ON 3-DIMENSIONAL TERMINAL SINGULARITIES

SHIGEFUMI MORI

Introduction

Canonical and terminal singularities are introduced by M. Reid [5], [6]. He proved that 3-dimensional terminal singularities are cyclic quotient of smooth points or cDV points [6].

Let (X,p) be a 3-dimensional terminal singularity of index m with the associated Z_m -cover $(\tilde{X},\tilde{p})\to (X,p)$. If (X,p) is a cyclic quotient singularity (i. e. if (\tilde{X},\tilde{p}) is smooth), then it is known as Terminal Lemma (Danilov [3], D. Morrison-G. Stevens [4]) that there exist an integer a prime to m and coordinates x, y, z of (\tilde{X},\tilde{p}) which are Z_m -semi-invariants such that $\sigma(x)=\zeta x$, $\sigma(y)=\zeta^{-1}y$, $\sigma(x)=\zeta^a z$ for the standard generator σ of Z_m , where ζ is a primitive m-th root of 1. In this paper, we consider the case where (\tilde{X},\tilde{p}) is a singular point and m>1. The main results are Theorems 12, 23, 25 and Remarks 12.2, 23.1, 25.1. These, together with the Terminal Lemma above, almost classify 3-dimensional terminal singularities.

Since (\tilde{X}, \tilde{p}) is an isolated singularity (or smooth) and is a hypersurface defined by a Z_m -semi-invariant power series (say φ), all deformations of (X, p) are induced by deformations of φ as a Z_m -semi-invariant power series [2, §§ 9–10]. By Theorems 12, 23 and 25, one can see that there is a semi-invariant coordinate which has the same character as φ (e. g. z in Theorem 12, (1)), and hence every terminal singularity can be deformed to a cyclic quotient singularity (e. g. by $\varphi + \lambda z$ with parameter λ for the case Theorem 12, (1)). This is not necessarily the case with canonical singularities.

The author expresses his hearty thanks to Professor S. Iitaka who allowed him to use his word processor, and to Professor M. Ishida for his helpful comments and pointing out mistakes in the original version.

As for the notation, we say that a monomial (say u^2) appears in a

Received December 21, 1983.

power series (say φ) or φ contains u^2 if u^2 appears with a non-zero coefficient in the power series expansion of φ .

After having written up the paper, we learnt that Pinkham had proved similar (but slightly weaker) results (unpublished). We are grateful to Professor Kawamata, Pinkham, and Tsunoda for this information.

§1. Criteria for terminal and canonical singularities

Let C be the field of complex numbers, and $C\{x\}$ denotes the ring of convergent power series in variables x.

LEMMA 1. Let (X, p) be the germ of an n-dimensional terminal (resp. canonical) singularity of index m. Let (X', p') be the germ of an n-dimensional reduced Gorenstein variety and $f: (X', p') \to (X, p)$ a morphism such that f factors as

$$X' \xrightarrow{g} Y \xrightarrow{h} X$$

where h is a blow-up of X and g is quasi-finite. Let ω be a generator of $\omega_X^{(m)}$ at p. Then $f^*\omega$, as a meromorphic section of $\omega_X^{\otimes m}$, vanishes (resp. is regular) along an arbitrary irreducible divisor $D\ni p$ such that $\dim f(D)< n-1$.

Proof. Let D be a divisor as in the lemma. Let $\pi\colon \tilde{X}'\to X'$ be the normalization, and $X''\subset \tilde{X}'$ the complement of the singular locus of \tilde{X}' . Since $\operatorname{codim}_{\tilde{X}'}(\tilde{X}'-X'')\geq 2$ and since $(\pi^*\omega_{X'})|_{X''}\supset \Omega^n_{X''}$, we may replace (X',p') by (X'',p'') for some smooth p'' such that $\pi(p'')\in D$. In other words, we may assume that X' is smooth. Hence in the factorization $X'\to Y\to X$, we may assume that Y is normal and q=g(p) is a smooth point of Y (by moving p in D if necessary). Then $h^*\omega$ vanishes (resp. is regular) along g(D). Since $g\colon (X',p')\to (Y,q)$ is a morphism of manifolds, $f^*\omega=g^*h^*\omega$ vanishes (resp. is regular) along D.

Let (X, p) be a 3-dimensional canonical singularity of index m such that, for the associated Z_m -cover $\pi \colon (X', p') \to (X, p)$ [5, 6], (X', p') is a hypersurface singularity. Then there exist Z_m -semi-invariants x_1, \dots, x_4 in the analytic local ring $\mathcal{O}_{X', p'}^h$ such that

$$\rho(x_i) = \zeta^{c_i} x_i \ (i = 1, \cdots, 4)$$

$$(1.2) \mathcal{O}^h_{X',p'} \cong C\{x_1,\cdots,x_4\}/(\varphi),$$

where ρ (resp. ζ) is a generator of Z_m (resp. μ_m), $c=(c_1, \dots, c_4) \in Z^4$ be such that $gcd(c, m)=g.c.d.\{c_1, \dots, c_4, m\}=1$, and φ is a semi-invariant. Since π is unramified outside p', one has

$${q \in X' \mid x_i(q) = 0 \quad \text{if } c_i \not\equiv 0 \pmod{d}} = {p'}$$

for any divisor d > 1 of m. Hence, for any divisor d > 1 of m, one has

$$(1.3) gcd(c, m) = 1, \#\{i \in [1, 4] | c_i \equiv 0 \pmod{d}\} \le 1.$$

Now we reverse the process:

Notation (2.0). Let Z_m act on $C\{x_1, \dots, x_4\}$ by (1.1) with ρ (resp. ζ) a generator of Z_m (resp. μ_m), where $c \in Z^4$ satisfies (1.3) for an arbitrary divisor d > 1 of m. Let φ be a semi-invariant of $C\{x_1, \dots, x_4\}$ such that $C\{x_1, \dots, x_4\}/(\varphi)$ is normal, and let (X', p') be the germ of a hypersurface at 0 defined by (1.2), and $(X, p) = (X', p')/Z_m$.

Then we have

Theorem 2. Under Notation (2.0), let σ be an arbitrary element of Z_m , and $a=(a_1,\dots,a_4)$ a 4-ple of arbitrary integers ≥ 0 such that $\sigma(x_i)=\zeta^{a_i}x_i$ ($i=1,\dots,4$) and that at least three of a_1,\dots,a_4 are positive. Let $e(a)=\max\{j|\varphi(x_1t^{a_1},\dots,x_4t^{a_4})\equiv 0\pmod{t^j}\}$ and $|a|=a_1+\dots+a_4$. Then if (X,p) is terminal (resp. canonical), then |a|-m-e(a)>0 (resp. ≥ 0).

Proof. (2.1) Let X_0' be C^4 with global coordinates x_1, \dots, x_4 , and let Z_m act on X_0' by (1.1). Then $T' = (C^*)^4 \cap C^4 = X_0'$ is an affine torus embedding, and to the affine torus embedding $T' \subset X_0'$ correspond the group $\Gamma(T') \cong Z^4$ of 1 parameter subgroups of T' and a cone $C(X_0')$ of $\Gamma(T') \otimes_Z Q$. Let $\Gamma(T') = Z^4$ and $C(X_0') = Q_+^4$ in the standard way, where $Q_+ = \{q \in Q \mid q \geq 0\}$. Then, to $T = T'/Z_m \to X_0 = X_0'/Z_m$, correspond $\Gamma(T) = Z^4 + Z c/m$ and $C(X_0) = Q_+^4$. By the definition of a, there exist integers β, γ such that $\beta c_i \equiv \gamma a_i \mod m$, where γ is prime to m. Hence $a/m \in \Gamma(T)$.

(2.2) Let φ' be a convergent power series defined by

$$\varphi'(w, y_1, \dots, y_4) = w^{-e(a)} \cdot \varphi(y_1 w^{a_1}, \dots, y_4 w^{a_4}).$$

Then $\varphi'(0, y)$ is a non-zero weighted homogeneous polynomial of weight e(a) in y_1, \dots, y_4 for weight $y_i = a_i$ (cf. (*) below). Since y_1y_2 and y_3y_4 are coprime, $\varphi'(0, y)$ has a prime factor which is prime to y_1y_2 or y_3y_4 . By symmetry, we may assume that $\varphi'(0, y)$ has a prime factor prime to y_1y_2 and $a_1 > 0$. Since

$$\varphi'(0, y_1 t^{a_1}, \dots, y_4 t^{a_4}) = t^{e(a)} \varphi'(0, y_1, \dots, y_4),$$

one can find r_2 , r_3 , $r_4 \in C$ such that

$$\varphi'(0, 1, r_2, r_3, r_4) = 0$$
.

