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CONFORMAL INVARIANCE OF WHITE NOISE

TAKEYUKI HIDA, KE-SEUNG LEE AND SHEU-SAN LEE

§ 0. Introduction

The remarkable link between the structure of the white noise and
that of the infinite dimensional rotation group has been exemplified by
various approaches in probability theory and harmonic analysis. Such
a link naturally becomes more intricate as the dimension of the time-
parameter space of the white noise increases. One of the powerful method
to illustrate this situation is to observe the structure of certain subgroups
of the infinite dimensional rotation group that come from the diffeomor-
phisms of the time-parameter space, that is the time change. Indeed,
those subgroups would shed light on the probabilistic meanings hidden
behind the usual formal observations. Moreover, the subgroups often
describe the way of dependency for Gaussian random fields formed from
the white noise as the time-parameter runs over the basic parameter space.

The main purpose of this note is to introduce finite dimensional sub-
groups of the infinite dimensional rotation group that have important
probabilistic meanings and to discuss their roles in probability theory. In
particular, we shall see that the conformal invariance of white noise can
be described in terms of the conformal group which is a finite dimensional
Lie subgroup of the infinite dimensional rotation group.

As is well known, the projectίve invariance of the ordinary Brownian
motion with one-dimensional parameter was discovered by P. Levy [7],
and a group theoretic as well as probabilistic interpretation was given in
[6]. One may naturally ask "what is the higher dimensional parameter
analogue of this property?" (See also [9]). This was the motivation of
our present work. Our approach is rather group theoretic in technique,
although it is probabilistic in spirit. For one thing, it is not so obvious
to introduce a d-dimensional (d > 2) parameter analogue of a Brownian
bridge, from which the discussion in [6] was originated. We shall there-
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fore give a plausible explanation to the reason why we take the conformal

group, in Section 2. Then, we propose a d-dimensional version of the

protective invariance of white noise (or of Brownian motion), namely the

conformal invariance of white noise.

It is our hope the present work would develop to serve in the study

of dependency for various Gaussian random fields that are formed from

white noise.

§ 1. Background

This section is devoted to a summary of basic notions and a short

review of some known results.

We start with a GeΓfand triple:

E c L\Rd) c £ * , d > 2 ,

where E is a nuclear space and E* is the dual space of E. Given a

characteristic functional

(1.1) C(ξ) = exp [-HIf||2] , ξeE, || ||:L\Rd)-norm ,(1.1) C(ξ) exp [ H I ? | | ] , ξeE, || | |:U(R)novm ,

a probability measure μ is introduced in the space E* in such a way that

(1.2) C(ξ) = f exp [ί(x, ξ)]dμ(x) .
J E*

In fact, the measure μ is nothing but the probability distribution of white

noise with time-parameter space Rd. Thus, each x in the space JE* with

μ may be thought of as a sample function of a white noise. The Hubert

space (L2) = L2(E*, μ) is therefore the collection of all functionals of a white

noise with finite variance. A member of (L2) is often called a Brownian

functional.

A rotation g of E is a linear isomorphism of E such that \\gξ\\ = ||f ||

for any ξeE. The collection of all rotations of E, denote it by O(E),

forms a group under the usual product. This group O(E) is called the

rotation group of E or the infinite dimensional rotation group when the

basic nuclear space is not necessarily mentioned.

Associated with g in O(E) is the adjoint g* determined by the relation

(1.3) <x,gξ) = <g*x,ξ> , ξeE9 xe

Set

O*(E*) = {g*,geO(E)}.
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Then O*(E*) is a group isomorphic to O(E) under the correspondence:

(1.4) g<->^eθ(£*), geO(E).

PROPOSITION 1. For any g* in O*(E*) the relation

g*μ = μ
holds.

This property is the first bridge that connects the measure μ of white

noise and the infinite dimensional rotation group.

Coming back to the Hubert space (L2), we take a particular member

(x, ξ}, ξ being fixed. It is a random variable on the probability space

(i?*, μ) and is Gaussian N(0, \\ξ\\2) in distribution. Suppose a sequence ξn

converges to / in D(Rd). Then {<x, ξn}} forms a Cauchy sequence in (L2),

so that there exists the limit of the <x, ξn} in the mean square sense. We

denote this limit by <#,/>, although it is no more continuous bilinear

functional, but additive in feL\Rd). Such a functional is often called a

stochastic bilinear form. It is still Gaussian in distribution.

§2. Conformal group

In this section we focus our attention to one-parameter subgroups of

O(E) that come from the change of time variables. Such a one-parameter

subgroup is often called a "whisker", and it is known that within the

group O(E) the family of whiskers is sitting entirely outside of the class

of subgroups isomorphic to finite dimensional rotation groups or even out-

side of their inductive limit.

