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ON 3-DIMENSIONAL TERMINAL SINGULARITIES

SHIGEFUMI MORI

Introduction

Canonical and terminal singularities are introduced by M. Reid [5],
[6]. He proved that 3-dimensional terminal singularities are cyclic quotient
of smooth points or cDV points [6].

Let (X, p) be a 3-dimensional terminal singularity of index m with the
associated Zm-cover (X, p) —> (X, p). If (X, p) is a cyclic quotient singu-
larity (i. e. if (X, p) is smooth), then it is known as Terminal Lemma
(Danilov [3], D. Morrison-G. Stevens [4]) that there exist an integer a
prime to m and coordinates x, y, z of (X, p) which are Zm-semi-invariants
such that σ(x) = ζx, σ(y) — ζ~ιy, σ(x) — ζaz for the standard generator a
of ZOT, where ζ is a primitive m-th root of 1. In this paper, we consider
the case where (X, p) is a singular point and m > 1. The main results
are Theorems 12, 23, 25 and Remarks 12.2, 23.1, 25.1. These, together
with the Terminal Lemma above, almost classify 3-dimensional terminal
singularities.

Since (X, p) is an isolated singularity (or smooth) and is a hypersur-
face defined by a Zm-semi-invariant power series (say <p), all deformations of
(X,p) are induced by deformations of φ as a ZTO-semi-invariant power
series [2, §§9-10]. By Theorems 12, 23 and 25, one can see that there
is a semi-invariant coordinate which has the same character as φ (e. g. z
in Theorem 12, (1)), and hence every terminal singularity can be deformed
to a cyclic quotient singularity (e. g. by φ + λz with parameter λ for the
case Theorem 12, (1)). This is not necessarily the case with canonical
singularities.

The author expresses his hearty thanks to Professor S. Iitaka who
allowed him to use his word processor, and to Professor M. Ishida for
his helpful comments and pointing out mistakes in the original version.

As for the notation, we say that a monomial (say if) appears in a
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power series (say φ) or φ contains u2 if u2 appears with a non-zero coeffi-

cient in the power series expansion of φ.

After having written up the paper, we learnt that Pinkham had proved

similar (but slightly weaker) results (unpublished). We are grateful to

Professor Kawamata, Pinkham, and Tsunoda for this information.

§1. Criteria for terminal and canonical singularities

Let C be the field of complex numbers, and C{x} denotes the ring of

convergent power series in variables x.

LEMMA 1. Let (X, p) be the germ of an n-dimensional terminal (resp.

canonical) singularity of index m. Let (X',pf) be the germ of an n-dimen-

sίonal reduced Gorenstein variety and f: (X\ pf) -> (X, p) a morphism such

that f factors as

where h is a blow-up of X and g is quasi-finite. Let ω be a generator of

ω^ at p. Then /*α>, as a meromorphic section of ωfr, vanishes (resp. is

regular) along an arbitrary irreducible divisor D$p such that dimf(D)

< n- 1.

Proof. Let D be a divisor as in the lemma. Let π: Xf —• Xf be the

normalization, and X" C Xf the complement of the singular locus of X'.

Since codim X,(X' — X;/) ^ 2 and since (π*ωx)\z.. O Ω%,,, we may replace

(X\ pO by (X", p") for some smooth p" such that π(p") e Ό. In other

words, we may assume that X' is smooth. Hence in the factorization

Xf -> Y -> X, we may assume that Y is normal and q = g(p) is a smooth

point of Y (by moving p in D if necessary). Then h*ω vanishes (resp. is

regular) along g(D). Since g: (X',p') -> (F, q) is a morphism of manifolds,

f*ω = g*h*ω vanishes (resp. is regular) along D. q.e.d.

Let (X,p) be a 3-dimensional canonical singularity of index m such

that, for the associated Zm-cover π: (X\ pf) -> (X, p) [5,6], {X',pr) is a

hypersurface singularity. Then there exist Zm-semi-invariants xl9 , #4 in

the analytic local ring 0x>^ such that

(1.1) p(Xi) = ZetXt (£ = 1, ---,4)

(1.2) Ox^^C{xu •• ,
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where p (resp. ζ) is a generator of Zm (resp. μm), c = (cu , c4) e Z4 be

such that gcd(c, m) — g.c.d. {cl9 , c4, m} = 1, and 9 is a semi-invariant.

Since TΓ is unramified outside p', one has

{qeX'\ xM = 0 if c, ξέ 0 (mod d)} = {//}

for any divisor c? > 1 of m. Hence, for any divisor d > 1 of m, one has

(1.3) £ccZ(c, m) = 1, # {i e [1, 4] | c, = 0 (mod d)} ^ 1.

Now we reverse the process:

NOTATION (2.0). Let Zm act on C{xl9 •••,*4} by (1.1) with p (resp. ζ)

a generator of Zm (resp. μm)> where ce Z4 satisfies (1.3) for an arbitrary

divisor cί > 1 of m. Let φ be a semi-invariant of C{xl9 , #4} such that

C{jCi, , #4}/(p) is normal, and let (X', p') be the germ of a hypersurface

at 0 defined by (1.2), and (X,p) = (X

Then we have

THEOREM 2. Under Notation (2.0), Ze£ 0* 6e an arbitrary element of Zm,

and a = (au , α4) α 4-ple of arbitrary integers ^ 0 such that σ{x^) = ζ α %

(i = 1, , 4) and ίΛaί aί least three of au , a4 are positive. Let e(a) —

max {71^(xiίαi, , xίaC) = 0 (mod tj)} and \a\ = ax + + α4. 77ιeτι i/

(X,p) is terminal (resp. canonical), then \a\ — m — β(α) > 0 (resp. ^ 0).

P/ΌO/. (2.1) Let X'o be C4 with global coordinates xu , x4, and let

Zm act on X'o by (1.1). Then T7 = (C*)4 Π C4 = X'o is an affine torus

embedding, and to the affine torus embedding Tr C X'o correspond the

group Γ(T) s Z 4 of 1 parameter subgroups of T and a cone C(XJ) of

Γ(T) 0Z Q. Let Γ(T) = Z4 and C(XQ) = Q\ in the standard way, where

Q+ = {qeQ\q^0}. Then, to T = T'/Zn ->Xo = Xί/ZΛ, correspond Γ(Γ) =

Z4 + Zcjm and C(X0) = <?+• By the definition of α, there exist integers

β, ϊ such that ^Ci = T&i mod m, where T is prime to m. Hence ajm e

(2.2) Let ψf be a convergent power series defined by

Then φ\0,y) is a non-zero weighted homogeneous polynomial of weight

e(a) in yl9 - -,y4 for weight y< = α̂  (cf. (*) below). Since yty2 and y,yA are

coprime, φ'(09y) has a prime factor which is prime to yxy2 or yzy±. By

symmetry, we may assume that φ'(Q9y) has a prime factor prime to yxyz

and ax > 0. Since
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( *) ?/(0, y1t
a\ , y,tai) = * β ( V (0, yu -, j>4),

one can find r2, r3, r4 e C such that

^(0,1, r2, r3, r4) = 0 .

(2.3) Let e2 = (0,1, 0, 0), e3 = (0, 0,1, 0), e4 = (0, 0, 0,1) e Z\ and let C

be the cone spanned by α, e2, e3, e4 in Q4 and Λf = Ze2 φ Zβ3 φ Ze4 C Q4.