(2.3) Let $e_2 = (0, 1, 0, 0)$, $e_3 = (0, 0, 1, 0)$, $e_4 = (0, 0, 0, 1) \in \mathbb{Z}^4$, and let C be the cone spanned by a, e_2 , e_3 , e_4 in \mathbb{Q}^4 and $M = \mathbb{Z}e_2 \oplus \mathbb{Z}e_3 \oplus \mathbb{Z}e_4 \subset \mathbb{Q}^4$. Then the commutative diagram

$$egin{aligned} Za \oplus M & \longrightarrow Zrac{a}{m} \oplus M \ & & \downarrow \ & & \downarrow \ & Z^{_4} & \longrightarrow & Z^{_4} + Zrac{c}{m} \end{aligned}$$

gives a commutative diagram of tori:

$$R' \longrightarrow R$$

$$\downarrow \qquad \qquad \downarrow$$

$$T' \longrightarrow T$$

and $C \subset \Gamma(R') \oplus Q$ gives a torus embedding

$$R' \subset Z'_0 = \operatorname{Spec} C[w, \overline{x}_2, \overline{x}_3, \overline{x}_4]$$

where a, e_2 , e_3 , e_4 of $\Gamma(R')$ correspond to w, \bar{x}_2 , \bar{x}_3 , \bar{x}_4 . Then

$$R \subset Z_0 = \operatorname{Spec} C[\overline{x}_1, \overline{x}_2, \overline{x}_3, \overline{x}_4]$$

with $\bar{x}_1 = w^m$, is the torus embedding corresponding to $C \subset \Gamma(R) \otimes Q$, and commutative diagrams

$$\Gamma(R') \otimes Q \longrightarrow \Gamma(R) \otimes Q \longrightarrow \Gamma(T) \otimes Q$$

$$\bigcup_{C} \qquad \bigcup_{C} \qquad \bigcup_{Q_{+}^{4}}$$

and

$$\begin{array}{ccc} \Gamma(R') \otimes \mathbf{Q} \longrightarrow \Gamma(T') \otimes \mathbf{Q} \longrightarrow \Gamma(T) \otimes \mathbf{Q} \\ & \bigcup & \bigcup & \bigcup \\ C & \longrightarrow & \mathbf{Q}_+^t & \longrightarrow & \mathbf{Q}_+^t \end{array}$$

give a commutative diagram

$$Z'_0 \longrightarrow Z_0$$

$$f' \downarrow \qquad f \downarrow$$

$$X'_0 \longrightarrow X_0$$

where f' is given by

$$x_1 = w^{a_1}, \quad x_2 = \overline{x}_2 w^{a_2}, \quad x_3 = \overline{x}_3 w^{a_3}, \quad x_4 = \overline{x}_4 w^{a_4}.$$

If $T \subset Y_0$ is the torus embedding corresponding to $C \subset \Gamma(T) \otimes Q$, then $Z_0 \to Y_0$ is finite and $Y_0 \to X_0$ is a blow-up.

(2.4) Let $s'=V(w, \bar{x}_2-r_2, \bar{x}_3-r_3, \bar{x}_4-r_4) \in Z_0'$ (resp. s= the image of s' in Z_0), and let

$$\psi(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4) = w^{-e(a)} \cdot \varphi(w^{a_1}, \bar{x}_2 w^{a_2}, \bar{x}_3 w^{a_3}, \bar{x}_4^{a_4})$$

(note that the right hand side is a holomorphic function in \bar{x}_1 , \bar{x}_2 , \bar{x}_3 , \bar{x}_4 defined near s.) Let $(Z,s) \subset (Z_0,s)$ (resp. $(Z',s') \subset (Z'_0,s')$) be defined by $\psi = 0$. Then f (resp. f') induces $f: (Z,s) \to (X,p)$ (resp. $f': (Z',s') \to (X',p')$), which satisfies the conditions of Lemma 1 by (2.3). We have the following commutative diagram of natural morphisms:

$$Z' \xrightarrow{\tau} Z$$

$$f' \downarrow \qquad f \downarrow \qquad \qquad \downarrow$$

$$X' \xrightarrow{\pi} X$$

By Poincaré residue formula,

$$egin{aligned} \omega_{\scriptscriptstyle X'} &= \operatorname{Res} rac{dx_1 \wedge \, dx_2 \wedge \, dx_3 \wedge \, dx_4}{arphi} = - \, rac{dx_1 \wedge \, dx_2 \wedge \, dx_3}{arphi_4} \,, \ f'^* \omega_{\scriptscriptstyle X'} &= - \, rac{d(w^{a_1}) \wedge d(\overline{x}_2 w^{a_2}) \wedge d(\overline{x}_3 w^{a_3})}{f'^* arphi_4} \,, \end{aligned}$$

where $\varphi_4 = \partial \varphi / \partial x_4$. By calculation, one sees

$$d(w^{a_1}) \wedge d(\overline{x}_2w^{a_2}) \wedge d(\overline{x}_3w^{a_3}) = a_1 \cdot w^{a_1 + a_2 + a_3 - 1} \cdot dw \wedge d\overline{x}_2 \wedge d\overline{x}_3$$
.

Since $f'^*\varphi = w^{e(a)}\psi$, it follows from the chain rule that

$$(f'^*\varphi_{\scriptscriptstyle A})\cdot w^{a_{\scriptscriptstyle A}}=w^{e(a)}\psi_{\scriptscriptstyle A}$$
.

where $\psi_4 = \partial \psi / \partial \bar{x}_4$. Thus

$$f'^*w_{X'} = -a_1 \cdot w^{|a|-e(a)-1} \cdot \frac{dw \wedge d\overline{x}_2 \wedge d\overline{x}_3}{\psi_4}.$$

One also has

$$\omega_{Z'} = \operatorname{Res} rac{dw \wedge d\overline{x}_2 \wedge d\overline{x}_3 \wedge d\overline{x}_4}{\psi} = -rac{dw \wedge d\overline{x}_2 \wedge d\overline{x}_3}{\psi_4} \, .$$

One has

$$f'^*\omega_{X'} = a_1 \cdot w^{|a|-e(a)-1}\omega_{Z'}$$
.

By construction, we have

$$\tau^*\omega_z=m\cdot w^{m-1}\omega_{z'}.$$

Hence we have

$$f'^*\omega_{X'}=(a_1/m)\cdot w^{|a|-e(a)-m}\tau^*\omega_Z.$$

Since $\pi\colon X'\to X$ is unramified in codimension 1 by (1.3), one has $\pi^*\omega_X^{(m)}=$ (unit) $\omega_{X'}^{\otimes m}$ near p' (by abuse of language, $\omega_X^{(m)}$ denotes one of its generators at p), and

$$f^*\omega_{\scriptscriptstyle X}^{\scriptscriptstyle (m)}=({
m unit})\!\cdot\! ar x_1^{\,\mid\, a\,\mid\, -\, e(a)\,-\, m}\omega_{\scriptscriptstyle Z}^{\otimes m}$$
 near s .

Since $\{\bar{x}_1 = 0\}$ is a divisor through s collapsed by f, one has |a| - e - m > 0 (resp. ≥ 0).

Under Notation (2.0), let $\chi_1, \dots, \chi_r \in C\{x_1, \dots, x_4\}$ $(r \geq 2)$ be Z_m -semi-invariants with the same character such that $\chi_i C\{x_1, \dots, x_4\} = u_i C\{x_1, \dots, x_4\}$ for some monomial u_i in x_1, \dots, x_4 $(i = 1, \dots, r)$ and that u_1, \dots, u_r are linearly independent over C and the locus defined by $\chi_1 = \dots = \chi_r = 0$ is of dimension ≤ 1 . Let Φ be the linear system generated by χ_1, \dots, χ_r , and assume that our φ is written as

$$\varphi = \sum_{i=1}^r \lambda_i \chi_i$$

for some $\lambda = (\lambda_1, \dots, \lambda_r) \in (C^*)^r$. By Bertini's theorem, $\varphi = 0$ defines a normal variety for general λ since the base locus of Φ is of dimension ≤ 1 . Let σ , α , ζ be as in Theorem 2, then the value of $e(\alpha)$ given in Theorem 2 does not depend on the choice of $\lambda \in (C^*)^r$. Then under the notation of Theorem 2, the following is the corollary to the proof of Theorem 2.

COROLLARY 2.1. If |a|-m-e(a)>0 (resp. ≥ 0) for arbitrary σ , a, ζ as in Theorem 2, then (X,p) is terminal (resp. canonical) for general λ . If (X,p) has an isolated singular point at p (resp. canonical singularity outside p) for general λ , then one can add the extra conditions $a_1, \dots, a_4>0$ on a in the statement above.

Proof. Let $X_0 = C^4/\mathbb{Z}_m$ with respect to the action given above. Then Φ induces a linear system Φ_0 (of Weil divisors) in a neighborhood of 0 in X_0 which is free from fixed components. By the conditions on χ_i 's, there exists a toric resolution $h: U_0 \to X_0$ such that the proper transform Ψ_0 of Φ_0 to U_0 is free from base points (principalizer of the coherent sheaf associated to Φ_0). Then a general member X of Φ_0 is normal at 0 and its proper transform $U = h^{-1}[X]$ is smooth in a neighborhood of $h^{-1}(0)$. Thus it is enough to show that $h^*\omega_X^{(m)}$, as a meromorphic section of $\omega_U^{\otimes m}$, vanishes (resp. is regular) along $D_0 \cap U$, where $D_0 \subset U_0$ is an arbitrary exceptional divisor of h. We now use the notation of the proof of Theorem 2. Let L_+ be the 1-simplex $\subset Q_+^4 \subset \Gamma(T) \otimes Q$ corresponding to D_0 . Let $a=(a_1,\cdots,a_4)$ be a 4-ple of integers ≥ 0 such that Za/m= $QL_+ \cap \Gamma(T)$. By (1.3), the singular locus of X_0 is of dimension ≤ 1 , and the base locus of Φ_0 is of dimension ≤ 1 . Thus one may assume that the image of D_0 to X_0 is of dimension ≤ 1 , whence at least 3 of a_1, \dots, a_4 Then the notation of (2.3) can be used, and the torus embedding $T \subset V_0 = T \cup D_0$ corresponds to $L_+ \subset \Gamma(T) \otimes Q$. $L_+ \subset \Gamma(R) \otimes Q$ corresponds to the open subset W_0 of Z_0 defined by $\bar{x}_3\bar{x}_4\neq 0$. Since Za/m= $Qa/m \cap \Gamma(T)$, $\{\overline{x}_1 = 0\}$ is not in the branch locus of $W_0 \to V_0$. Let V, Wbe the proper transforms of X to V_0 and W_0 , respectively. Then, since Ψ_0 is free from base points, $g: W \to V$ is unramified over general points of arbitrary irreducible components of $V \cap D_0$. Thus by

$$g^*h^*\omega_x^{(m)} = (\text{unit}) \cdot \bar{x}_1^{|a|-e(a)-m}\omega_w^{\otimes m} \quad \text{along} \quad W \cap D_0$$

(2.4), we have Corollary 2.1.

q.e.d.

