) < s, the proof of
(a) shows that P D I and (2) applies.

THEOREM 3.3. If I satisfies the sliding depth condition, then I is re-

sidually Cohen-Macaulay.

THEOREM 3.4. Suppose v(I)<ht(P) for all primes Pz)Z. The follow-

ing conditions are equivalent:

(a) I satisfies the sliding depth condition.

(b) I is residually Cohen-Macaulay.

(c) I can be generated by a d-sequence {xl9 ••-,*„} satisfying: (xί9

* •> #z+i)/(*u - - 9 Xi) is a Cohen-Macaulay module of dimension d — i9 for

Remark. The ideals occurring in the filtration of (3.4c) have the fol-

lowing homological properties. Assume that R is a regular local ring

and that I is a Cohen-Macaulay ideal of height g. Consider the sequences

0 >It >Ii+1 >Qt >0

where It = (xu , xt). We claim that the projective dimension of It =

i — 1 for each i < n. Suppose one inequality holds; pick j largest with

pd (Ij) < j — 1. Note that j < n — 1 since I = In is assumed Cohen-

Macaulay and Qn-t has projective dimension n — 1. Localize R at an

associated prime of Q ;; this implies that each QJ+fc = 0 for &>0, and thus

Ij+1 = = In. Consider the (localized) sequence

0—>I 3—>I j + 1—>Qj—>0;

since pd(Q^) = j and—now—pd(J j+1) = 0 or g — 1, we conclude pd(7;) =

j — 1, which is a contradiction. •

The proofs of (3.3) and (3.4) require some technical lemmata on slid-

ing depth.

LEMMA 3.5. Let {xu , xk} be a regular sequence in I. Let " ; "

denote the canonical epίmorphίsm R->R/(xu , xk). I satisfies (SD) //

and only if Γ satisfies (SD) (in R').

Proof. Complete the sequence to a generating set x = {xl9 , xn} of

I. The condition follows from the fact that dim (R') = d — k9 and the iso-

morphism (see [13]):
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Ht(xu , χn; R) = #,(*£+„ , <; R;). Π

LEMMA 3.6. Suppose 1^0, and Ip = 0 for all minimal primes P Z) L

Then

(a) (0:7) Π 7 = 0 ;

(b) ht((0:7) + 7 ) = l .

Moreover, if I satisfies (SD), Z/ιeτι so does 7*, ami 7?/0: 7 is Cohen-Macaulay.

(Here " * " denotes the canonical epίmorphίsm i?-^Λ/(0:1).)

Proof, (a) and (b) follow directly from the Abhyankar-Hartshorne

lemma ([5]).

To prove the second assertion of the lemma, we use the exact

sequences

0 >Lί >Hi(xu . . . , x n ; J B ) >Ht(xf,...9x*;R*) >0

of [11], where Lt is a direct sum of copies of 0:7.

If 7 satisfies (SD), then depth (0: I = Zn) — d. From the sequences

we have

depthHi(xf, - - -, x*;R) > d — n + i for i < n,

while by (b) ht(7*) = 1, and hence Hn(xf, - , x*; Λ*) = 0.

To see that i?/0: 7 is Cohen-Macaulay, note that J?/0: I — Bn_u where

n = v(I). The assertion then follows from the exact sequence

0 >Bn_1 >Zn_x >Hn_, >0

and the fact that Zn_1 is Cohen-Macaulay, cf. Section 1. •

LEMMA 3.7. Suppose I is a generated by a proper sequence x =

{xl9 - - , xn} (cf [7]). The following conditions are equivalent:

(a) 7 satisfies (SD).

(b) depth Rl(xu > xt) > d — ί, for i = 0, , n.

(c) depth (xl9 , xί+ί)l(xu , xd > d - i, for i = 0, , n - 1.

Proof Since x is a proper sequence, we have exact sequences

0 > Ht(xl9 ••-,*,) > Ht(xu , xj+1) > Ht.fa, , xj) > 0

for all i > l . If follows by descending induction t h a t if x satisfies (SD),

then depth Ht (xlf , xt) > d — / + 1 for / = 1, , n. It is also clear

that , conversely, this diagonal condition will imply t h a t depth Ht(xu 9

xn) ^ d — ί + 1 for ί > 1. We shall use this remark further in the proof.
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D e n o t e M, = ((xl9 >9χt): xi+1)/(xl9 , xτ) a n d Qt = (xl9 , ^ i + 1 ) / ( x : ,

• , xj. We have exact sequences:

( 2 ) 0 >M< >RI(x» ••.,*«) >Qt >0

and

( 3 ) o >Qι >R/(xl9 . . . , * , ) >RI(xl9 • , ^ + 1 ) >0.

(b) =̂> (c): Follows from the exact sequence (3).