Then the commutative diagram

Za®M >Z—®M
m

m

gives a commutative diagram of tori:

R >R

ηπf ^ rp

and C c Γ(i?0 0 Q gives a torus embedding

R' C Z£ = Spec C[w, jc2, x3, x4] ,

where a, e2, ez, eA of Γ{Rf) correspond to w, x2, x3, x4. Then

R c Zo = Spec Cfo, x2, x3> xJ ,

with X! = wm, is the torus embedding corresponding to C C Γ(R) (x) Q, and

commutative diagrams

and

Γ(R') ® Q • Γ(B) ® Q • Γ(T) ® Q

u u u
C —> C — > Qt

') ® Q • Γ(T') ® Q • Γ{T) ® Q

u u u
C • Qt • Q\

give a commutative diagram
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'j
X'o > XQ,

where /' is given by

x1 = wa\ x2 = x2w
a% x3 = x3w

a% x4 = xAw
a* .

If T c yo is the torus embedding corresponding to C C Γ(T) (x) Q, then

Zo -> 70 is finite and Yo -> Xo is a blow-up.

(2.4) Let s' = V(M;, X2 — r2, x3 — r3, x4 — r4) e ZJ (resp. s = the image

of s' in Zo), and let

ψ(xu X2, X3, X4) - We^ .φ(wa\ X2W
a\ XzW

a\ X^) ,

(note that the right hand side is a holomorphic function in xl9 x2, xS9 x4

defined near s.) Let (Z, s) C (Zo, s) (resp. (Z7, s7) c (ZJ, s;)) be defined by

ψ = 0. Then / (resp. f ) induces /: (Z, β) -> (X, p) (resp. f: (Z', s7) -> (X7, p7)),

which satisfies the conditions of Lemma 1 by (2.3). We have the following

commutative diagram of natural morphisms:

f'\ f

By Poincare residue formula,

xr A dx2 A dx% A dx± _ dxx A dx2 A
j y

φ φ4

f/# / ι _ d(wai) A d(x2w
aή A d(x3w

a*)

where φ4 — dψjdxA. By calculation, one sees

d(wai) A d(x2w
a2) A d(x3w

aή = a^w^^^-dw A dx2 A dxz

Since f*φ = ^ e ( α )ψ, it follows from the chain rule that

where ψ4 = dψldxA. Thus
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One also has

__ T? dw Λ dx2 Λ dx3 Λ dx4 _ dw Λ dx2 Λ
2-/ — t i e s — — —

One has

f'*ωΣ> = arw
la]-ew-%zf .

By construction, we have

τ*ωz =

Hence we have

Since TΓ: X/ -> X is unramified in codimension 1 by (1.3), one has π*ωx

{m) —

(unit) ωΛ:,®
m near p' (by abuse of language, ω^ denotes one of its gener-

ators at p), and

f*ω^ = (unit) x?a\-^-™ωψ>- near 8 .

Since {xt = 0} is a divisor through 5 collapsed by /, one has \a\ — e — m> 0

(resp. :> 0). q.e.d.

Under Notation (2.0), let Xl9 , lr e C{xl9 , x4} (r ^ 2) be Zm-semi-

invariants with the same character such that XiC{xu , #4} = utC{xu , x4}

for some monomial w* in x1? , x4 (i = 1, , r) and that uu , ur are

linearly independent over C and the locus defined by Xx == = Xr = 0

is of dimension ^ 1. Let Φ be the linear system generated by Xu , Xr>

and assume that our φ is written as

for some Λ = (λu , λr) e (C*) r. By Bertini's theorem, φ = 0 defines a

normal variety for general Λ since the base locus of Φ is of dimension

<̂  1. Let σ, α, ζ be as in Theorem 2, then the value of e(a) given in

Theorem 2 does not depend on the choice of λ e (C*) r. Then under the

notation of Theorem 2, the following is the corollary to the proof of

Theorem 2.
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COROLLARY 2.1. If\a\ — m — e(a) > 0 (resp. >̂ 0) for arbitrary σ, a, ζ

as in Theorem 2, then (X, p) is terminal (resp. canonical) for general λ.

If (X, p) has an isolated singular point at p (resp. canonical singularity

outside p) for general λ, then one can add the extra conditions au , a4 > 0

on a in the statement above.

Proof. Let Xo = C4lZm with respect to the action given above. Then

Φ induces a linear system Φo (of Weil divisors) in a neighborhood of 0 in

Xo which is free from fixed components. By the conditions on X/s, there

exists a toric resolution h: U0->X0 such that the proper transform Ψo

of Φo to Uo is free from base points (principalizer of the coherent sheaf

associated to Φo). Then a general member X of Φo is normal at 0 and

its proper transform U= h~ι[X\ is smooth in a neighborhood of 7r *(()).

Thus it is enough to show that h^ω^, as a meromorphic section of ω%m,

vanishes (resp. is regular) along Do Π U, where Do c Uo is an arbitrary

exceptional divisor of h. We now use the notation of the proof of

Theorem 2. Let L+ be the 1-simplex c Q% c Γ(T) ® Q corresponding to

Do. Let a = (au , α4) be a 4-ple of integers ^ 0 such that Zajm =

QL+ Π Γ(T). By (1.3), the singular locus of Xo is of dimension < 1, and

the base locus of Φo is of dimension <I 1. Thus one may assume that

the image of Do to Xo is of dimension <I 1, whence at least 3 of au , α4

are positive. Then the notation of (2.3) can be used, and the torus em-

bedding TaV0 = TUD0 corresponds to L+ c Γ(T) ® Q. L+ c Γ(R) ® Q

corresponds to the open subset Wo of Zo defined by jc3x4 Φ 0. Since Zajm =

Qajm Π Γ(T), [xx = 0} is not in the branch locus of Wo -> Vo. Let V, W

be the proper transforms of X to VQ and Wi,, respectively. Then, since

¥0 is free from base points, g: W —> V is unramified over general points

of arbitrary irreducible components of V Π DQ. Thus by

g*h*ω{^ = (\mit)-x}ai-e{a)-mω®m along W Π Do ,

(2.4), we have Corollary 2.1. q.e.d.

COROLLARY 2.2. Under the assumptions of Theorem 2, assume that m

is odd, and

ψ = χ\ + f(χ29 χ3j χ4) (/ € C{X2, Xs, X4}) .

Let n = max {; | ̂ (x2Γ
2, x3ί

tt3, x4Γ
4) = 0 (tj)}. Then

(m + 7i/2 i/ ^ is ei βn
a4> (resp. ^ ) , .

[m/2 + n/2 if n is odd .
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Proof. One has 2 wt xx = n (mod ra). If n is even, then we choose

aι — n/29 keeping α2, α3, α4 the same. Then nj2 + a2 + α3 + α4 > (resp. ^ )

ra + λi. If 7i is odd, then we choose ^ = (m + ra)/2, keeping α2, α3, α4 the

same. Then (n + ni)\2 + a2 + aB + aA > (resp. ^ ) m + n. q.e.d.

For the approximation of φ, we need the standard:

THEOREM 3. Let ψ e C{x}, where x = (xl9 x2} xz, x4). Assume that φ has

an isolated singular point at (0), and that Zm acts on C{x} in such a way

that xu x29 x3, X*, and φ are semi-invariants. Then for an arbitrary integer

b > 0, there exists an integer n > 0 such that, for an arbitrary semi-

invariant ψ e C{x} with the property ψ = ψ (x)n, there exists an analytic

C-automorphism σ of C{x} commuting with Zm-action (will be called a

Zm-automorphism, for short) such that σ(φ) = ψC, σ = id modulo (x)b.

This can be proved by applying the argument of [1, Lemma (5.11)]

to the equation φ{y) — ψ(x) = 0 in unknown variables y = (yl9 y29 yZ9 y4)

with approximate solution y° — x9 where m = 1 and N — 4.