In what follows the basic nuclear space E is taken to be the space

D0(Rd) defined by

(2.1) D0(Rd) = {ξ ξ and wξ are C-functions on Rd)

where w denotes the inversion:

(wξ)(u) = ξ(ul\uf)\u\-d , ueRd .

We shall see later that such a choice of E is fitting for our purpose.

Now start with the most important, and in fact very simple example

of a whisker; namely it is the shifts {S/, t e R1}, j = 1, 2, , d, given by

(2.2) (S/f)(M) = ξ(u - te3) , βj = (0, , 0,1, 0, . , 0) e Rd .

Such transformations certainly come from the transformation of u, indeed
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translations on Rd, and obviously each family {S/} = {S/, t e R1} forms a

one-parameter group:

Si Si = S/+s, ί, 5 e R1.

Take the adjoint (S/)* = ϊ7/ to see that, by Proposition 1, {Tt

j, t e R1} is a

flow on (i£*, μ) i.e. that it is a one-parameter group of /^-measure-preserving

transformations on U*; in addition, it is continuous in t. By using these

flows {27}, j = 1, , d, or alternatively the shifts {S/}'s, we are able to

describe random phenomena that are realized in (L2) and that change as

the time u goes by.

Another example, which is also interesting from a probabilistic view-

point, is the isotropic dilation {τt, t e R1} given by

(2.3) (τtξ)(μ) = ςie'uy**2 , teR1.

Obviously, it is a whisker. As for the probabilistic role of {rj we may

say, for instance, that the flow {τf, t e R1} gives an Ornstein-Uhlenbeck

process U(t) in such a manner that for any balanced set A a Rd

(2.4) U(t) = E7(ί, x) = <τ*x, Ẑ >, % :̂ indicator function of A ,

is a stationary Gaussian process with mean 0 and covariance function

\A\e~ιt]d/\ \A\ being the volume of the set A.

We have so far obtained two kinds of whiskers, and now one may

ask the relationship between them. The answer is that the shift is trans-

versal to the dilation, in terms of dynamical system. More explicitly, we

have

(2.5) Si'τs = τsS{eS , for every j .

In this sense these two whiskers are in a good relation.

We are now in search of other whiskers which are mutually in good

relations together with the shifts and the dilation. The idea of our ap-

proach to this problem is the same as in [6], but of course much compli-

cated. For our purpose we first establish the general form of a whisker

{gt}. By assumption gt has to be of the form

(2.6) (gtξ)(u) =
du

where ψt is an automorphism of R\ the one-point compactification of R\

satisfying



WHITE NOISE 91

(2.7) (Ψt°ψs)(u) = ψt+S(u),

which comes from the group property gtgs = gt+s. The equation (2.7) above

is the well-known translation equation, so that, by noting the inequality

1 = dim t < dim u = d, it can be solved as follows (see J. Aczel [1]):

(2.8) ψt(«) = /-•(/(«) + tc) ,

where / is an automorphism of Rd and c is a constant d-vector. Simple

computations give us an explicit expression of the infinitesimal generator

of the {gt} as is prescribed below.

THEOREM 1. The infinitesimal generator a of the one-parameter sub-

group of O(E) defined by (2.6) with ψt given by (2.8) is expressed in the

form

(2.9) a = (a, V) + 1 ( F , a), V = I* . ••,-/-) ,
2 \ aux oud J

where a = c^df'^dύ) evaluated at f(u), (df'^du) being the Jacobian of the

transformation f'1 and c being the constant appeared in (2.8).

Good relations among the whiskers have so far had only vague mean-

ing, but we now understand rigorously in such a way that they generate

a finite dimensional Lie subgroup of O(E). A powerful technique for the

investigation of this concept is the use of the Lie algebra generated by

those infinitesimal generators of the form (2.9). The algebra has to be

finite dimensional.

Associated with the shifts and the dilation are generators expressed

in the forms

sj = - ^ - S / U = -D, , Dj = J - , j = l,. ,d,
t U

r r tU (u,F) + f.

at Δ

The commutation relation of them is

(2.10) [τ, sj] = τsj - s,τ = - s, ,

which comes also from (2.5).

With this information we now find a possible class of infinitesimal

generators, involving s/s and τ, which generate a finite dimensional Lie
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algebra under the Lie product [a, β] = aβ — βa. First note that for a of

the form (2.9)

(2.11) [s,, a] = - φ,α, F) = W, D,a) ,

Dja = (Djau , Djad) ,

(2.12) [τ, a] = (a\ V) + W, <O ,

a! — X| UjDjd — α .

