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ON THE DIMENSION OF THE VECTOR SPACE C[θm]4

RICCARDO SALVATI MANNI

Introduction

Let τ denote a point of the Siegel upper-half space <3g, z be a (column)
vector in Cg and m a vector with m' resp. m" in Zg as its first resp.
second entry vectors, then the series

>*•* -&<¥(>+f M * + f ) + V f X- Ψ)) •
in which e(t) = exp (2π(—ί)1/2t), represents an holomorphic function on the
product <δg X Cg and it is called the theta function of characteristic m.
It follows from the definition

^+2»(r, z) - (-iy—0w(r, z) , ΘJτ, -z) = (-iy^"θm(τ, z) .

Therefore up to sign there are 22g theta functions and the function
θm(τ, z) is even or odd according as the characteristic m is even or odd.
If we put z = 0 we get the so called Thetanullwerte θm = ΘJτ, 0). It is well
known that θm Φ 0 if and only if m is even, thus we can consider the
graded ring C[θm] generated over C by the products of Thetanullwerte.
Let us consider the complex vector space C[θm]k) i.e. the vector space
spanned over C by the monomials of degree k in the Thetanullwerte, this
has finite dimension over C.

Our results are:

ii) All the quartic relations between the Thetanullwerte are conse-
quence of the Riemann's theta-formula.

The action of the symplectic group

For any associative ring R with 1 we shall denote by Sp(2g, R) the
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group of symplectic matrices of degree 2g with coefficients in R. Its ele-

ments can be written as

\c d

in which a, b, c, d are square matrices of degree g with coefficients in

R satisfying aιd — bιc = lg, aιb = bιa and cιd = dιc.

We have denoted by lg the identity matrix of degree g. For any

square matrix s with (i,jί)-th entry siά we shall denote by s0 the (column)

vector su as its i-th entry.

Let m be a vector in Z2g, we recall the formula

d -c\(m'\ /(c'

defines an action of Sp(2g, F2) (i.e. Sp(2g, Z) mod 2) on the set (F2)
2g.

For any m, ml9 m2, τnz in Z2g we put

e(m) = ( - 1 ) ^ - " , e ( m i , m2) - ( - I J ^ I ^ - ^ Ί V .

e(m1? τn2, ,ms) =

We observe β(m), e(mί9 m2), e(mu m2, m3) depend only on m, mu m2,

m3mod2. We say m is even or odd according as e(m) — 1 or —1.

For any m, n in (F2)
2g we shall denote by mn the unique element of

(F2)
2g satisfying

mn = m + n mod 2 .

With this law of composition e(m, ή) gives rise to a non-degenerate

skew-symmetric bicharacter of (F2)
2g X (F2)

2g.

A subspace iV of (F2)
2g is totally isotropic if e(m, ή) = 1 for every m, TZ

in N; in such a case the dimension k of iV is at most equal to g. More-

over, fixing k, we have that the number of totally isotropic subspaces of

dimension k is given by

cf. [7].

We say that a coset Nm in (F2)
2g is even or odd according as e(mά)

= 1 or —1 for every a in N. If such a "pure coset" exists than N is

necessarily totally isotropic. Furthermore if k is. the dimension of JV as



VECTOR SPACE ( C [ 0 m ] ) 4 101

above the number of pure coset is 22{g~k) and the number of even cosets

is

cf. [4] p. 213.

Let ml9 , mr be a sequence of (column) vectors in Z2g

9 we say that

it is essentially independent if for any choice of 1 < &Ί < < i2k < r,

where k > 1 we have

Ik

Σ
.7 = 1

mij = 0 mod 2.

The point is that e(m), e(ml9 m2, m3) or e(ml9 m2) and the property of being

essentially independent are Sp(2g, Z)-invariant and they characterize the

Sp(2g, Z)-orbits in (F2)
2g in the following sense:

LEMMA 1. Let mu , mr mod 2 and nl9 , nr mod 2 denote two

sequences in (F2)
2g both with r terms, then they are conjugate under the

action of Sp(2g, F2) if and only if essentially independent subsequences cor-

respond to each other and further

e(mi) = e(n<) and e(rni9 mj9 mk) = e(ni9 nj9 nk)

for all 1 < i <r and l<i<j<Ck<r.

A proof of this lemma can be found in [4] p. 212.