COROLLARY 4. Under the notation and the assumptions of Theorem 3,

if φe (x)2 and if xxx2 appears in φ and

(d2φldxl(0)Xd*φldxl(0)) - (FφldxJx^O))2 φ 0 ,

then there exist a Zm-automorphism a of C{x} such that

σ(xs) - x3 , σ(x4) - x4 e (x)2 ,

σ(ψ) = x,x2 + f(xs, Xι) for some f e C{x3, x4} .

§ 2. Notation and terminal singularities of type cA

ASSUMPTION 5. Let ψ be an element of (x, y, z, u)2C{x, y, zy u} which

has a Zm-action (m > 1) such that x9 y, z9 u, ψ are semi-invariants.

Assume that ψ has an isolated cDV singularity at the origin (0), that the

quotient of {φ = 0} by Zm has a terminal singularity at (0), and that the

action of Zm is free on U — (0), where U 9 (0) is an open set of {φ = 0}.

By a Zm-automorphism, we mean an analytic C-automorphism of C{x, y9 z9 u}

commuting with Zm-action unless otherwise mentioned. We will keep

these assumptions and notation, unless otherwise mentioned.

NOTATION 6. Fixing a primitive m-th root ζ of 1, and given the

Zm-action above, we associate to each σ e Zm a weight modulo m (denoted
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by σ-wt mod m); σ-wt(x) = a(σ), ., σ-wt(ύ) = d(σ) (mod m) are determined

by σ(x) = ζa(σ) x, •••, σ(u) = ζd{σ) >u. If σ is a generator of Zm, we

may simply call σ-wt a wZ, if there is no danger of confusion. Order

v associates numbers a, b, c, d > 0 to JC, y, 2, w such that a = σ-wt(x)f ,

d = σ-wt(u) mod ?n for some σ e Zm. Then the order of /, or v(f) is, by

definition, max {n \f(xta, yt\ zt% utd) = 0 (Γ)}. We write v = σ-wt (mod m)

if u(:c) = wt x, , î w) — wtu ^mod m). For two orders u and 1/, we write

u = 1/ (mod m) if ι (x) = v'(x), , u(w) = u^u) (mod m). For a positive in-

teger a and a number b (or, 6 e RjaZ), (b)α denotes the number c such

that c — 6 e αZ and 0 < c <I α. We define order υ = (σ-wt)m by v(x) =

(σ-wt x)n, , v(u) = (σ-wt u)m.

Remark 7. Assumption 5 implies:

( 1 ) if e = (m, α ί x) > 1, then some power of x appears in φ and

wt φ = 0 (mod e). Similar assertion holds also for y, 2, u. (Since the action

on x-axis is not free, {φ — 0} does not contain x-axis.)

( 2 ) (m, wtx, wty) = 1. Similar assertion holds also for any other

two distinct coordinate functions. (Otherwise the action is not free on

[φ = 0} Π xy-plane which has dimension > 0 at (0)).

THEOREM 8. // xy appears in ψ and

- (d2φ/dxdy(0)y ψ 0 ,

then one of the following holds (after exchanging z, u if necessary):

( 1 ) wtx + wty ^ wtz = 0 mod m, and wt u, wt xy wty are prime to m.

( 2 ) m — 4 and there exists a generator σ of Z4 such that σ-wts of

xf y, z, u are 1,1, 2, 3 mod 4 (see Supplement 8.1).

Proof. By Corollary 4, we may assume <p = xy + f(z, u), where feC

{z, u}. Let e = (wt x + wty)m, p = (e, m).

(8.1) Claim: One of wtz, wtu is a multiple of p, and the other is

prime to m. wt x, wt y are prime to m.

Let wt be σ-wt. Assume that σ-wt z, σ-wt u ^ 0 (p) (and hence p > 1).

If necessary, we will replace σ by — σ to get

(σ-wt z)v + (σ-wt u)p <Lp .

By Remark 7, (2), and

tf-z/ ί Λ: + σ-wt y = 0 (p) ,
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one sees that σ-wtx and σ-wty are prime to p. Hence

(σ-wtx)p + (σ-wty)p =p .

Let v be the order (mjp)-(σ-wt)v = ((mlp) σ-wt)m. Then v(φ) = m and

υ(x) + v(y) = m, v(z) + v(u) ^ m. Thus v(x) + v(y) + v(z) + v(u) <L m + v(φ),

which is a contradiction to Theorem 2, and hence σ-wt 2 = 0 o r σ-wt u

= 0 (p). By symmetry of z, u, we may assume that σ-wt z = 0 (p). Let

7i = (<7-w;£ w, m). We will show that n = 1. If n > 1 then by Remark 7,

(1), wt φ ^ 0(n). Thus 7i |p and wtz = wtu ~ 0(ή). This contradicts

Remark 7, (2). Thus n = 1. By Remark 7, (1), (2), if n = (w, σ-Hrt x) > 1,

then wtx + wty = wtφ ~0(n) and 7i = (m, σ-^ίx, σ-wty). Thus n = 1 by

Remark 7, (2). Similar argument shows (m, σ-wty) = 1. This proves

(8.1).

(8.2) CZαiTπ: By symmetry of 2?, u, we may assume that wt z = 0(p)

and ittf w is prime to m. Then p = (wt z, m), and f(z, u) = g(^, up) for some

convergent power series g.

Let n = (w ί z, m). Then p | n. By Remark 7, (1), one has wt x +

wty ~ 0(ή), whence 7i|p and n = p.

(8.3) Claim: If p < m and p e Zm satisfies

ô-ittf x + p-wty = ± p (m) ,

then p-wt x, p-wty, p-wt z, p-wt u φ. 0 (m).

If p-wt = i M ί (TTT), then i e = ± p (m). Thus i ^ 0 (m), whence

i'Wtx, i-wty, i-wtu^ 0(m) by (8.1), (8.2). One also sees that i is prime

to mjp > 1. Thus by (8.2), p-wtz= i-(wtz) Ξ£ 0(m).

(8.4) Claim: Assume p < m. The number of elements peZm such

that

( * ) ô-z/ ί x + p-wty = ± p (m) , and

(**) (

is ^ p if m > 2p, and ^ p/2 if m = 2p.

As in (8.3), the number of ^'s with (*) is the number of solutions ί

(0 ^ i < m) for i e = ± p (m), which is 2p if m > 2p,p if m = 2p. Now

involution c: ρ-> -- p acts on 2 — {p with (*)} and p or — p satisfies (**)

by (8.3). Thus (8.4) is settled.
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(8.5) If p = m, then (1) holds. We may now assume p < m, and let

p be an arbitrary element with (*), (**). Let v = (ρ-wt)m) then by (8.3),

v(x) + v(y) =p,m ±p , or 2ra — p ,

v(z) + v(u) <, m .

By Theorem 2,

m + v(x) + υ(y) ̂  v(x) + v(y) + v(z) + υ(u) > m + v(φ) ,

i.e. v{φ) < v(x) + v(y). Thus there are two cases: (8.5.1) v(φ) — p, υ(x) +

v(y) = m + p, and (8.5.2) υ(φ) = m — p, υ(x) + v(y) = 2m — p.

(8.5.1) Assume that υ(φ) = p. Then v(g(z, up)) = p by (8.2). Since

£ e (2, w)2 and u(2:) ^ p (8.2), one has p = v(g(z, uv)) = p u(w) and p ^ 2,

hence u(w) = 1 and p-wt u = 1 (m). Thus there is at most one such ^.