Corollary 2.2. Under the assumptions of Theorem 2, assume that m is odd, and

$$\varphi = x_1^2 + f(x_2, x_3, x_4) \qquad (f \in C\{x_2, x_3, x_4\}) .$$

Let $n = \max\{j \mid \varphi(x_2t^{a_2}, x_3t^{a_3}, x_4t^{a_4}) \equiv 0 \ (t^j)\}$. Then

$$a_2+a_3+a_4> ext{(resp.} \geq) egin{cases} m+n/2 & ext{if n is even} \ m/2+n/2 & ext{if n is odd} \ . \end{cases}$$

Proof. One has $2 \cdot wt \ x_1 \equiv n \pmod{m}$. If n is even, then we choose $a_1 = n/2$, keeping a_2 , a_3 , a_4 the same. Then $n/2 + a_2 + a_3 + a_4 > (\text{resp.} \ge)$ m+n. If n is odd, then we choose $a_1 = (m+n)/2$, keeping a_2 , a_3 , a_4 the same. Then $(n+m)/2 + a_2 + a_3 + a_4 > (\text{resp.} \ge) m+n$. q.e.d.

For the approximation of φ , we need the standard:

THEOREM 3. Let $\varphi \in C\{x\}$, where $x = (x_1, x_2, x_3, x_4)$. Assume that φ has an isolated singular point at (0), and that Z_m acts on $C\{x\}$ in such a way that x_1, x_2, x_3, x_4 , and φ are semi-invariants. Then for an arbitrary integer b > 0, there exists an integer n > 0 such that, for an arbitrary semi-invariant $\psi \in C\{x\}$ with the property $\psi \equiv \varphi(x)^n$, there exists an analytic C-automorphism σ of $C\{x\}$ commuting with Z_m -action (will be called a Z_m -automorphism, for short) such that $\sigma(\varphi) = \psi C$, $\sigma \equiv \operatorname{id} \operatorname{modulo}(x)^b$.

This can be proved by applying the argument of [1, Lemma (5.11)] to the equation $\varphi(y) - \psi(x) = 0$ in unknown variables $y = (y_1, y_2, y_3, y_4)$ with approximate solution $y^0 = x$, where m = 1 and N = 4.

COROLLARY 4. Under the notation and the assumptions of Theorem 3, if $\varphi \in (x)^2$ and if x_1x_2 appears in φ and

$$(\partial^2\varphi/\partial x_1^2(0))(\partial^2\varphi/\partial x_2^2(0)) - (\partial^2\varphi/\partial x_1\partial x_2(0))^2 \neq 0,$$

then there exist a Z_m -automorphism σ of $C\{x\}$ such that

$$\sigma(x_3) - x_3$$
, $\sigma(x_4) - x_4 \in (x)^2$,
 $\sigma(\varphi) = x_1 x_2 + f(x_3, x_4)$ for some $f \in C\{x_3, x_4\}$.

§ 2. Notation and terminal singularities of type cA

Assumption 5. Let φ be an element of $(x, y, z, u)^2 C\{x, y, z, u\}$ which has a Z_m -action (m > 1) such that x, y, z, u, φ are semi-invariants. Assume that φ has an isolated cDV singularity at the origin (0), that the quotient of $\{\varphi = 0\}$ by Z_m has a terminal singularity at (0), and that the action of Z_m is free on U - (0), where $U \ni (0)$ is an open set of $\{\varphi = 0\}$. By a Z_m -automorphism, we mean an analytic C-automorphism of $C\{x, y, z, u\}$ commuting with Z_m -action unless otherwise mentioned. We will keep these assumptions and notation, unless otherwise mentioned.

NOTATION 6. Fixing a primitive m-th root ζ of 1, and given the Z_m -action above, we associate to each $\sigma \in Z_m$ a weight modulo m (denoted

by σ -wt mod m); σ - $wt(x) \equiv a(\sigma)$, \cdots , σ - $wt(u) \equiv d(\sigma)$ (mod m) are determined by $\sigma(x) = \zeta^{a(\sigma)} \cdot x$, \cdots , $\sigma(u) = \zeta^{d(\sigma)} \cdot u$. If σ is a generator of Z_m , we may simply call σ -wt a wt, if there is no danger of confusion. Order v associates numbers a, b, c, d > 0 to x, y, z, u such that $a \equiv \sigma$ -wt(x), \cdots , $d \equiv \sigma$ -wt(u) mod m for some $\sigma \in Z_m$. Then the order of f, or v(f) is, by definition, max $\{n \mid f(xt^a, yt^b, zt^c, ut^d) \equiv 0 \ (t^n)\}$. We write $v \equiv \sigma$ -wt (mod m) if $v(x) \equiv wt \ x$, \cdots , $v(u) \equiv wt \ u$ (mod m). For two orders v and v', we write $v \equiv v'$ (mod m) if $v(x) \equiv v'(x)$, \cdots , $v(u) \equiv v'(u)$ (mod m). For a positive integer a and a number b (or, $b \in R/aZ$), (b)a denotes the number c such that $c - b \in aZ$ and $0 < c \leq a$. We define order $v = (\sigma$ - $wt)_m$ by $v(x) = (\sigma$ - $wt \ x)_m$, \cdots , $v(u) = (\sigma$ - $wt \ u)_m$.

Remark 7. Assumption 5 implies:

- (1) if e = (m, wt x) > 1, then some power of x appears in φ and $wt \varphi \equiv 0 \pmod{e}$. Similar assertion holds also for y, z, u. (Since the action on x-axis is not free, $\{\varphi = 0\}$ does not contain x-axis.)
- (2) $(m, wt \ x, wt \ y) = 1$. Similar assertion holds also for any other two distinct coordinate functions. (Otherwise the action is not free on $\{\varphi = 0\} \cap xy$ -plane which has dimension > 0 at (0)).

Theorem 8. If xy appears in φ and

$$(\partial^2 \varphi/\partial x^2(0))(\partial^2 \varphi/\partial y^2(0)) - (\partial^2 \varphi/\partial x \partial y(0))^2 \neq 0$$
,

then one of the following holds (after exchanging z, u if necessary):

- (1) $wt x + wt y \equiv wt z \equiv 0 \mod m$, and wt u, wt x, wt y are prime to m.
- (2) m = 4 and there exists a generator σ of Z_4 such that σ -wts of x, y, z, u are $1, 1, 2, 3 \mod 4$ (see Supplement 8.1).

Proof. By Corollary 4, we may assume $\varphi = xy + f(z, u)$, where $f \in C$ $\{z, u\}$. Let $e = (wt x + wt y)_m$, p = (e, m).

(8.1) Claim: One of wt z, wt u is a multiple of p, and the other is prime to m. wt x, wt y are prime to m.

Let wt be σ -wt. Assume that σ -wt z, σ -wt $u \not\equiv 0$ (p) (and hence p > 1). If necessary, we will replace σ by $-\sigma$ to get

$$(\sigma - wt z)_n + (\sigma - wt u)_n \leq p$$
.

By Remark 7, (2), and

$$\sigma$$
-wt $x + \sigma$ -wt $y \equiv 0$ (p),

one sees that σ -wt x and σ -wt y are prime to p. Hence

$$(\sigma\text{-}wt x)_p + (\sigma\text{-}wt y)_p = p.$$

Let v be the order $(m/p) \cdot (\sigma - wt)_p = ((m/p) \cdot \sigma - wt)_m$. Then $v(\varphi) = m$ and v(x) + v(y) = m, $v(z) + v(u) \le m$. Thus $v(x) + v(y) + v(z) + v(u) \le m + v(\varphi)$, which is a contradiction to Theorem 2, and hence $\sigma - wt \ z \equiv 0$ or $\sigma - wt \ u \equiv 0$ (p). By symmetry of z, u, we may assume that $\sigma - wt \ z \equiv 0$ (p). Let $n = (\sigma - wt \ u, m)$. We will show that n = 1. If n > 1 then by Remark 7, (1), $wt \ \varphi \equiv 0$ (n). Thus $n \mid p$ and $wt \ z \equiv wt \ u \equiv 0$ (n). This contradicts Remark 7, (2). Thus n = 1. By Remark 7, (1), (2), if $n = (m, \sigma - wt \ x) > 1$, then $wt \ x + wt \ y \equiv wt \ \varphi \equiv 0$ (n) and $n = (m, \sigma - wt \ x, \sigma - wt \ y)$. Thus n = 1 by Remark 7, (2). Similar argument shows $(m, \sigma - wt \ y) = 1$. This proves (8.1).