As in the case of [6] or of [3, § 5.3] we consider such α's as

A;

Then the coefficient vector a of a is an affine function of u. These α's

and the s/s form a finite dimensional (in fact, it is (d + d2)-dimensional)

Lie algebra, but the whole algebra is not interested probabilistically. We

take only the following generators of rotations out of them:

(2.13) rjtk = Uj-2- - uk-£-9 j Φ k, 1 < ; , k < d .
OUk OUj

The rotations {Tpk} of the parameter space Rd with generator Tjtk also

can define whiskers in an obvious way.

We then consider the relationship between τ and a of the form (2.9) with

a polynomial coefficient of degree 2; in particular, we consider the case where

[r, a] = λa

holds for some constant λ. For simplicity we may take λ = 1. Then we

can propose differential operators of the form

(2.14) Kj = 2us(u, V) - M 2 - 3 - + d.u39 j = 1, , d ,

which are infinitesimal generators of the special conformal transformations

(2.15) κ{ = II S/II; , t e R , = 1, . . , d .

The action of κ{ can be expressed in the form

(9 1 fiΊ(2.16)
' l-2tuj + f\uf '

- 2tUj + ί2|uf|-4/2

Collecting all the infinitesimal generators obtained so far, the list of
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commutation relations is given as follows:

[si, s j = 0 , [κt9 tcj] = θ, [τ, ritJ] = 0

[s<, * J = — 2r , [s,, A J = Wij (i Φ j)

[si9 τ] = s f , fo, τ] = — κt

Vttj9rjtl] = ruι,

lritJ, Tktl] = 0 , (i, j , &, I different)

Vij, * J = 0 , (i, , k different)

[r ί5j, sfc] - 0 , (£, j , A different)

It can easily be seen that a {d(d + 3)/2 + l}-dimensional real simple Lie

algebra, call it c(d), is generated by all the members appeared in the above

list, and be seen that the algebra is associated with the conformal group

C(d) which is generated by
d shifts {Si} , j = 1, . . . , d,

1 dilation {τt}

rotations {rj '} ί # j , 1 < i , J < d ,

cZ special conformal transformations {/c/}, j = 1, , d.

The group C{d) is certainly a subgroup of O(JE) involving whiskers.

Among them the rotation has obvious probabilistic role as a particular

transformation of the time variable u, while that of {&{}'& combining some

others will be elucidated in the following section. (See also [8].)

Next comes another important observation: If we add other differ-

ential operators of the form (2.9) with a coefficient polynomial of degree > 2

to the algebra c(d), then the generated algebra is to be infinite dimen-

sional. We can therefore prove, in line with our approach to discover

whiskers, the following

PROPOSITION 2 ([4]). The conformal group C(d) in our expression is

a maximal finite dimensional Lie subgroup of O(E).

Remark, i) It is known that C(d) is isomorphic to the Lie group

SOQ(d + 1, 1). In fact, C(d) may be viewed as a unitary representation

of SO(d+ 1,1).

ii) If we introduce the Iwasawa decomposition of C(d)
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C(d) = KAN,

then A is taken to be the isotropic dilation which is abelian and one-

dimensional regardless the number of the dimension of the parameter

space. We can herewith see a position of the dilation or an Ornstein-

Uhlenbeck process in the conformal invariance of white noise that will

be the topic of the next section.

§3. Conformal invariance

This section is devoted to the investigation of a particular class of

Gaussian random fields expressed as stochastic bilinear form in terms of

white noise by using the conformal group established in the last section.

Let S(p) denote a ball in Rd with diameter Qp, O being the origin

of Rd, i.e. the point p is antipodal to the origin with respect to the ball

S(p). It is noted that the class S = {S(p), p e Rd} is invariant under such

transformation acting on Rd as i) the isotropic dilation, ii) the rotations

and iii) the special conformal transformations like

teRd.
l-2(t,u)+\tf\uf

(Here one should not have confusion with the transformations acting on

E with the same name introduced in the last section.) Now remained that

any g* in O*(£J*) is a //-measure preserving transformation on E*. Given

a Gaussian random field {X(p)} = {X(p, x)} = (x9 f(p, •)>> peRd with a

suitable choice of a family {f(p, •)} of L2(Rd)-ΐunctions indexed by peRd,

we immediately see that {X(p, x), p e Rd} and {X(p, g*x), p e Rd} have the

same probability distribution, namely they are the same Gaussian random

field.