(8.5.2) Assume that m> 2p and u(^) = m — p. Then φ;) = m — j

and u( y) = m — p + j (j = 1, , p — 1) by (8.3). Since (p-wt x, p-wty, m)

= 1, there are at most p — 1 such p's.

(8.6) If m = 2p, then by (8.4) and (8.5.1), one sees that m = 2p = 4.

Then by choosing w ί, one has wts of x, y, z, u equal to 1, 1, 2, a(a = 1, 3).

One sees or = 3 by applying Theorem 2. Whence one gets (2).

We now assume that m > 2p and will derive a contradiction to finish

the proof. Then by (8.4), (8.5.1) and (8.5.2), one sees that p ^ 2 and there

are exactly one p in case (8.5.1) and exactly p — I p's in case (8.5.2). We

claim that p = 2. If p > 2, then let pt (i = 1, 2) in case (8.5.2) be such

that pi-wt x = m — i (i = 1, 2). Then |02 = 2^ and whence — p = ^-w ί 9

= 2(^ΓH;£ 9) = — 2p (m). This means that P Ξ O (W) and m — p, which

contradicts m > 2p. Thus our claim that p = 2 is proved. Let ρx e Zm be

in case (8.5.1) and ρ2eZm in case (8.5.2). One has p2-wt x = p2-wty =m

— 1 (m) and #> is a generator of Zw . Thus by (prwtx)m + (prwty)m = m

+ 2, one has ^-H ί JC = privty = m/2 + 1 (mod m). Hence ^x = (τn/2 — ϊ)p2.

Let ^3 = 2px. Then ρ3 = — 2p2, and 3̂-w;ίs of x, y, w are 2, 2, 2 mod m.

Let w = (pi-wt)m. Then by m = 0 (2) and m > 2p = 4, one has m ^ 6.

Thus !0(p) = iu(x) + w(y) = 4. Applying Theorem 2 to w, one has w(z) >

m — 2. Hence u;(2;) = m because m is even and p3 = 0 (2). Since /o3 = —

2^, one has / v ^ ^ Ξ O O Γ τn/2. Since p2 is a generator of Zm, one has

p = (p2-wt z9m) — m or m\2 by (8.2). Thus m = p, or 2p ocntradicting our

assumption m > 2p. q.e.d;
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SUPPLEMENT 8.1. In case (2), one sees that g(z, u2) contains u2 in (8.5).

Thus one sees: in case (2) of Theorem 8, modulo Z±~automorphism, one has

φ = Xy + z

n + u2 (n: odd ;> 3) ,

where wts of x, y, z, u are 1, 1, 2, 3 (mod 4).

Proof. By Z4-automorphism: z -> (const) z, u—> (const) u, keeping x

and y, one has g = u\l + a(z, u2)) + zn(l + j8(ar)), where a e (z, u), β e (z),

n > 1. Since a, β are Z4-invariant, one can change u-{l + a(z, u2)}(1/2) ->

u,z {l + β(z)γi/n) -> z, to get ^ = u2 + 2;π. q.e.d.

LEMMA 9. // x2 and y2 appear in φ and φ2 e kx2 + ky2 + kz2 + ku2,

then m = 2,4.

Proof. (9.1) Claim: m is a power of 2.

If m is not a power of 2, we may assume that m is odd and > 1 by

replacing m by its odd factor. Then wtx = wZ y, and hence by Zm-auto-

morphism: x—> x + a-y, keeping y, z, u, we may assume that φ contains

xy, x2, y2- Thus by Theorem 8, wt x + wt y = 0 (m), u ί x and w;̂  y are

prime to m, which contradicts wtx = wty. Thus m = 1, and hence m is

proved to be a power of 2.

(9.2) Claim: If m = 8, then degree 2 part ^ of ^ is a quadratic

form of rank 3.

By 2 wt x = 2 wt y (8), one has wt x = wty (4). Thus by Z4-auto-

morphism: x—> x + ay keeping y, z, u, one may assume x2, y2, xy appear

in φ and m = 4. Then by Theorem 8 and Supplement 8.1, ̂ 2 has rank 3.

(9.3) Claim: m\4.

If 81 m can occur, the case m = 8 occurs, if m = 8, then ^2 contains

x\ y2, z2 (by exchanging z, u if necessary.) By 2wt x = 2^ί^ = 2utf2: (8),

one sees that two of wt x, wt y, wt z are congruent mod 8. We may assume

wt x = wZ y (8), without loss of generality. By Z8-automorphism: x—> x +

ay, keeping y, z, u, one may assume that φ contains x2, y2, xy for m = 8.

This contradicts Theorem 8. Thus Lemma 9 is proved.

LEMMA 10. If x2 and y2 appear in φ and ψ e kx2 + ky2 + kz2 + ku2 and

m = 4, then

( 1 ) if wtx = wty mod 4, £/ιeτι α/Zer exchanging z, u (if necessary) and

choosing a generator σ of Z4, one has σ-wts of x, y, z, u equal to 1, 1, 2, 3

mod 4, and modulo Z^automorphism,
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φ = χ2 + f + z

n + u2 (n: odd ^ 3) , and

( 2 ) if wt x -φ wty (4), then after exchanging z, u and exchanging x, y

{if necessary) and choosing a generator σ of Z4, one has σ-wts of x, y, z, u

equal to 1, 3, 2, 1 mod 4.

Proof Case (1) is due to Supplement 8.1 (cf. argument of Lemma 9).

Case (2): By 2wtx = 2wty (4), one sees that wt x, wty are odd by

Remark 7, (2). Hence wt φ = 2 (4). Applying Theorem 8 to m = 2, H;£ 2

or z#£ w is even (cf. argument of Lemma 9). Let us assume that wt z is

even. By Remark 7, (1), φ contains some power of z, whence wt z = 2 (4).

Changing σ to — σ if necessary, one gets (2). q.e.d.

LEMMA 11. If x2 and y2 appear in φ and φ e kx2 + ky2 + kz2 + ku2

and m = 2, then

( 1 ) if wtx~wtymo(i2, then after exchanging z, u (if necessary), one

has wts of x, y, z, u equal to 1, 1, 0, 1 mod 2, and modulo Z2-automorphίsm,

φ = x2 + y2 + f(z, u2) for some fe C{z, u],

( 2 ) if wtx^wty mod 2, then after exchanging x, y {if necessary), one

has wts of x, y, z, u equal to 1, 0, 1, 1 mod 2, and modulo Z2-automorphίsm,

φ = χ2 + y2 + f(z, u) for some fe C{z, u).

Proof. By Remark 7, (2), there is at most one even number among

wts of x, y, z, u. On the other hand, by Theorem 2 applied to v = (z^X,

one has v(x) + + u(w) > 2 + u(p) ̂  4. Hence exactly one of wts of

x, y, z, u is congruent to 0 mod (2). Then Lemma 11 is clear.

THEOREM 12. If φ2 has rank I> 2, then after permutation of x, y, z, u

(if necessary), one of the following holds.

( 1 ) wt x + wt y = 0; wt z = wt ψ =. 0; wt x, wt y, wt u are prime to m,

and modulo Zm-automorphism, φ = xy + f(z, um) for some fe C{z, um).

(2) m = 4; wts of x, y, z, u, φ are 1, 3, 1, 2 mod4 (after choosing a

generator of Z4), and modulo Z^-automorphism, φ = x2 + y2 + f(z, u2) for some

feC{z,u2}.

( 3 ) m = 2; wts of x, y, z, u, ψ are 1, 0, 1, 1, 0mod2, and modulo

Z2-automorphism, φ — x2 + y2 + f(z, u) for some f e (z, ύfC{z, u}.