Using this lemma we remark if r = 4 and e(m^) = 1 for i — 1 4

we get exactly up to permutations 4, 8, 9 orbits when g is 1, resp 2, resp

> 3. We shall enumerate them from 1 to 9 and give below a charac-

terization and a representative of each orbit

772, = = m* = mA

m1 = m2 =

= m2 m3 =

x = m2, nti Φ m3

for 2 < i < j < 4

mα = m2, mt Φ nij

for 2 < j < j < 4
e(jn2, m3, τn4) = 1

= '(0 .0)

) (

γθ

1 = 1 4

•ON

0

yo o
(/nz, ra3, τn4) = 10 0 0 •

\o o lo oy

7° °\
(m2, m3, mt) = 10 0

loio oi
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mi Φ rrij for 1 < i < j < 4

rrii + m2 + m3 + m4 = 0 mod 2

nii Φ rrij for 1 < i < j < 4
T Î + τrc2 + m3 + m4 ^ 0 mod 2

for 1 < i < < £ < 4
Wj ^ m; for 1 < i < j < 4

/̂ i + 7̂ 2 + ^3 + ^4 ^ 0 mod 2

e(mίy m2, Jτiz)— ^(mu m2> # 0 — —

e(mίf m3, m 4 )= e(m2, m3, m 4 )= +

^ ί ^ rrij for 1 < i < j < 4
m2 + m2 + m3 + τn4 ^ 0 mod 2
e(mu nij, mk) — 1

for 1 < i < j < k < 4

(mu m2, m3, m4) =

(mly m.2, m3, m4) =

«/0 0

{10 0

10 0

VίlO O

/O O

lO O

O O

o

lO
110

o
o
1 0 . . .

(ml9 m2, m3, m,) =

O O 110•

ί/0 Ov

10 0

OIO O

0010-. 0'

We have denoted by ( | ) the division of the first entry vector from

the second.

The dimension of C[#J4

We know that Sp(2g, R) acts on &g X C8 as

α (r, 2) - ((az + b)(cτ + d)"1, f(cτ + d)"1^) .

We shall recall the transformation formula of theta functions

θβ.Jσ.(τ, z)) = k(σ) det (cτ + d)^e(φm{σ) + i ^(cr + d)-ιcz)ΘJ?, z)

in which

ί5n((j) = -H'm' 'bdm! + ^ ^ 'acm^ - 2 £m/ ΐ c m - (α ̂ ^(dm7 - c/n'O)

We take M = (m^ , mr) arbitrarily from Z2g and put

P(M) = 0 m i • • ^ m r .

We say P(M) a. monomial of degree r in the Thetanullwerte. Then, if

for any σ in Sp(2g, Z) we put

σ - M = (σ- mu , σ mr) ,

we get holomorphic functions P(M) on ©g" satisfying
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P(σ M){σ τ) = k(σY det (cτ + d)^e(± φmι (σ))p(M)(τ).

We know P(M) Φ 0 if and only if no m is odd 1 < i < r. We recall

that if m, a, b are arbitrary element of Z2g then we have the Riemann's

theta-formula for the Thetanullwerte:

cf. [4] p. 141.

We shall convert the formula into one with elements of (F2)
2g as sub-

scripts of θ. For that purpose we shall use the symbol

(α, 6, c) = e\\ t WMdί + a'/bW + a^b^cO

in which α, 6, c are elements of (Z)2g and α resp α^ are the i-th coef-

ficients of Q! and α7/. Then the theta-formula can be restated as follows

LEMMA 2. If m, α, b are in (F2)
2g then we have

(m, a, a)(m, a, b)(m, 6, b)θmθmaθmbθmab

= 2~g Σi e(m> n) ( ^ α> a)(n> a> b)(n> b> b)θnθnaθnbθnab
nG(F2)2S

A proof of this lemma can be found in [5].

From now on we shall assume e(m) = 1. All relation of degree k

between the Thetanullwerte can be written as

Σc,P(M,) = 0 ( 1 )

where Md — (m{, , mζ) j = 1 n.

We say the relation (1) irreducible if

a) Cj Φ 0 for each j .

b) If Σ?-i cu p(Mh) = ° w i t h l<Jt<n then Λ ^ ; fc for i φ k and

n = ΰ.

c) P(M,) ^ P(Mk) if # A.

Clearly we are interested only in studying irreducible relations. With

this notations we have the following

LEMMA 3. Let Y]nj=.\C5P{M^ denote a irreducible relation, the integral

symmetric matrices of degree 2g Mj lMj and Mt

 tMi are related as follows:

Mj <Mj = Mt 'M, mod 2 , 2 ,
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Moreover (2) is preserved under the action of Sp(2g, Z).

The proof of this lemma is similar to Lemma 2 in [3] and Lemma 2

in [6].

Now we are in the conditions of studying the quartic relations be-

tween the Thetanullwerte. They are completely described by the following

LEMMA 4. There are not irreducible quartic relations in which occur

monomials P(M) with mγ + m2 + m3 + ra4 =fc 0 (mod 2). Moreover the quartic

relations are of the form:

( i ) Σ
(ii)

(iii)

nφO fixed ( 3 )

cmθmθmaθmtθmat aφO, bφO, ab Φ 0 a, b fixed.

Proof. Let us assume Σy=i CJP(^J) — 0 a n ( i m\ + m\ + ml + m\^

0 mod 2 Applying the above lemma we can assume M1 equal to one of the

representative of the orbits 2, 4, 5, 7, 8, 9. We study only case 8, because

all the others are similar.

Thus we can assume

0

.
0

1
0
•

0

0

0

1
0

0

0

0

1
1
0
0

Then

M1 'M, =

1
0

.