(8.2) Claim: By symmetry of z, u, we may assume that $wt z \equiv 0$ (p) and wt u is prime to m. Then p = (wt z, m), and $f(z, u) = g(z, u^p)$ for some convergent power series g.

Let n = (wt z, m). Then $p \mid n$. By Remark 7, (1), one has wt x + wt y = 0 (n), whence $n \mid p$ and n = p.

(8.3) Claim: If p < m and $\rho \in \mathbb{Z}_m$ satisfies

$$\rho$$
-wt $x + \rho$ -wt $y \equiv \pm p(m)$,

then ρ -wt x, ρ -wt y, ρ -wt z, ρ -wt $u \not\equiv 0$ (m).

If ρ - $wt \equiv i \cdot wt$ (m), then $i \cdot e \equiv \pm p$ (m). Thus $i \not\equiv 0$ (m), whence $i \cdot wt \ x$, $i \cdot wt \ y$, $i \cdot wt \ u \not\equiv 0$ (m) by (8.1), (8.2). One also sees that i is prime to m/p > 1. Thus by (8.2), ρ - $wt \ z \equiv i \cdot (wt \ z) \not\equiv 0$ (m).

(8.4) Claim: Assume p < m. The number of elements $\rho \in \mathbb{Z}_m$ such that

(*)
$$\rho\text{-}wt \ x + \rho\text{-}wt \ y \equiv \pm p \ (m) \ , \quad \text{and}$$

$$(**) \qquad (\rho - wt z)_m + (\rho - wt u)_m \le m$$

is $\geq p$ if m > 2p, and $\geq p/2$ if m = 2p.

As in (8.3), the number of ρ 's with (*) is the number of solutions i ($0 \le i < m$) for $i \cdot e = \pm p$ (m), which is 2p if m > 2p, p if m = 2p. Now involution $\iota: \rho \to -\rho$ acts on $\Sigma = {\rho \text{ with (*)}}$ and ρ or $-\rho$ satisfies (**) by (8.3). Thus (8.4) is settled.

(8.5) If p = m, then (1) holds. We may now assume p < m, and let ρ be an arbitrary element with (*), (**). Let $v = (\rho - wt)_m$, then by (8.3),

$$v(x) + v(y) = p, m \pm p$$
, or $2m - p$,
 $v(z) + v(u) \le m$.

By Theorem 2,

$$m + v(x) + v(y) \ge v(x) + v(y) + v(z) + v(u) > m + v(\varphi)$$

i.e. $v(\varphi) < v(x) + v(y)$. Thus there are two cases: (8.5.1) $v(\varphi) = p$, v(x) + v(y) = m + p, and (8.5.2) $v(\varphi) = m - p$, v(x) + v(y) = 2m - p.

- (8.5.1) Assume that $v(\varphi) = p$. Then $v(g(z, u^p)) = p$ by (8.2). Since $g \in (z, u)^2$ and $v(z) \ge p$ (8.2), one has $p = v(g(z, u^p)) = p \cdot v(u)$ and $p \ge 2$, hence v(u) = 1 and ρ -wt $u \equiv 1$ (m). Thus there is at most one such ρ .
- (8.5.2) Assume that m > 2p and $v(\varphi) = m p$. Then v(x) = m j and v(y) = m p + j $(j = 1, \dots, p 1)$ by (8.3). Since $(\rho wt \, x, \, \rho wt \, y, \, m)$ = 1, there are at most p 1 such p's.
- (8.6) If m=2p, then by (8.4) and (8.5.1), one sees that m=2p=4. Then by choosing wt, one has wts of x, y, z, u equal to 1, 1, 2, α ($\alpha=1,3$). One sees $\alpha=3$ by applying Theorem 2. Whence one gets (2).

We now assume that m > 2p and will derive a contradiction to finish the proof. Then by (8.4), (8.5.1) and (8.5.2), one sees that $p \ge 2$ and there are exactly one ρ in case (8.5.1) and exactly p-1 ρ 's in case (8.5.2). We claim that p=2. If p>2, then let ρ_i (i=1,2) in case (8.5.2) be such that ρ_i -wt $x \equiv m-i$ (i=1,2). Then $\rho_2=2\rho_1$ and whence $-p \equiv \rho_2$ -wt φ $\equiv 2(\rho_{\text{i}}\text{-}wt\,\varphi) \equiv -2p\,(m)$. This means that $p\equiv 0\,(m)$ and m=p, which contradicts m>2p. Thus our claim that p=2 is proved. Let $\rho_1\in Z_m$ be in case (8.5.1) and $\rho_2 \in \mathbb{Z}_m$ in case (8.5.2). One has ρ_2 -wt $x \equiv \rho_2$ -wt $y \equiv m$ -1 (m) and ρ_2 is a generator of Z_m . Thus by $(\rho_1 - wt x)_m + (\rho_1 - wt y)_m = m$ + 2, one has ρ_1 -wt $x \equiv \rho_1$ -wt $y \equiv m/2 + 1 \pmod{m}$. Hence $\rho_1 = (m/2 - 1)\rho_2$. Let $\rho_3=2\rho_1$. Then $\rho_3=-2\rho_2$, and ρ_3 -wts of x,y,u are 2, 2, 2 mod m. Let $w=(\rho_3\text{-}wt)_m$. Then by $m\equiv 0$ (2) and m>2p=4, one has $m\geq 6$. Thus $w(\varphi) = w(x) + w(y) = 4$. Applying Theorem 2 to w, one has w(z) > 0m-2. Hence w(z)=m because m is even and $\rho_3\equiv 0$ (2). Since $\rho_3= 2\rho_2$, one has ρ_2 -wt $z\equiv 0$ or m/2. Since ρ_2 is a generator of Z_m , one has $p = (\rho_2 - wt z, m) = m \text{ or } m/2 \text{ by (8.2)}.$ Thus m = p, or 2p ocntradicting our assumption m > 2p. q.e.d. Supplement 8.1. In case (2), one sees that $g(z, u^2)$ contains u^2 in (8.5). Thus one sees: in case (2) of Theorem 8, modulo Z_4 -automorphism, one has

$$\varphi = xy + z^n + u^2$$
 $(n: odd \ge 3)$,

where wts of x, y, z, u are $1, 1, 2, 3 \pmod{4}$.

Proof. By Z_4 -automorphism: $z \to (\text{const}) \cdot z$, $u \to (\text{const}) \cdot u$, keeping x and y, one has $g = u^2(1 + \alpha(z, u^2)) + z^n(1 + \beta(z))$, where $\alpha \in (z, u)$, $\beta \in (z)$, n > 1. Since α , β are Z_4 -invariant, one can change $u \cdot \{1 + \alpha(z, u^2)\}^{(1/2)} \to u$, $z \cdot \{1 + \beta(z)\}^{(1/n)} \to z$, to get $g = u^2 + z^n$. q.e.d.

LEMMA 9. If x^2 and y^2 appear in φ and $\varphi_2 \in kx^2 + ky^2 + kz^2 + ku^2$, then m = 2, 4.

Proof. (9.1) Claim: m is a power of 2.

If m is not a power of 2, we may assume that m is odd and > 1 by replacing m by its odd factor. Then $wt \ x \equiv wt \ y$, and hence by \mathbb{Z}_m -automorphism: $x \to x + \alpha \cdot y$, keeping y, z, u, we may assume that φ contains xy, x^2 , y^2 . Thus by Theorem 8, $wt \ x + wt \ y \equiv 0$ (m), $wt \ x$ and $wt \ y$ are prime to m, which contradicts $wt \ x \equiv wt \ y$. Thus m = 1, and hence m is proved to be a power of 2.

(9.2) Claim: If m = 8, then degree 2 part φ_2 of φ is a quadratic form of rank 3.

By $2 \cdot wt \ x \equiv 2 \cdot wt \ y$ (8), one has $wt \ x \equiv wt \ y$ (4). Thus by Z_4 -automorphism: $x \to x + \alpha y$ keeping y, z, u, one may assume x^2, y^2, xy appear in φ and m = 4. Then by Theorem 8 and Supplement 8.1, φ_2 has rank 3.

(9.3) $Claim: m \mid 4.$

If $8 \mid m$ can occur, the case m=8 occurs. if m=8, then φ_2 contains x^2 , y^2 , z^2 (by exchanging z, u if necessary.) By $2wt \, x \equiv 2wt \, y \equiv 2wt \, z$ (8), one sees that two of $wt \, x$, $wt \, y$, $wt \, z$ are congruent mod 8. We may assume $wt \, x \equiv wt \, y$ (8), without loss of generality. By Z_8 -automorphism: $x \to x + \alpha y$, keeping y, z, u, one may assume that φ contains x^2 , y^2 , xy for m=8. This contradicts Theorem 8. Thus Lemma 9 is proved.