By Lemma 12.2, this follows from Theorem 8, Lemmas 9, 10, 11.

(For case (3), one may set / e (z, uYC{z, u), because otherwise it is reduced

to case (1)).
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Remark 12.1. In case (1) (resp. (2), (3)) of Theorem 12, if / is a

general linear combination of a finite number of monomials in (z2, um)

C{z9 um} (resp. (z\ u2)C{z\ zu2

9 u*}9 (z\ z3u, z2u2

9 zu2

9 u')C{z2

9 zu, u2}) and if /

has an isolated singular point at 0, then (X9p) is a terminal singularity.

This follows from Corollary 2.1. For example, in case (1), if v is an order,

then v(x) + υ(y) + υ(z) + v(u) — m — v(φ) = (v(x) + v(y) — v(φ)) + (v(z) — m)

+ v(u) > 0.

LEMMA 12.2. If rk ψ2 >̂ 2, then modulo permutation of x, y, z, u and

Zm-automorphism, one has either (1) ψ2 = xy + g(z, u) for some quadratic

form g in z, u or (2) φ2 e kx2 + ky2 + kz2 + ku2.

Proof. If none of x2, y2, z2, u2 appears in φ2, then one has case (1) by

Theorem 8. If for example x2 appears in φ29 then one has φ2 = x2 +

h(y, z, ύ) modulo Zm-automorphism for some quadratic form h. One can

repeat similar argument to h(y, z, u), either to obtain case (1) by applying

Theorem 8, or end up with case (2). q.e.d.

COROLLARY 13. If rk <p2 J> 3, then after permutation of x, y, z, u and

choice of generator a e Zm, one has

( 1 ) rk ψ2 = 4; m = 2, wts of x, y, z, u, φ are 1, 1, 0, 1, 0 mod 2 and

ψ = xy -f- z2 + u2 modulo Z2-automorphίsm,

( 2 ) τkφ2 = 3; either.

(2.1) m ^ 2, wt x + wty = 0, wtz = wtφ = 0 (m), w ί x, utf y, ẑ ί w are

prime to m, and φ — xy + z2 + uim (ίm 2> 3) modulo Zm-automorphism,

(2.2) m = 2, lί ίs of x, y, z, u, ψ are 1, 1, 0 1, 0, and φ = xy + zι + u2

(i ^ 3) modulo Z2-automorphism9 or

(2.3) m = 4, <τ-iί;ί5 o/ x, y, 2, w, φ are 1, 1, 2, 3, 2, and 9 = xy +

2* + ι/2 (ί ^ 3: odd) modulo Z4-automorphism.

This follows from Theorem 12.

§ 3. Terminal singularities of type cD

LEMMA 14. If rk <p2 <J 1 and z/2 appears in <p2, then one has

φ = u2 + f(x, y, z) modulo Zm-automorphism ,

where f e (x, y, z)sC{x, y, z) has non-zero cubic term /3.

This follows from the definition of cDV points.
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LEMMA 15. Under the assumptions and notation of Lemma 14, if /3

contains xyz and m is a power of 2, then m = 2 and after permutation of

x, y, z (if necessary), one has wts of x, y, z, u, f equal to 1,1, 0,1, 0 mod 2.

Proof Since wt x + wty + wtz = 2ι#£ u = 0 (2), at least one of

wt y, wt z is even. Without loss of generality, we may assume wt z is

even. Then wt x, wt y, wt u are odd (Remark 7, (2)). If m = 2, then

Lemma 15 is proved. It remains to disprove the case m = 4. If TTC = 4,

then u ; ί / = 2 ( 4 ) because H;2 U is odd. Since / contains a power of 2

(Remark 7, (1)), M Z 3 = 2 (4). Choosing <τ e Z4, one may assume that σ-

wts of x, y, 2, w are α, 6, 2, 3 (α, 6 = 1, 3). By α + 6 + 2 = 2 (4), one has

a + b = 0 (4), whence α + 6 = 4. Since wt φ = 2, one sees that the order

i; induced by this weight satisfies v(f) = 6. Then u(x) + v(y) + u(e) +

v(u) < 4 + v(φ) contradicts Theorem 2. q.e.d.

LEMMA 16. Under the assumptions and notation of Lemma 14, if f,

contains xyz, then m is a power of 2.

Proof, Assuming that m is odd, we will derive a contradiction.

(16.1) Claim: wtx, wtt, wtz are prime to m.

For example, assume n = (wt x, m) > 1. Then wtf^O (n) by Remark

7, (1). Since n is odd, one has wt u = 0 (ra). This means ra = (wZ x, ι#£ α,

TM) > 1, which contradicts Remark 7, (2).

(16.2) Claim: wtx + wty + wtz and wt u are prime to m.

Since n is odd and wt u2 = w ί x yz (m), it is enough to show (wt xyz,

m) = 1. For this, it is enough to derive a contradiction by assuming that

wt xyz Ξ 0 (m), and m > 1 is odd. By replacing wZ by — wt if necessary,

one may assume (by (16.1))

(wt x)m + (wty)m + (wt z)m = m .

Hence, for the order i; = (wt)m, one has v(φ) = m and v(x) + v(y) + υ(z) -f-

v(u) ^ m + ι;(0. This is a contradiction to Theorem 2.

(16.3) By choosing peZm — {0}, one can assume

(p-ntf x)m + (p-wty)m + (p-wt z)m == ± 1 (/n), and < 3/n/2 .

Then (p-wtx)m + (p-wty)m + (p-wtz)m = m ± 1, and for i; = (ρ-wt)m, v(f) =

m ± 1 is even. By Corollary 2.2, 0 < m ± l — m — (ra± l)/2 = (— m ± l)/2.

This is a contradiction, and Lemma 16 is proved.
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PROPOSITION 17. Under the assumptions and notation of Lemma 14,

// fz contains xyz, then m = 2, and after permutation of x, y, z, one has wts

of x9 y, z, u, f equal to 1,1, 0,1, 0 mod 2.

This follows from Lemmas 15, 16.

LEMMA 18. Under the assumptions and notation of Lemma 14, if fz

contains xy2, and if m > 1 is a power of 2, then m — 2 and wts of x, y,

z, u, f are 0,1,1,1, 0 mod 2.

Proof. Assume m = 4. By 2wt u = wtx + 2wty9 wtx is even whence

wt y and wt u are odd (Remark 7, (2)). Thus 2wt u = 2wt y (4) and wt x = 0

(4). Thus by Remark 7, (1), wtf= 0(4), which contradicts wt u = 1 (2).

The rest is easy. q.e.d.

LEMMA 19. Under the assumptions and notation of Lemma 14, if /3

contains xy\ and if m > 1 is odd, then m = 3 α7icί α/ter choosing a gener-

ator of Zm, one has wts of x, y, z, u, φ equal to 2, 2, 1, 0, 0 mod 3 and f3

contains xy2, z3.

Proof (19.1) Claim: wtx, wty, wtz axe prime to m.

It is enough to derive a contradiction from (e.g.) wtx = 0 (m). By

Remark 7, (1), some power of x appears in /, and wtu = (wtf)j2 = 0 (m),

which contradicts Remark 7, (2).

(19.2) Claim: By (19.1), we may choose a generator σ of Zm so that

σ-wt x = 2, σ-wty = 6, σ-z^ 2 = c (m), with 0 < 6, c < m. Then, for u =

(σ-wt)n, v(f) =2 + 2b-m.

From v(xy2) = 2 + 2b£2m (19.1), follows u(/) = 2 + 26 or 2 + 26 - m.