0

o . .
o

. . .

0

•

0
1
0
0

•

1
1
0
0

• 0
• 0

o o
o o
o o
o o

mod 2 and (M, 'MX = mod 4 .
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This implies that if Mx and Ms satisfy (2) then Mx = Mj9 up to a permu-

tation of the columns, thus P(MX) = P(Mj). The second part of the lemma

can be proved in the same way.

We remark that the relations in (3) can be written as

Σ cm π «
Λrm even neNm

where N is a fixed totally isotropic subspace of dimension S = 0, 1, 2 and

2se = 4.

We want to compute the dimension of the C-vector space C[0TO]4. Let

Tg be the C-vector space spanned by the θ*m, we know

dimc Tg = (2* + 1)(2^-1 + l)/3 = π0 cf. [8].

Always from [8] we deduce that the dimension of the vector space spanned

by θ2

mθ2

ma, a fixed and a Φ 0, is (2*-1 + 1) (2*-2 + l)/3 - π, and the dimen-

sion of the vector space spanned by θmθmaθmhθmab, α, b fixed, a Φ b, a Φ 0,

6 Φ 0 is (2^-2 + 1) (2^-3 + l)/3 = π2. We recall we have μvvγ monomials

of the form θ2

mθ2

ma, a Φ 0 such that e(m) = e(ma) = 1, thus the dimension

of the vector space spanned by these monomials is

Moreover the monomials of the form θmθmaθmbθmab9 a Φ 0, b Φ 0, ab Φ 0

such that β(m) = e(mά) = e(mb) = e(mab) = 1 are μ2v2, thus the dimension

of the vector space spanned by these monomials is

A(2*- 2 + 1)(2^-3 + 1) = μ2π2 .

Finally we know that all monomials P(M) with mx + m2 + mz + ra4 ^ 0

mod 2 are linearly independent and they span a vector space of dimension

4

If £ is a positive integer we shall denote by Γ g{£) the normal subgroup

of Sp(2g, Z) defined by a = d = lg, J Ξ C Ξ O mod £; we shall further

denote by Γg(£, 2£) the subgroup of Γg(£) defined by (alb\ = (cιd\ =

0 mod 2£.

It is a well known fact that

for every σ in Γg(4, 8), then
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P(M)(σ τ) - det (cτ + d)2P(M)(τ) ( 4 )

for M = (mu m2, mz, m4).

We have learned from J. Igusa [2] the following facts:

(a) (4) holds for every σ in Γg(4) if and only if

(M'M)0 = 0 mod 2

(b) (4) holds for every σ in Γg(2, 4) if and only if

(M'M) = 0 mod 2

(c) (4) holds for every σ in Γg(2) if and only if M satisfies (2).

Now let Γ be a subgroup of Sp(2£, Z) such that Γ 3 Γg(4, 8) then

we can define (C[#m]4)
Γ as the vector space spanned by the quartic poly-

nomials invariant with respect to Γ. Moreover, always in [2] is proved

that if Γ 9Ξ Γg(2) then a polynomial is invariant with respect to Γ if each

of the monomials occurring in the sum is invariant too. Thus we proved

the following

THEOREM 1. ( i ) dim c (C[0J 4)Γ* ( 2 ) = πo

(i i) dim c

(iii) dim c

2

(iv) dimc C [ U = q - Σ Φi ~ πd
ί = 0

where q = ^ + X> + 3 ) .

We remark that (C[^m]4)
Γ^(1) = 0 since up to a constant factor an ele-

ment of this vector space has to be the symmetrization of θ\ that is 0.

Now we want to write all quartic relations using the Riemann's theta

formula. Let us introduce the symmetric 22g by 22g matrix of signs

Kg = U κ ) = e(mu m,) i, j = 1 22^

formed with respect to any fixed ordering of mf in (F2)
2g such that K^(K~)

is the matrix for e( , •) on the subset of the even (odd) characteristics.

We learned from [1] the following facts.

LEMMA 5. Kg has two eίgenspaces of dimension Z| = 2g~1 (2g ± 1)

with eigenvalues ± 2g respectively, while K* has eigenspaces of dimension

(2g ± ϊ)(2g~1 ± l)/3 and (22g - l)/3 with eigenvalues ±2g and T2g~ι respectively.

If KgV = —2g~1v for v = (Vi) in C*ί, then from the Riemann's theta

formula we get
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2] υjm, α, α)(ra, α, 6)(/n, b, b)θmθmaθmbθmab = 0.
ΊπeKg

Clearly the coefficients υ are defined on the even cosets Nm with N

= {α, α, 6, αί>}. Thus we can think of υm as a —2^~fc"1 eigenvector of Kg_k,

where k = dim iV.

Now counting the relations that we obtain, we can see that these are

all quartic relations between the Thetanullwerte. Thus we get

PROPOSITION 1. All the quartic relations between the Thetanullwerte

are consequence of the Rίemann's theta formula.
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