LEMMA 10. If x^2 and y^2 appear in φ and $\varphi \in kx^2 + ky^2 + kz^2 + ku^2$ and m = 4, then

(1) if $wt x \equiv wt y \mod 4$, then after exchanging z, u (if necessary) and choosing a generator σ of Z_4 , one has σ -wts of x, y, z, u equal to 1, 1, 2, 3 $\mod 4$, and modulo Z_4 -automorphism,

$$\varphi = x^2 + y^2 + z^n + u^2 (n: odd \ge 3)$$
, and

- (2) if wt $x \not\equiv wt$ y (4), then after exchanging z, u and exchanging x, y (if necessary) and choosing a generator σ of Z_4 , one has σ -wts of x, y, z, u equal to 1, 3, 2, 1 mod 4.
- **Proof.** Case (1) is due to Supplement 8.1 (cf. argument of Lemma 9). Case (2): By $2wt \ x \equiv 2wt \ y$ (4), one sees that $wt \ x$, $wt \ y$ are odd by Remark 7, (2). Hence $wt \ \varphi \equiv 2$ (4). Applying Theorem 8 to m=2, $wt \ z$ or $wt \ u$ is even (cf. argument of Lemma 9). Let us assume that $wt \ z$ is even. By Remark 7, (1), φ contains some power of z, whence $wt \ z \equiv 2$ (4). Changing σ to $-\sigma$ if necessary, one gets (2).

LEMMA 11. If x^2 and y^2 appear in φ and $\varphi \in kx^2 + ky^2 + kz^2 + ku^2$ and m=2, then

- (1) if $wt \ x \equiv wt \ y \ \text{mod} \ 2$, then after exchanging z, u (if necessary), one has wts of x, y, z, u equal to 1, 1, 0, 1 $\text{mod} \ 2$, and modulo Z_2 -automorphism, $\varphi = x^2 + y^2 + f(z, u^2)$ for some $f \in C\{z, u\}$,
- (2) if wt $x \not\equiv wt \ y \mod 2$, then after exchanging x, y (if necessary), one has wts of x, y, z, u equal to 1, 0, 1, 1 mod 2, and modulo \mathbb{Z}_2 -automorphism, $\varphi = x^2 + y^2 + f(z, u)$ for some $f \in \mathbb{C}\{z, u\}$.
- *Proof.* By Remark 7, (2), there is at most one even number among wts of x, y, z, u. On the other hand, by Theorem 2 applied to $v = (wt)_2$, one has $v(x) + \cdots + v(u) > 2 + v(\varphi) \ge 4$. Hence exactly one of wts of x, y, z, u is congruent to $0 \mod (2)$. Then Lemma 11 is clear.

THEOREM 12. If φ_2 has rank ≥ 2 , then after permutation of x, y, z, u (if necessary), one of the following holds.

- (1) $wt x + wt y \equiv 0$; $wt z \equiv wt \varphi \equiv 0$; wt x, wt y, wt u are prime to m, and modulo \mathbb{Z}_m -automorphism, $\varphi = xy + f(z, u^m)$ for some $f \in \mathbb{C}\{z, u^m\}$.
- (2) m = 4; wts of x, y, z, u, φ are 1, 3, 1, $2 \mod 4$ (after choosing a generator of Z_4), and modulo Z_4 -automorphism, $\varphi = x^2 + y^2 + f(z, u^2)$ for some $f \in C\{z, u^2\}$.
- (3) m = 2; wts of x, y, z, u, φ are 1, 0, 1, 1, 0 mod 2, and modulo Z_2 -automorphism, $\varphi = x^2 + y^2 + f(z, u)$ for some $f \in (z, u)^4C\{z, u\}$.

By Lemma 12.2, this follows from Theorem 8, Lemmas 9, 10, 11. (For case (3), one may set $f \in (z, u)^4 C\{z, u\}$, because otherwise it is reduced to case (1)).

Remark 12.1. In case (1) (resp. (2), (3)) of Theorem 12, if f is a general linear combination of a finite number of monomials in (z^2, u^m) $C\{z, u^m\}$ (resp. $(z^3, u^2)C\{z^2, zu^2, u^4\}$, $(z^4, z^3u, z^2u^2, zu^2, u^4)C\{z^2, zu, u^2\}$) and if f has an isolated singular point at 0, then (X, p) is a terminal singularity. This follows from Corollary 2.1. For example, in case (1), if v is an order, then $v(x) + v(y) + v(z) + v(u) - m - v(\varphi) = (v(x) + v(y) - v(\varphi)) + (v(z) - m) + v(u) > 0$.

LEMMA 12.2. If $\operatorname{rk} \varphi_2 \geq 2$, then modulo permutation of x, y, z, u and Z_m -automorphism, one has either (1) $\varphi_2 = xy + g(z, u)$ for some quadratic form g in z, u or (2) $\varphi_2 \in kx^2 + ky^2 + kz^2 + ku^2$.

Proof. If none of x^2 , y^2 , z^2 , u^2 appears in φ_2 , then one has case (1) by Theorem 8. If for example x^2 appears in φ_2 , then one has $\varphi_2 = x^2 + h(y, z, u)$ modulo Z_m -automorphism for some quadratic form h. One can repeat similar argument to h(y, z, u), either to obtain case (1) by applying Theorem 8, or end up with case (2).

COROLLARY 13. If $\operatorname{rk} \varphi_2 \geq 3$, then after permutation of x, y, z, u and choice of generator $\sigma \in \mathbb{Z}_m$, one has

- (1) $\operatorname{rk} \varphi_2 = 4$; m = 2, wts of x, y, z, u, φ are 1, 1, 0, 1, $0 \operatorname{mod} 2$ and $\varphi = xy + z^2 + u^2$ modulo Z_2 -automorphism,
 - (2) $\operatorname{rk} \varphi_2 = 3$; either.
- (2.1) $m \ge 2$, $wt \ x + wt \ y \equiv 0$, $wt \ z \equiv wt \ \varphi \equiv 0$ (m), $wt \ x$, $wt \ y$, $wt \ u$ are prime to m, and $\varphi = xy + z^2 + u^{im}$ (im ≥ 3) modulo Z_m -automorphism,
- (2.2) m = 2, wts of x, y, z, u, φ are 1, 1, 0 1, 0, and $\varphi = xy + z^i + u^2$ ($i \ge 3$) modulo Z_2 -automorphism, or
- (2.3) m=4, σ -wts of x, y, z, u, φ are 1, 1, 2, 3, 2, and $\varphi=xy+z^i+u^2$ ($i\geq 3$: odd) modulo Z_4 -automorphism.

This follows from Theorem 12.

$\S 3$. Terminal singularities of type cD

LEMMA 14. If $\operatorname{rk} \varphi_2 \leq 1$ and u^2 appears in φ_2 , then one has

 $\varphi = u^2 + f(x, y, z)$ modulo Z_m -automorphism,

where $f \in (x, y, z)^3 C\{x, y, z\}$ has non-zero cubic term f_3 .

This follows from the definition of cDV points.

LEMMA 15. Under the assumptions and notation of Lemma 14, if f_3 contains xyz and m is a power of 2, then m = 2 and after permutation of x, y, z (if necessary), one has wts of x, y, z, u, f equal to 1, 1, 0, 1, 0 mod 2.

Proof. Since $wt \ x + wt \ y + wt \ z \equiv 2wt \ u \equiv 0$ (2), at least one of $wt \ x$, $wt \ y$, $wt \ z$ is even. Without loss of generality, we may assume $wt \ z$ is even. Then $wt \ x$, $wt \ y$, $wt \ u$ are odd (Remark 7, (2)). If m=2, then Lemma 15 is proved. It remains to disprove the case m=4. If m=4, then $wt \ f \equiv 2$ (4) because $wt \ u$ is odd. Since f contains a power of z (Remark 7, (1)), $wt \ z \equiv 2$ (4). Choosing $\sigma \in Z_4$, one may assume that σ -wts of x, y, z, u are a, b, 2, 3 (a, b=1, 3). By $a+b+2\equiv 2$ (4), one has $a+b\equiv 0$ (4), whence a+b=4. Since $wt \ \varphi \equiv 2$, one sees that the order v induced by this weight satisfies v(f)=6. Then v(x)+v(y)+v(z)+v(z) q.e.d.

LEMMA 16. Under the assumptions and notation of Lemma 14, if f. contains xyz, then m is a power of 2.

Proof. Assuming that m is odd, we will derive a contradiction.

(16.1) Claim: wt x, wt t, wt z are prime to m.

For example, assume $n = (wt \, x, m) > 1$. Then $wt \, f \equiv 0 \, (n)$ by Remark 7, (1). Since n is odd, one has $wt \, u \equiv 0 \, (n)$. This means $n = (wt \, x, wt \, u, m) > 1$, which contradicts Remark 7, (2).

(16.2) Claim: wt x + wt y + wt z and wt u are prime to m.

Since m is odd and $wt u^2 \equiv wt xyz (m)$, it is enough to show (wt xyz, m) = 1. For this, it is enough to derive a contradiction by assuming that $wt xyz \equiv 0 (m)$, and m > 1 is odd. By replacing wt by -wt if necessary, one may assume (by (16.1))

$$(wt x)_m + (wt y)_m + (wt z)_m = m$$
.

Hence, for the order $v = (wt)_m$, one has $v(\varphi) = m$ and $v(x) + v(y) + v(z) + v(u) \le m + v(\varphi)$. This is a contradiction to Theorem 2.