But if v(f) - 2 + 26, then v(f) is even and 2 + 6 + c - m - (2 + 26)/2 =

c + 1 — m < ; θ b y (19.1), which contradicts Corollary 2.2.

(19.3) Claim: Under the assumptions and notation of (19.2), if 2c < m

and if m 2> 5, then 26 > m and for lί; = ((2σ)-wt)m, one has z#(;c) = 4, κ ( y)

= 26 - m, w(z) = 2c, w(f) = 4 + 46 - 2m.

By (19.2), u(/) = 2 + 26 - m ^ 3, whence 26 > m. Thus w;(x/) = 4 +

46 - 2m. If w(f) Φ 4 + 46 -2m, then w(/) = 4 + 46 - 3m because 6 <

m. Then w(/) is odd and w(x), w(z) are even. Thus w(f) is attained by a

term 3> (monomial of degree ^ 2). But

w(y (άeg ^2)) - (4 + 46 - 3m)

^ 26 - m + 2 - (4 + 46 - 3m) = 2(m - 1 - 6) ^ 0 ,



TERMINAL SINGULARITIES 59

and if the equality holds, then 6 = m — 1 and w((άeg 2^2)) = 2. This is

impossible by m >̂ 5. Thus (19.3) is proved.

(19.4) Claim: Under the situation of (19.2), if m ^> 5, then one has

c ^ (m - l)/2.

If c < (m - l)/2, then by (19.3), Corollary 2.2 applied to w(f) gives

0 < 4 + 26 — m + 2c — m — (4 + 46 — 2m)/2 = 2 + 2 c — m <L 2 + (m — 2)

_ m = 0, which is a contradiction. Thus (19.4) is proved.

(19.5) Claim: Under the situation of (19.2), one has (1) if m ^ 5 then

c is odd and c <L m — 4, and (2) if m = 3 then c = 1 and 6 = 2 .

Since ι<;y (deg ^ 2)) - (2 + 26 - m) = 6 + 2 - (2 + 26 - m) = m -

6 > 0 by 6 < m (19.2), u(/) is attained by a term containing only x and z.

Since ι;(/) is odd, v(z) = c is odd. Since 2 + 26 — m <; m and 3c > m

(19.4), / must contain xz if c >̂ m — 2 and m ^> 5. This is absurd, and

hence c ^ m — 4. The case m = 3 is similar.

Let c = m — 2e, e ^ 2. Then e is prime to λn by (19.1).

(19.6) Claim: Under the situation of (19.2), there is no integer i such

that

( * ) m/(2e - 1) ^ £ ̂  2m/(2e + 1) .

Assume that such i exists. Then w' = ((i σ)-wt)m satisfies ιυ\x) =

2£, w'{y) = 6', w\z) = 2m - 2ie, where V = (6£)m satisfies 0 < V < m by

(19.1). We will derive a contradiction to prove (19.6). From w'(f) = 2i

+ 26;, 2ί < m, and 26' < 2m, follows that 2£ + 26' < 3m. Thus w'(f) =

2£ + 267, 2ί + 26' - m, or 2£ + 26' - 2m. If w'(f) = 2i + 2b' - m (odd),

then w'(f) is attained by xpyqzr with g > 0 (w'(x), w\z) are even). Hence

2£ + 2b' - m = p(2i) + gδ' + r(2m - 2ie) , or

2i + b' = m + (q - 1)6' + J9 2i + r(2m - 2ίe) .

Since 2i ^ m — 1, b' ^ m — 1 (19.1), one has g = l, p = 0. B y p + g + r

^ 3, one gets r ^ 2 and 2i + b' > b' + 2(2m - 2ie) contradicting (*). If

w'(f) = 2i + 26' - 2m (even), then it is attained by xpyqzr, p + q + r :> 3,

and

2i + 2b' — 2m = 2ίp + b'q + r(2m — 2ίe) .

Since 2£ + 267 - 2m < 2£, one gets p = 0. Also from 2£ + 26' - 2m < 267

- m < 6;, follows g = 0 and r ^ 3. Hence 2£ > 2£ + 26' - 2m = r(2m - 2ίe)
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contradicting (*) in (19.6). Thus u/(f) = 2ί + 26'. Now w'{f) is even, and

Corollary 2.2 applied to wr gives a contradiction to (*):

0 < 2i + V + (2m - 2ie) - m - (2i + 260/2 = m - (2e - l ) i .

(19.7) Claim: Under the situation of (19.2), if m ^ 5, then one has

e.= 2, m = 7.

We note m ^ 4e — 1 by (19.4), and hence

(2e - l)(2e + l){2m/(2β + 1) - τn/(2β - 1) - 1}

= (2e - S)m - 4e2 + 1 ^ (2β - 3)(4e - 1) - 4e2 + 1 = 4e2 - 14e + 4 .

Thus if e >̂ 4, then 2m/(2e + 1) > m(2e — 1) + 1, and there exists i satisfy-

ing (*) in (19.6). Hence e <> 3. Then it is easy to check (19.7) for e ^ 3

and m >̂ 5.

(19.8) Claim: The case e = 2 and m = 7 does not give a terminal

singularity.

One has c = 3. By (19.2), 2 + 26 - 7 ^ 3 and 6 ^ 4, Since v(x), v{y),

υ(z) ^ 2, one has by (19.2), 2 + 26 - 7 ^ 3-2, whence 6 = 1. Then for

u/' = ((3.*)-!i;ί)m, II ̂ JC) = 6, w"(y) = 4, w"(z) = 2, and ^ ( / ) = 14, whence

w"(x) + w"(y) + w"(z) - 7 - w;//(/)/2 = - 2 < 0, which is a contradiction

to Corollary 2.2.

(19.9) Claim: If m = 3, then /3 contains 23.

Otherwise, by (19.2) and (19.5), v(x) = ι (y) = 2, φ ) = 1, one gets

v(f) = 6, which contradicts (19.2). This proves Lemma 19.

PROPOSITION 20. Under the situation of Lemma 14, if fs contains xy2,

then (1) m = 2 and wts of x, y, z, u, f are 0,1,1,1, 0 mod 2, or (2) m = 3

and after choosing generator σ of Z3, one has σ-wts of x, y, z, u, f equal to

2, 2,1, 0, 0 mod 3, and f3 contains xy2, 23.

Proof By Lemmas 18, 19, it remains to exclude m = 6. By Lemma

19, /3 contains z\ This implies 3 wt z = wtf, which contradicts Lemma 18.

LEMMA 21. Under the situation of Lemma 14, if /3 does not contain

cross terms (like xy2, xyz), then / 3 e C x3 + C-yz + C z3.

This is obvious.

LEMMA 22. Under the situation of Lemma 21, if f3 = xz+y3 + zz (resp.

xz + Λ then m — 3, and after choosing generator σ of Z3 and permutation
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of x, y, z (resp. x, y) if necessary, one has σ-wts of x, y, z, u9 φ equal to 1, 2,

2, 0, 0 mod 3.

Proof (22.1) Claim: 2 and 3 are the only possible prime factors of m.

Assuming that (m, 6) = 1, m > 1, we will derive a contradiction. From

wtx = wty (m), one has (wt x,m) = l by Remark 7, (2). Thus one can

choose a generator p of Zm such that p-wt x = 2. Then p-wts of x, y, 2,

u, φ are 2, 2, c, 3, 6, where c is prime to m by (wt φ, m) = 1, and Remark

7, (1). Let v — (ρ-wt)m. Since y(σ) 2> 2, m Ξ> 5, one has ί (^) = 6. Thus

ι (x) + u(y) + v(z) + u(w) — m — u(p) = c — m + 1 ^ 0 , which contradicts

Corollary 2.2.