(c)=Φ(a): Using the exact sequences (1), (2), (3) and the earlier re-

mark the assertion follows by induction on i.

(a) =£> (b): We show by induction on i that depth R/(xu , xn-t) > d —

n + i. For i — 0 this is our assumption. Suppose the assertion has been

proved for j = n — i < n, and assume that

depthR/(xl9 , x,.,) = k < d — j + 1.

Now by (1) we have depth M3_x > d — j + 1; hence the map

α: Extfc(i?/m, i?/(xly , Xj.J) >Extt(R/m, Qj^)

induced by (2) is injective. On the other hand (3) gives rise to the

mapping

β: Extfc (jR/m, Q7 _i) > Extfc (JS/m, Λ/fe, , x^))

that is injective as well. It follows that the composite βa is injective.

But this is a contradiction since βa is induced by multiplication by xj9

and is thus the null mapping. •

Proof of (3.3): Suppose I satisfies (SD), ht(I) = g and {xl9 ---9xs}9

s > q, is a sequence satisfying (1) and (2) of (3.1). All assertions depend

solely on the ideal (xl9 , xs); we may therefore switch to a different set

of generators. We use the general position argument of [1] (see [11]) to

obtain a system of generators {xί9 , xs} such that for all primes P ZD I

with g < ht (P) = k < s we have

( * ) \Xli ' ' ' 9 Xs)p = \Xl9 ' ' ' J %k)p

(see Remark (3.2b)).

We now proceed by induction on s. Let s — g. Since by (3.2a)
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ht (xu - - , xg) = ht (I) = g, it follows that {xl9 , xg) is a regular se-

quence. Denote by " ' " the epimorphism R-+Rj(xl9 , Λ:̂ ). According to

(3.5), 7' satisfies (SD) and therefore i?'/(0: Γ) is Cohen-Macaulay of di-

mension d-g (cf. 3.6). But R/(xu "-, xg): 1= J?7(0: Γ\ and hence

condition (a) in (3.1) is realized. For the conditions (b) and (c), we have

by (3.6) that (0: Γ) Π Γ = 0 and ht((O: Γ) + Γ) > 0, which translate as

desired.

We now assume that s > g.

1. Case g > 0: This is immediate from (*) and the reduction to the

ring R'. V and {x'l9 ••-,#£} satisfy all the hypotheses of the theorem. By

induction the statements (a), (b) and (c) of (3.1) hold then and it is easily

lifted to R.

2. Case g = 0: Let "*" denote the canonical epimorphism R-+RI0: I.

By (3.6) R* is Cohen-Macaulay of dimension d, 7* and {xf, , x*}

satisfy (1) of (3.1). As for (2), we only have to check that ((**, -,**):/*)

= ((#!, , * , ) : / )* . The inclusion ID is obvious. Let α* be an element

of (xf, , xf): I* ; then α/ c (x1? , xs) + 0: I. For x in J we can

therefore write ax = y + z, ye (xu , xs), z e 0: I. It follows that 2 =

αx — y lies in I Π 0: / = 0, by (3.6). Furthermore we now have ht(xf, , xf)

= ht(/*) > 0 and I* satisfies (SD); we are then back in case 1. Therefore

{xf, , xf} and I* satisfy (a), (b) and (c) of (3.1); again it is easy to lift

back to R. •

Proof of (3.4): (a)=>(b) is already proved more generally in (3.3).

(b)=>(c): Since v(Ip) < ht(P) for all primes P Z) 7, we may choose

generators {x19 , xn} of I such that

(i) (xl9 , xs)P = IP9 for all P D /, ht(P) < s, and

(ii) h t ί f c , '-,Xs):I)>s.

Since I is residually Cohen-Macaulay, we then have that for s > g —

ht(7), (a), (b) and (c) of (3.1) hold.

It is clear that {xl9 , xg] is a regular sequence. Next we show that

xs+ί is not a zero-divisor on R/(xl9 , xs): I for g < s < n. It will then

follow that (xl9 - -, xs): I = (x1? , xs): xs+1. Together with condition (b)

this will imply that {xl9 , xn} is a d-sequence.

Denote by t w " the canonical epimorphism R->Rj{xl9 ---9x9):I. (a)

and (c) imply the V contains a non-zero divisor z. Suppose x's+1 is a zero

divisor. Let y e 0 d ) : i 7 ; then 2ye(^ + 1 ). This shows that (x'+1): /' con-
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sists of zero-divisors. Since R is Cohen-Macaulay, this implies that

ht((*ί+ 1): Γ) = 0, contradicting (a). Since (xl9 , x8+1)/(xl9 , xs) = Rf

(xl9 - , xs); xs+ί = Rl(xly - - , xs): I, the implication is proved.

(c)φ(a): Apply (3.7). Π
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