(16.3) By choosing $\rho \in \mathbb{Z}_m - \{0\}$, one can assume

$$(\rho - wt \, x)_m + (\rho - wt \, y)_m + (\rho - wt \, z)_m \equiv \pm 1 \, (m), \text{ and } < 3m/2.$$

Then $(\rho - wt \, x)_m + (\rho - wt \, y)_m + (\rho - wt \, z)_m = m \pm 1$, and for $v = (\rho - wt)_m$, $v(f) = m \pm 1$ is even. By Corollary 2.2, $0 < m \pm 1 - m - (m \pm 1)/2 = (-m \pm 1)/2$. This is a contradiction, and Lemma 16 is proved.

PROPOSITION 17. Under the assumptions and notation of Lemma 14, if f_3 contains xyz, then m = 2, and after permutation of x, y, z, one has wts of x, y, z, u, f equal to 1, 1, 0, 1, 0 mod 2.

This follows from Lemmas 15, 16.

LEMMA 18. Under the assumptions and notation of Lemma 14, if f_s contains xy^2 , and if m > 1 is a power of 2, then m = 2 and wts of x, y, z, u, f are $0, 1, 1, 1, 0 \mod 2$.

Proof. Assume m=4. By $2wt\ u=wt\ x+2wt\ y$, $wt\ x$ is even whence $wt\ y$ and $wt\ u$ are odd (Remark 7, (2)). Thus $2wt\ u\equiv 2wt\ y$ (4) and $wt\ x\equiv 0$ (4). Thus by Remark 7, (1), $wt\ f\equiv 0$ (4), which contradicts $wt\ u\equiv 1$ (2). The rest is easy.

Lemma 19. Under the assumptions and notation of Lemma 14, if f_3 contains xy^2 , and if m > 1 is odd, then $m \equiv 3$ and after choosing a generator of \mathbb{Z}_m , one has wts of x, y, z, u, φ equal to 2, 2, 1, 0, 0 mod 3 and f_3 contains xy^2, z^3 .

Proof. (19.1) Claim: wt x, wt y, wt z are prime to m.

It is enough to derive a contradiction from (e.g.) $wt x \equiv 0$ (m). By Remark 7, (1), some power of x appears in f, and $wt u \equiv (wt f)/2 \equiv 0$ (m), which contradicts Remark 7, (2).

(19.2) Claim: By (19.1), we may choose a generator σ of Z_m so that σ -wt $x \equiv 2$, σ -wt $y \equiv b$, σ -wt $z \equiv c$ (m), with 0 < b, c < m. Then, for $v = (\sigma$ -wt)_m, v(f) = 2 + 2b - m.

From $v(xy^2) = 2 + 2b \le 2m$ (19.1), follows v(f) = 2 + 2b or 2 + 2b - m. But if v(f) = 2 + 2b, then v(f) is even and $2 + b + c - m - (2 + 2b)/2 = c + 1 - m \le 0$ by (19.1), which contradicts Corollary 2.2.

(19.3) Claim: Under the assumptions and notation of (19.2), if 2c < m and if $m \ge 5$, then 2b > m and for $w = ((2\sigma)-wt)_m$, one has w(x) = 4, w(y) = 2b - m, w(z) = 2c, w(f) = 4 + 4b - 2m.

By (19.2), $v(f) = 2 + 2b - m \ge 3$, whence 2b > m. Thus $w(xy^2) = 4 + 4b - 2m$. If $w(f) \ne 4 + 4b - 2m$, then w(f) = 4 + 4b - 3m because b < m. Then w(f) is odd and w(x), w(z) are even. Thus w(f) is attained by a term $y \cdot (\text{monomial of degree} \ge 2)$. But

$$w(y \cdot (\deg \ge 2)) - (4 + 4b - 3m)$$

$$\ge 2b - m + 2 - (4 + 4b - 3m) = 2(m - 1 - b) \ge 0,$$

and if the equality holds, then b=m-1 and $w((\deg \ge 2))=2$. This is impossible by $m\ge 5$. Thus (19.3) is proved.

(19.4) Claim: Under the situation of (19.2), if $m \ge 5$, then one has $c \ge (m-1)/2$.

If c < (m-1)/2, then by (19.3), Corollary 2.2 applied to w(f) gives $0 < 4 + 2b - m + 2c - m - (4 + 4b - 2m)/2 = 2 + 2c - m \le 2 + (m-2) - m = 0$, which is a contradiction. Thus (19.4) is proved.

(19.5) Claim: Under the situation of (19.2), one has (1) if $m \ge 5$ then c is odd and $c \le m - 4$, and (2) if m = 3 then c = 1 and b = 2.

Since $v(y \cdot (\deg \ge 2)) - (2 + 2b - m) = b + 2 - (2 + 2b - m) = m - b > 0$ by b < m (19.2), v(f) is attained by a term containing only x and z. Since v(f) is odd, v(z) = c is odd. Since $2 + 2b - m \le m$ and 3c > m (19.4), f must contain xz if $c \ge m - 2$ and $m \ge 5$. This is absurd, and hence $c \le m - 4$. The case m = 3 is similar.

Let $c = m - 2e, e \ge 2$. Then e is prime to m by (19.1).

(19.6) Claim: Under the situation of (19.2), there is no integer i such that

$$(*)$$
 $m/(2e-1) \le i \le 2m/(2e+1)$.

Assume that such i exists. Then $w' = ((i \cdot \sigma) - wt)_m$ satisfies w'(x) = 2i, w'(y) = b', w'(z) = 2m - 2ie, where $b' = (bi)_m$ satisfies 0 < b' < m by (19.1). We will derive a contradiction to prove (19.6). From $w'(f) \equiv 2i + 2b'$, 2i < m, and 2b' < 2m, follows that 2i + 2b' < 3m. Thus w'(f) = 2i + 2b', 2i + 2b' - m, or 2i + 2b' - 2m. If w'(f) = 2i + 2b' - m (odd), then w'(f) is attained by $x^p y^q z^r$ with q > 0 (w'(x), w'(z) are even). Hence

$$2i + 2b' - m = p(2i) + qb' + r(2m - 2ie)$$
, or $2i + b' = m + (q - 1)b' + p \cdot 2i + r(2m - 2ie)$.

Since $2i \leq m-1$, $b' \leq m-1$ (19.1), one has q=1, p=0. By $p+q+r \geq 3$, one gets $r \geq 2$ and 2i+b'>b'+2(2m-2ie) contradicting (*). If w'(f)=2i+2b'-2m (even), then it is attained by $x^py^qz^r$, $p+q+r \geq 3$, and

$$2i + 2b' - 2m = 2ip + b'q + r(2m - 2ie)$$
.

Since 2i + 2b' - 2m < 2i, one gets p = 0. Also from 2i + 2b' - 2m < 2b' - m < b', follows q = 0 and $r \ge 3$. Hence 2i > 2i + 2b' - 2m = r(2m - 2ie)

contradicting (*) in (19.6). Thus w'(f) = 2i + 2b'. Now w'(f) is even, and Corollary 2.2 applied to w' gives a contradiction to (*):

$$0 < 2i + b' + (2m - 2ie) - m - (2i + 2b')/2 = m - (2e - 1)i$$
.

(19.7) Claim: Under the situation of (19.2), if $m \ge 5$, then one has e = 2, m = 7.

We note $m \ge 4e - 1$ by (19.4), and hence

$$(2e-1)(2e+1)\{2m/(2e+1)-m/(2e-1)-1\}$$

$$= (2e-3)m-4e^2+1 \ge (2e-3)(4e-1)-4e^2+1=4e^2-14e+4.$$

Thus if $e \ge 4$, then 2m/(2e+1) > m(2e-1) + 1, and there exists i satisfying (*) in (19.6). Hence $e \le 3$. Then it is easy to check (19.7) for $e \le 3$ and $m \ge 5$.

(19.8) Claim: The case e=2 and m=7 does not give a terminal singularity.

One has c=3. By (19.2), $2+2b-7\geq 3$ and $b\geq 4$, Since v(x), v(y), $v(z)\geq 2$, one has by (19.2), $2+2b-7\geq 3\cdot 2$, whence b=1. Then for $w''=((3\cdot\sigma)\cdot wt)_m$, w''(x)=6, w''(y)=4, w''(z)=2, and w''(f)=14, whence w''(x)+w''(y)+w''(z)-7-w''(f)/2=-2<0, which is a contradiction to Corollary 2.2.

(19.9) Claim: If m = 3, then f_3 contains z^3 .

Otherwise, by (19.2) and (19.5), v(x) = v(y) = 2, v(z) = 1, one gets v(f) = 6, which contradicts (19.2). This proves Lemma 19.

PROPOSITION 20. Under the situation of Lemma 14, if f_3 contains xy^2 , then (1) m=2 and wts of x, y, z, u, f are $0, 1, 1, 1, 0 \mod 2$, or (2) m=3 and after choosing generator σ of \mathbb{Z}_3 , one has σ -wts of x, y, z, u, f equal to $2, 2, 1, 0, 0 \mod 3$, and f_3 contains xy^2, z^3 .

Proof. By Lemmas 18, 19, it remains to exclude m = 6. By Lemma 19, f_3 contains z^3 . This implies $3 \cdot wt z \equiv wt f$, which contradicts Lemma 18.

Lemma 21. Under the situation of Lemma 14, if f_3 does not contain cross terms (like xy^2 , xyz), then $f_3 \in C \cdot x^3 + C \cdot y^3 + C \cdot z^3$.

This is obvious.