(22.2) Claim: (m, 2) = 1.

Indeed if m = 2, then ^ Λ Ξ W ̂ Ξ O (2). This contradicts Remark

7, (2).

(22.3) Claim: m = 3.

We will derive a contradiction assuming m = 9. From 2-wtu = 3 α ί y

(9), follows κ;ίw = 0 (3). By Remark 7, (2), w Z#, iitfy, u ί z are prime to 3.

Thus wt u ^ 0 (9). If wtx = wty (9), then Z9-automorphism: x -> x + ay,

keeping y, z, w reduces the problem to Proposition 20, which contradicts

m = 9. Thus wt x = wty (3), wtx^ wty (9). Choosing a generator p e Z9,

one may assume {p-wtx, ρ-wty] = {2 mod 9, 5 mod 9}. By exchanging x, y

if necessary, one may assume that p-wts of x, y, 2, w are 2, 5, c, 3

mod 9 (c is prime to 3 by Remark 7, (2)). By applying Theorem 2 to v =

0>-n;ί)β, one gets u(/) = 6, c > 5. For «; = ( ( - ^)-^09, w(f) = 3 (9). By

Theorem 2, one gets ZU(X) + w(y) + w(z) + w{u) = 26 - c > 9 + H>(/).

Thus by c > 5, κ;(/) = 3. Then zz appears in / and w(z) = 1, c = 8. Thus

(— 3ρ)-wts of x, y, 2, w are 3, 3, 3, 0 mod 9. Hence for w; = ((— 3p)-wt)9>

w'(φ) ^ 9, and a/(x) + ^'(y) + w'(z) + ^'(M) ^ 9 + w\φ). This contradicts

Theorem 2, and m = 9 is excluded.

(22.4) Since wt u = 0 (3), ẑ ί x, «;£ y, ι̂ ί 0 are prime to 3. If wt x Ξ

ifίy = ι^ί^(3), then we can choose utf so that wtx=l. Then setting

orders of x, y, 2, w equal to 1,1,1, 3, one has an order v such that v(φ) — 3.

Then υ(x) + u(y) + v(z) + υ(u) = v(φ) + 3, which contradicts Theorem 2.

If /3 = x3 + y3 + z\ then after permutation of x,y, z and change of weight,

one gets wts of x, y, 2,u, φ equal to 1, 2, 2, 0, 0. If /3 = x3 + y3, then after

permutation of x, y if necessary and change of weight, one gets wts of

x, y, 0, w, 9 equal to 2, 6,1, 0, 0, (b = 1, 2) mod 3. If 6 = 2, then 2, 2,1, 3
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for x, y, z, u gives order w such that w(φ) = 6 because ψ does not contain

z\ Then w(x) + w(y) + w(z) + w(u) — 3 — w(φ) = — 1, which contradicts

Theorem 2. Thus 6 = 1. Changing wt to — wt, one gets Lemma 22.

THEOREM 23. Under the situation of Lemma 14, if f3 is not a cube of

a linear factor, then after permutation of x, y, z and choice of generator a

of Zm, one of the following holds.

( 1 ) m = 2, wts of x, y9 z, u, φ are 1,1, 0,1, 0 mod 2, and xyz or y2z

appears in /3.

( 2 ) m = 3, σ-wts of x, y, z, u, are 1, 2, 2, 0, 0 mod 3, and f3 = JC3 +

y + 23, x3 + yz2, or xs + y3 modulo Zz-automorphism of C{x, y, z}.

This follows from Propositions 17, 20, and Lemmas 21, 22.

Remark 23.1. In cases (1), (2) of Theorem 23, it is easy to see that

modulo Zm-automorphism of C{x, y, z, u}> one may put φ in one of the

following forms by Theorem 3:

Case 1. m = 2, wts of x, y, z, u are 1,1, 0,1 mod 2,

(23.1.1) φ = u2 + xyz + x2a + y2b + zc,

(23.1.2) φ=u2+y2z + λyx2*-1 + g ,

(a,b^2,c^3,λek,ge (x\ x2z2

9 z*)C{x2, z}) ,

Case 2. m = 3, wts of x, y, z, u are 1, 2, 2, 0 mod 3,

(23.2.1) 9 , = = u 2 + Λ . + y . + 2 3 >

(23.2.2) 9 = a2 + x* + yz2 + xy^λ + f-μ ,

(23.2.3) 9 = ύ2 + xs + yz + xyzz a + xz4 β + yz'-ϊ + zQ-δ ,

(ί, μ 6 C{/}, 4Λ3 + 27/i2 ^ 0, α, β, T, δ 6 C{̂ 3}) .

For (23.1.1) and (23.2.1), (X,p) is terminal. (This follows from Corollary

2.1.) If φ is a general linear combination of a finite number of monomials

as in (23.1.2), (23.2.2), or (23.2.3), and if φ has an isolated singularity at

0, then (X,p) is terminal. (This also follows from Corollary 2.1.)

The way to put φ in the standard forms above is as follows. If m = 2

and /3 contains xyz, then after operating Z2-automorphism, one may assume

that /3 = xyz + λz* (λ e k). If xyh (resp. if it is not reduced to (23.1.2) yzh,

zxh) appears in / for some monomial h e (x, u, zf, then Z2-transformation

z -> z + λh (resp. x -> x + λh, y -> y + λh) kills xyh (resp. ŷ Λ, 2jc/i) for some

λ. Thus for any n > 0, there is a Z2-automorphism ψ such that φ =ψ(u2 +
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xyz + x2aa(x) + y2bβ(y) + zcϊ(z)) modulo (x, y, z, u)n, (a, β are even power

series; a(0)β(0)ϊ(0) Φ 0; oo ^ α, 6, c; α, b ^ 2; c ^ 3). Thus, by Theorem 3,

there is a Z2-automorphism ψ such that

ψ = ψ(u2 + xyz + x2V + y2bβ + zcϊ) .

Hence one may assume

ψ == u2 + xyz + x2aa + y2bβ + zcϊ .

Since ψ = 0 has an isolated singularity, one sees α, 6, c < oo. It is easy

to see that there are invariant units uu u2, ι/3, u4 of C{x, y, z} such that

u\ — u&zUs = u\aa — u\bβ = w3Γ . Then Z2-automorphism

τ of C{x, y, z, u) such that τx = w^, ry = z/2;y, τ2: = κ8e, τw = uji satisfies

τψ = ul(u2 + xyz + x2a + y2b + 2:c) .

Thus (23.1.1) is obtained, and other cases are similar.

§ 4. Terminal singularities of type cE

LEMMA 24. Under the situation of Lemma 14, if fz = x\ then modulo

Zm-automorphism,

ψ = u2 + x" + g(y, z)x + h(y, z) ,

where g, he C{y, z}, g e (y, z)\ h e (y, z)\

This is obvious.

THEOREM 25. Under the situation of Lemma 24, one has m = 2 and

wts of x, y, z, u, ψ are 0, 1,1,1, 0 mod 2, and h £ (y, z)\

Remark 25.1. If m — 2 and wts of x,y, z, u are 0, 1, 1, Imod2 and

if an even polynomial g (resp. h) in y, z is a general linear combination

of a finite number of monomials e (y, z)* and h & (y, z)\ and if

ψ = u2 + x3 + g(y, z)x + h(y, z)

has an isolated singularity at 0, then (X, p) is terminal. (This follows from

Corollary 2.1.)

Proof, For an integer n ^ 0, let gn (resp. hn) be the homogeneous

part of degree n of g (resp. h). We will treat two cases.