We are now in a position to introduce a special class of functions

on Rd indexed by Rd as well:

(3.1) ftp, u) = a(\p\).Xsw(u){(p, u) - \p\\uf}^\u\~^

and set

(3.2) Y(P, x) = <x, ftp, •)>,

where a(λ) is a real valued function on (0, 1) determined later. Because

of the singularity at the origin the above expression can not be an ordi-

nary stochastic bilinear form, however it does have meaning as a gener-

alized Brownian functional if the regularization technique due to GeΓfand
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and Shilov [2] is applied. For this topic we refer to the paper [5], and

here we only note that the kernel f(p, •) has singularity of polynomial

order at u — O and that for ξ with support apart from Q, Y(p, x) can be

evaluated at (x, ξ} to take the value f(p, ιΐ)ξ{u)du. The situation never

changes even if x is replaced by g*x with g e O(E). Such a family {Y(p, x)}

of generalized Brownian functionals is called a generalized Gaussian ran-

dom field.

The interesting part of its property is that if g is restricted to C(d)

and does not involve the shift, then the action g* turns out eventually

to be the transformation of the parameter p. Let us observe in what

follows the change of Y(p, x) under g* explicitly.

We restrict our attention to the case where the parameter p runs over

the unit ball S with center at origin and where we take the g's in C(d)

that carry S onto itself. As a result the boundary 3S is kept invariant

under such g's.

First apply (Λ:^)* to x to obtain

Y(p, (<)**) = <*, </(p, •)>,

where

) r z

withp - (pup2, .- ,p,),p ( 1 ) - (l+p^Y'p. Then apply (*/,), j = 2, 3, , d,

to x successively, we have

(3.3) Y(p, « ) * «)**> = <x, < " ' </(p, •)> ,

where

with p(d) = (1 + (p, t))-^ and (p, t) = ΣljPjh- It i s noted that we should

exclude such t as (p, t) = — 1.

Observe now that the image of the mapping

P ( d )

does not agree with S in general. We must therefore apply a dilation so

that the ball S is carried onto itself. Unfortunately, the magnification

rate depends on p, but it is constant if p is restricted to a radius of S.
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In view of this, we fix p° on dS, i.e. \p°\ = 1, and let p run over the

radius Op°. Set p = λp°, 0 < Λ< 1. Apply τ,, to /(p, •)> where s is deter-

mined by

(3.4) e (l + (p°, ί)) = 1 .

Then we have

(3.5) τsKtf(p, u) =

where * , = < , - • • < , ί = (tu ••-, td), and p' = e s(l + (p, t))-% Set

(3.6) α(A) = aλd'\l - ^ - d / 2 + 1 , 0 < λ < 1, a constant.

Then, the expression (3.5) can be rephrased in the form

(3.7) τsκtf(p, u) = f(p', u), p' = es(l + (p, ί))->p .

We are now almost ready to state our main theorem, but before doing

so, some notations are introduced. Let A be the same as in ii) of the

Remark at the end of Section 2, and let Ko and iVbe the subgroup (dC(d))

of rotations and that of the special conformal transformations, respectively.

Note that for any k e Ko, there exists a rotation k e SO(d) such that

(*/)(«) = f(ku) .

Let κt and τs be the transformations such that

— tu +

(ϊtf)(u)=f(e<u), t, ueR1.

THEOREM 2. Let Y = {Y(p, x); p e S} be the generalized Gaussian

random field given by (3.1) and (3.2) with a(\p\) as in (3.6). Let g be a

member of C(d) expressed in the form

g = kan, keK0, aeA, neN

with n = κt = A;fd A JJ αλzc? α = τ5. Fix a point p° on dS. If n and a

are taken so as the requirement (3.4) to be fulfilled, then

(3.8) Y(p, n*τ*fe*x) - ^p

1

o,ί)τs-^-1Y(p, x) , pe Όp° ,

where Y(p, •) w£^ p = 2p° is viewed as a function of λ so that ϊt and τ

can act on it.
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Proof. The role of the rotation in the expression (3.8) is obvious
since the kernel f(p, u) involves only the inner product and the norm in
Rd, so that we may ignore k. The rest of the proof follows immediately
from the result (3.7).

Set Y*(p, x) = Y(p, n*τfk*x). Then {Y*(p, x); p e S} is of course the
same random field (in distribution) as {Y(p, x); peS}, since n*, τf and
k* are ^-measure preserving transformations. The theorem above claims
that Y*(p, x) comes from Y(p, x) by applying suitable conformal transfor-
mations of the variable p. In view of this, we say that {Y(p, x)} describes
the so-to-speak "Conformal Invariance of white noise".

To close this section two remarks are now in order.
Remark, ϊ) Our theorem above may be thought of as a multidimen-

sional parameter analogue of the protective invariance of Brownian motion
discussed in [6], if we observe the formula (3.8). In particular, if p° is
taken to be (1,0, , 0), and if p is restricted to the one-dimensional sub-
space (pu 0, , 0), 0 < Pi < 1, then we can easily compare with the result
in [6].

ii) The unit ball can be changed to any ball with center at O, and
the same result follows with slight modification.
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