LEMMA 22. Under the situation of Lemma 21, if $f_3 = x^3 + y^3 + z^3$ (resp. $x^3 + y^3$), then m = 3, and after choosing generator σ of Z_3 and permutation

of x, y, z (resp. x, y) if necessary, one has σ -wts of x, y, z, u, φ equal to 1, 2, 2, 0, 0 mod 3.

Proof. (22.1) Claim: 2 and 3 are the only possible prime factors of m. Assuming that (m, 6) = 1, m > 1, we will derive a contradiction. From $wt \ x \equiv wt \ y \ (m)$, one has $(wt \ x, m) = 1$ by Remark 7, (2). Thus one can choose a generator ρ of Z_m such that ρ - $wt \ x \equiv 2$. Then ρ -wts of x, y, z, u, φ are 2, 2, c, 3, 6, where c is prime to m by $(wt \ \varphi, m) = 1$, and Remark 7, (1). Let $v = (\rho - wt)_m$. Since $v(\sigma) \ge 2$, $m \ge 5$, one has $v(\varphi) = 6$. Thus $v(x) + v(y) + v(z) + v(u) - m - v(\varphi) = c - m + 1 \le 0$, which contradicts Corollary 2.2.

(22.2) Claim: (m, 2) = 1.

Indeed if m=2, then $wt x \equiv wt y \equiv 0$ (2). This contradicts Remark 7, (2).

(22.3) Claim: m = 3.

We will derive a contradiction assuming m=9. From $2 \cdot wt \ u \equiv 3 \cdot wt \ y$ (9), follows $wt \ u \equiv 0$ (3). By Remark 7, (2), $wt \ x$, $wt \ y$, $wt \ z$ are prime to 3. Thus $wt \ u \not\equiv 0$ (9). If $wt \ x \equiv wt \ y$ (9), then Z_9 -automorphism: $x \to x + \alpha y$, keeping y, z, u reduces the problem to Proposition 20, which contradicts m=9. Thus $wt \ x \equiv wt \ y$ (3), $wt \ x \not\equiv wt \ y$ (9). Choosing a generator $\rho \in Z_9$, one may assume $\{\rho \cdot wt \ x, \ \rho \cdot wt \ y\} = \{2 \bmod 9, 5 \bmod 9\}$. By exchanging x, y if necessary, one may assume that $\rho \cdot wt$ s of x, y, z, u are 2, 5, c, 3 $\bmod 9$ (c is prime to 3 by Remark 7, (2)). By applying Theorem 2 to $v=(\rho \cdot wt)_9$, one gets v(f)=6, c>5. For $w=((-\rho)\cdot wt)_9$, $w(f)\equiv 3$ (9). By Theorem 2, one gets w(x)+w(y)+w(z)+w(u)=26-c>9+w(f). Thus by c>5, w(f)=3. Then z^3 appears in f and w(z)=1, c=8. Thus $(-3\rho)\cdot wt$ s of x, y, z, u are 3, 3, 3, 0 $\bmod 9$. Hence for $w'=((-3\rho)\cdot wt)_9$, $w'(\varphi) \ge 9$, and $w'(x)+w'(y)+w'(z)+w'(u) \le 9+w'(\varphi)$. This contradicts Theorem 2, and m=9 is excluded.

for x, y, z, u gives order w such that $w(\varphi) = 6$ because φ does not contain z^3 . Then $w(x) + w(y) + w(z) + w(u) - 3 - w(\varphi) = -1$, which contradicts Theorem 2. Thus b = 1. Changing wt to -wt, one gets Lemma 22.

THEOREM 23. Under the situation of Lemma 14, if f_3 is not a cube of a linear factor, then after permutation of x, y, z and choice of generator σ of Z_m , one of the following holds.

- (1) m=2, wts of x, y, z, u, φ are $1, 1, 0, 1, 0 \mod 2$, and xyz or y^2z appears in f_3 .
- (2) m = 3, σ -wts of x, y, z, u, are 1, 2, 2, 0, 0 mod 3, and $f_3 = x^3 + y^3 + z^3$, $x^3 + yz^2$, or $x^3 + y^3$ modulo Z_3 -automorphism of $C\{x, y, z\}$.

This follows from Propositions 17, 20, and Lemmas 21, 22.

Remark 23.1. In cases (1), (2) of Theorem 23, it is easy to see that modulo \mathbb{Z}_m -automorphism of $\mathbb{C}\{x, y, z, u\}$, one may put φ in one of the following forms by Theorem 3:

Case 1. m = 2, wts of x, y, z, u are 1, 1, 0, 1 mod 2,

(23.1.1)
$$\varphi = u^2 + xyz + x^{2a} + y^{2b} + z^c,$$

(23.1.2)
$$\varphi = u^2 + y^2 z + \lambda y x^{2a-1} + g,$$
$$(a, b \ge 2, c \ge 3, \lambda \in k, g \in (x^4, x^2 z^2, z^3) C\{x^2, z\}),$$

Case 2. m = 3, wts of x, y, z, u are 1, 2, 2, 0 mod 3,

$$(23.2.1) \varphi = u^2 + x^3 + y^3 + z^3,$$

(23.2.2)
$$\varphi = u^2 + x^3 + yz^2 + xy^4 \cdot \lambda + y^6 \cdot \mu,$$

$$(23.2.3) \qquad \varphi = u^2 + x^3 + y^3 + xyz^3 \cdot \alpha + xz^4 \cdot \beta + yz^5 \cdot 7 + z^6 \cdot \delta ,$$

$$(\lambda, \mu \in C\{y^3\}, 4\lambda^3 + 27\mu^2 \neq 0, \alpha, \beta, 7, \delta \in C\{z^3\}) .$$

For (23.1.1) and (23.2.1), (X, p) is terminal. (This follows from Corollary 2.1.) If φ is a general linear combination of a finite number of monomials as in (23.1.2), (23.2.2), or (23.2.3), and if φ has an isolated singularity at 0, then (X, p) is terminal. (This also follows from Corollary 2.1.)

The way to put φ in the standard forms above is as follows. If m=2 and f_3 contains xyz, then after operating Z_2 -automorphism, one may assume that $f_3=xyz+\lambda z^3$ ($\lambda \in k$). If xyh (resp. if it is not reduced to (23.1.2) yzh, zxh) appears in f for some monomial $h \in (x, u, z)^2$, then Z_2 -transformation $z \to z + \lambda h$ (resp. $x \to x + \lambda h$, $y \to y + \lambda h$) kills xyh (resp. yzh, zxh) for some λ . Thus for any $n \gg 0$, there is a Z_2 -automorphism ψ such that $\varphi \equiv \psi(u^2 + y^2)$

 $xyz + x^{2a}\alpha(x) + y^{2b}\beta(y) + z^c \gamma(z)$ modulo $(x, y, z, u)^n$, (α, β) are even power series; $\alpha(0)\beta(0)\gamma(0) \neq 0$; $\infty \geq a, b, c$; $a, b \geq 2$; $c \geq 3$). Thus, by Theorem 3, there is a \mathbb{Z}_2 -automorphism ψ such that

$$\varphi = \psi(u^2 + xyz + x^{2a}\alpha + y^{2b}\beta + z^{c}\Upsilon).$$

Hence one may assume

$$\varphi = u^2 + xyz + x^{2a}\alpha + y^{2b}\beta + z^{c}\gamma.$$

Since $\varphi = 0$ has an isolated singularity, one sees $a, b, c < \infty$. It is easy to see that there are invariant units u_1, u_2, u_3, u_4 of $C\{x, y, z\}$ such that

$$u_4^2=u_1u_2u_3=u_1^{2a}lpha=u_2^{2b}eta=u_3\gamma$$
 . Then Z_2 -automorphism

 τ of $C\{x, y, z, u\}$ such that $\tau x = u_1 x$, $\tau y = u_2 y$, $\tau z = u_3 z$, $\tau u = u_4 u$ satisfies

$$\tau \varphi = u_4^2(u^2 + xyz + x^{2a} + y^{2b} + z^c)$$
.

Thus (23.1.1) is obtained, and other cases are similar.

§ 4. Terminal singularities of type cE

Lemma 24. Under the situation of Lemma 14, if $f_3 = x^3$, then modulo Z_m -automorphism,

$$\varphi = u^2 + x^3 + g(y, z)x + h(y, z)$$
,

where $g, h \in C\{y, z\}, g \in (y, z)^3, h \in (y, z)^4$.

This is obvious.

Theorem 25. Under the situation of Lemma 24, one has m=2 and wts of x, y, z, u, φ are $0, 1, 1, 1, 0 \mod 2$, and $h \notin (y, z)^5$.

Remark 25.1. If m=2 and wts of x, y, z, u are $0, 1, 1, 1 \mod 2$ and if an even polynomial g (resp. h) in y, z is a general linear combination of a finite number of monomials $\in (y, z)^4$ and $h \notin (y, z)^5$, and if

$$\varphi = u^2 + x^3 + g(v, z)x + h(v, z)$$

has an isolated singularity at 0, then (X, p) is terminal. (This follows from Corollary 2.1.)

Proof. For an integer $n \ge 0$, let g_n (resp. h_n) be the homogeneous part of degree n of g (resp. h). We will treat two cases.

Case 1. m is an odd prime.

In this case, we will derive a contradiction in several steps.

(25.2) Claim: wt x, wt y, wt z are prime to m.

If (e.g.) $wt x \equiv 0$ (m), then by Remark 7, (1), $wt f \equiv 0$ (m) and $wt u \equiv 0$, which contradicts Remark 7, (2).

(25.3) Claim: One may assume that m is a prime number > 7.

It is enough to derive a contradiction assuming $m \leq 7$. By (25.2), let ρ be a generator Z_m of such that ρ -wt $x \equiv 2$ (m). Since 2 wt $u \equiv 3 \cdot wt$ x (m), $v = (\rho - wt)_m$ satisfies v(f) = 6. Let b = v(y), c = v(z). Then by Corollary 2.2, 2 + b + c - m - 3 > 0 and $b + c \geq m + 2$. Let $w = ((-\rho) - wt)_m$. One has w(x) = m - 2, w(y) = m - b, w(z) = m - c. Since $w(x^s) = 3m - 6$, w(f) = 3m - 6 (odd) or 2m - 6 (even) because $w(f) \geq 3$. Thus in any case, by Corollary 2.2, one has (m-2) + (m-b) + (m-c) > 2m - 3. Hence $m+1>b+c\geq m+2$. This is a contradiction.

(25.4) Claim: wty - wtz is prime to m.

It is enough to derive a contradiction assuming $wt y \equiv wt z (m)$. Since φ defines a cDV point, one of h_4 , g_3 , h_5 is non-zero. If $h_4 \neq 0$, then after choosing generator σ of Z_m , one has σ -wts of x, y, z equal to 4, 3, 3 mod m. Thus Corollary 2.2 applied to the induced order gives 0 < 4 + 3 + 3 - m - 6 = 4 - m, which contradicts (25.3). The other cases are the same; if $g_3 \neq 0$ (resp. $h_5 \neq 0$), then one may assume that the wts of x, y, z are 3, 2, 2 (resp. 5, 3, 3) mod m. Hence for the induced order w, w(f) = 9 (resp. 15 by (25.3)), which contradicts (25.3), by Corollary 2.2.

- (25.5) g_3 , h_4 , h_5 are monomials (or 0). (by (25.3) and (25.4))
- (25.6) Claim: None of g_3 , h_4 , h_5 are powers of y, or z (up to constants). By symmetry, enough to show that none of them are powers of y. If $h_4 = y^4$ (up to non-zero constants), then one can choose an order v such that v(x) = 4, v(y) = 3, v(z) = c (0 < c < m). Then v(f) = 12, because 12 < m + 3. Then 0 < 3 + 4 + c m 6 = 1 + c m (Corollary 2.2), which is a contradiction. If $g_3 = y^3$ (up to non-zero constants), then one can choose an order v such that v(x) = 6, v(y) = 4, v(z) = c (0 < c < m). Then v(f) = 18 or 18 m. If v(f) = 18, then Corollary 2.2 gives a contradiction; 0 < 6 + 4 + c m 9 = 1 + c m. If v(f) = 18 m, then 18 m (≤ 7) is a sum of at least 4 numbers which are 4 = v(y) or c = v(z). Thus c = 1. Hence one can choose an order $w(-2w \equiv v(m))$ such that w(x) = m 3, w(y) = m 2, w(z) = (m 1)/2. Then w(f) = 3m 9, 2m 9, or m 9,

and order of an arbitrary monomial in x, y, z of degree ≥ 4 is at least $4 \cdot (m-1)/2 = 2m-2 > 2m-9$. Thus w(f) = 3m-9 (even). Corollary 2.2 gives 0 < (m-3) + (m-2) + (m-1)/2 - m - (3m-9)/2 = -1, which is a contradiction. If $h_5 = y^5$ (up to constants), then one can choose an order v such that v(x) = 10, v(y) = 6, v(z) = c (0 < c < m). If $c \ge 6$, then v(f) = 30 (30 - m < 4.6) and Corollary 2.2 gives a contradiction; 0 < 10 + m < 106 + c - m - 15 = c + 1 - m. If c = 1, 3, or 5, then one can choose an order $w(-2w \equiv v(m))$ such that w(x) = m - 5, w(y) = m - 3, w(z) = m - 3(m-c)/2. For a monomial M in x, y, z of degree ≥ 4 , one has $w(M) \geq$ $4 \cdot (m-c)/2 = 2m - 2c > 2m - 15$. Thus w(f) = 3m - 15 (even) by $w(x^3)$ =3m-15.Then Corollary 2.2 gives a contradiction; 0 < (m-5) +(m-3)+(m-c)/2-m-(3m-15)/2=-(c+1)/2. If c=2, or 4, then one can choose an order w $(2w \equiv v(m))$ such that w(x) = 5, w(x) = 3, One has $w(x^3) = 15$ and $m \ge 11$ by (25.3), hence w(f) = 15(odd) or 15 - m (even). Then, in any case, Corollary 2.2 gives contradiction; 0 < 5 + 3 + c/2 - (m + 15)/2 < (5 - m)/2.

(25.7) Claim: One chooses an integer $n \ge 1$ such that $12n + 5 \ge m$ $\ge 12n - 5$. Let v be an order such that v(x) = 4n, v(y) = b, v(z) = c (0 < b, c < m). Then v(f) = 12n.

Otherwise $v(f) = 12n - m \le 5$. Since $v(x) \ge 4$, w(f) is attained by h_4 or h_5 . By (25.4), (25.5), (25.6), w(f) must be attained by h_4 , 12n - m = 5, (b, c) = (1, 2) or (2, 1). Corollary 2.2 shows 0 < 4n + b + c - m/2 - 5/2 = b + c - 2n = 3 - 2n. Thus n = 1 and m = 7, which is a contradiction to m > 7.

(25.8) Claim: b+c>m+2n.

This follows from Corollary 2.2 applied to order v in (25.7); 0 < 4n + b + c - m - 6n = b + c - m - 2n.

(25.9) Claim: Let w be an order ($w \equiv -v$ (m), with v in (25.7)) such w(x) = m - 4n, w(y) = m - b, w(z) = m - c. Then w(f) = 3m - 12n of 2m - 12n.

Otherwise, $w(f) = m - 12n \le 5$, because $w(x^3) = 3m - 12n$. Since $w(x) = m - 4n \ge 12n - 5 - 4n = 8n - 5 \ge 3$, w(f) is attained by h_4 or h_5 . Since w(f) is odd, m - 12n = 5, and (m - b) + (m - c) = 3 by (25.4), (25.6). Let w' be an order ($w' \equiv 3w(m)$) such that w'(x) = 5, w'(y) = 3(m - b), w'(z) = 3(m - c). Then w'(f) = 15, and Corollary 2.2 shows 0 < 5 + 3(m - b) + 3(m - c) - m/2 - 15/2 = 5 + 9 - m/2 - 15/2 = (13 - m)/2. Thus m = 11

=12n+5, which is a contradiction.

(25.10) By (25.9), Corollary 2.2, applied to w shows that 0 < (m-4n) + (m-b) + (m-c) - (2m-6n) = m + 2n - b - c. This contradicts (25.8). Thus Case 1 is finished and m is a power of 2.

Case 2. m is a power of 2.

(25.11) Claim: $wt x \equiv 0$, wt u, wt y, $wt z \equiv 1$ (2).

By $2 \cdot wt \ u \equiv 3 \cdot wt \ x$ (2), one has $wt \ x \equiv 0$ (2), and the rest follows from Remark 7, (2).

(25.12) Claim: $g_3 = h_5 = 0, h_4 \neq 0.$

Since $wt g_3 \equiv wt h_5 \equiv 0$ (2), one has $g_3 = h_5 = 0$ by (25.11). Since φ defines a cDV point, $h_4 \neq 0$.

(25.13) Claim: m = 2.

It is enough to derive a contradiction assuming m=4. Since $h_4 \neq 0$, one has $3 \cdot wt \ x \equiv wt \ h_4 \equiv 2 \cdot wt \ u \equiv 2$ (4), hence $wt \ x \equiv 2$, $wt \ y \not\equiv wt \ z$ (4). Thus by (25.11), $wt \ y + wt \ z \equiv 0$ (4). Let ρ be a generator of Z_4 such that ρ -wts of x, y, z, u are 2, b, c, 3 (0 < b, c < 4). Then b + c = 4. Let $v = (\rho - wt)_4$. Then v(f) = 6, and Theorem 2 gives contradiction; 0 < 2 + b + c + 3 - 4 - 6 = -1. Thus Case 2 is finished and Theorem 25 is proved.

REFERENCES

- [1] M. Artin, Algebraic approximation of structures over complete local rings, Publication I.H.E.S., no. 36.
- [2] M. Artin, Lectures on deformations of singularities, Bombay 1976.
- [3] V. Danilov, Birational geometry of toric 3-folds, Izv. Akad. Nauk SSSR ser. Mat., 46 (1982), no. 5.
- [4] D. Morrison and G. Stevens, Terminal quotient singularities in dimensions three and four, preprint.
- [5] M. Reid, Canonical 3-folds, Journées de géometrie algébrique d'Angers, ed. A. Beauville, Sijthoff and Noordhoff, Alphen (1980), 273-310.
- [6] —, Minimal models of canonical 3-folds, Advanced studies in pure math. 1, ed.
 S. Iitaka and H. Morikawa, Kinokuniya and North Holland, 1983, 131-180.

Department of Mathematics Faculty of Science Nagoya University Chikusa-ku, Nagoya 464 Japan