Case 1. m is an odd prime.
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In this case, we will derive a contradiction in several steps.

(25.2) Claim: wtx, wty, wtz are prime to m.

If (e.g.) wtx~0 (m), then by Remark 7, (1), wtf=0 (m) and wtu = 0,

which contradicts Remark 7, (2).

(25.3) Claim: One may assume that m is a prime number > 7.

It is enough to derive a contradiction assuming m <L 7. By (25.2), let

p be a generator Zm of such that ρ-wt x = 2 (m). Since 2 z#2 w = 3 αtf x

(m), υ = (p-wt)m satisfies u(/) = 6. Let 6 = v(y), c = u(2?). Then by Corollary

2.2, 2 + δ + c - m - 3 > 0 and b + c ^ m + 2. Let «; = ((—ρ)-wt)n.

One has α (x) = m — 2, w (y) = m — b, w(z) = m — c. Since w;(x3) = 3m — 6,

iϋ(/) = 3m — 6 (odd) or 2m — 6 (even) because w(f) 2> 3. Thus in any case,

by Corollary 2.2, one has (m — 2) + (m — b) + (m — c) > 2m — 3. Hence

m + l > & + c : > m + 2. This is a contradiction.

(25.4) Claim: wty — wtz is prime to m.

It is enough to derive a contradiction assuming wty = wtz (m). Since

<p defines a. cDV point, one of h±,gz, /ι5 is non-zero. If Λ4 Φ 0, then after

choosing generator σ of Zm, one has σ-wts of x, y, z equal to 4, 3, 3 mod m.

Thus Corollary 2.2 applied to the induced order gives 0 < 4 + 3 + 3 — m

— 6 = 4 — m, which contradicts (25.3). The other cases are the same; if

gz Φ 0 (resp. Λ5 Φ 0), then one may assume that the wts of x, y, z axe 3,

2, 2 (resp. 5, 3, 3) mod m. Hence for the induced order w, w(f) = 9 (resp.

15 by (25.3)), which contradicts (25.3), by Corollary 2.2.

(25.5) gz, hi, h5 are monomials (or 0). (by (25.3) and (25.4))

(25.6) Claim: None of gz, h4, h5 are powers of y, or z (up to constants).

By symmetry, enough to show that none of them are powers of y.

If Λ4 = yi (up to non-zero constants), then one can choose an order v such

that v(x) = 4, v(y) = 3, v(z) = c (0 < c < m). Then υ(/) = 12, because 12 <

m + 3. Then 0 < 3 + 4 + c - m - 6 = l + c - m (Corollary 2.2), which

is a contradiction. If g3 — y3 (up to non-zero constants), then one can

choose an order v such that v(x) = 6, v(y) = 4, υ(z) = c (0 < c < m). Then

u(/) = 18 or 18 — m. If v(f) = 18, then Corollary 2.2 gives a contradiction;

0 < 6 + 4 + c - m - 9 = l + c - m . If v(f) = 18 - m, then 18 - m ( ^ 7)

is a sum of at least 4 numbers which are 4 = v(y) or c = u( s). Thus c = 1.

Hence one can choose an order w (— 2w = v (m)) such that w(x) — m — 3,

w(3>) = m — 2, iϋ(2) = (m — l)/2. Then w(/) = 3m — 9, 2m — 9, or m — 9,
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and order of an arbitrary monomial in x, y, z of degree ^ 4 is at least

4 (m - l)/2 = 2m - 2 > 2m - 9. Thus w(f) = 3m - 9 (even). Corollary

2.2 gives 0 < (m — 3) + (m - 2) + (m - l)/2 - m - (3m - 9)/2 = - 1, which

is a contradiction. If h5 = y* (up to constants), then one can choose an

order v such that v(x) = 10, v(y) = 6, v(z) = c (0 < c < m). If c ^ 6, then

ϋ(/) = 30 (30 - m < 4-6) and Corollary 2.2 gives a contradiction; 0 < 10 +

6 + c — m — 15 = c + 1 — m. If c = 1, 3, or 5, then one can choose an

order w (— 2w = v (m)) such that w(x) = m — 5, w( y) = m — 3, ẑ (z) =

(m — c)/2. For a monomial M in x, y, z of degree >̂ 4, one has w(M) 2>

4 (m - c)/2 = 2m - 2c > 2m - 15. Thus w(f) = 3m - 15 (even) by w(x*)

= 3m — 15. Then Corollary 2.2 gives a contradiction; 0 < (m — 5) +

(m - 3) + (m - c)/2 - m - (3m - 15)/2 = - (c + l)/2. If c = 2, or 4, then

one can choose an order w (2w = i; (m)) such that H (X) = 5, w(x) = 3,

^(z) = c/2. One has M;(X3) = 15 and m ^ 11 by (25.3), hence w(f) = 15

(odd) or 15 — m (even). Then, in any case, Corollary 2.2 gives contradic-

tion; 0 < 5 + 3 + c/2 - (m + 15)/2 < (5 - m)/2.

(25.7) Claim: One chooses an integer n >̂ 1 such that 12n + 5 >̂ m

^ 12/z — 5. Let v be an order such that v(x) = 4n, v(y) — b, v(z) = c (0 < b,

c < m). Then υ{f) = 12n.

Otherwise u(/) = 12n — m ^ 5. Since v(x) ^ 4, ^(/) is attained by h4

or K By (25.4), (25.5), (25.6), w(f) must be attained by Λ4, 12^ - m = 5,

(6, c) = (1, 2) or (2,1). Corollary 2.2 shows 0 < An + b + c - m/2 - 5/2 =

6 + c — 2τι = 3 — 2n. Thus n —\ and m = 7, which is a contradiction

to m > 7.

(25.8) Claim: b + c > m + 2n.

This follows from Corollary 2.2 applied to order v in (25.7); 0 < An

+ b + c — m — 6n = b + c — m — 2n.

(25.9) Claim: Let w be an order (w; = — υ (m), with υ in (25.7)) such

z#(x) = m — 471, z#(j>) = m — 6, z#(2) — m — c. Then &;(/) = 3m — 12τi of

2m — 12τι.

Otherwise, w(f) = m — 12π ^ 5, because w(x2>) — 3m — 12^. Since w(x)

= m — 4τι >̂ 12n — 5 — 4τι = 8n — 5 >̂ 3, u;(/) is attained by /ι4 or /i5. Since

w(f) is odd, m - 12n = 5, and (m - 6) + (m - c) = 3 by (25.4), (25.6). Let

wr be an order (w' = 3M; (m)) such that H/(X) = 5, w'{y) — 3(m — 6), w'(z)

= 3(m - c). Then w'(f) = 15, and Corollary 2.2 shows 0 < 5 + 3(m - 6)

+ 3(m - c) - m/2 - 15/2 = 5 + 9 - m/2 - 15/2 = (13 - m)/2. Thusm = 11
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= 12n + 5, which is a contradiction.

(25.10) By (25.9), Corollary 2.2, applied to w shows that 0 < (m - An)

+ (m — b) + (m — c) — (2m — 6n) = m + 2n — b — c. This contradicts

(25.8). Thus Case 1 is finished and m is a power of 2.

Case 2. m i s a power of 2.

(25.11) Claim: α/ίXΞO, wt u, wty, wtz = 1 (2).

By 2-wtu = 3-wtx (2), one has wt x = 0 (2), and the rest follows from

Remark 7, (2).

(25.12) Claim: gz = 7ι5 = 0, Λ4 ^ 0.

Since i6tfg3 = wth5 = 0 (2), one has gz = h$ = 0 by (25.11). Since 9

defines a cDV point, /ι4 ^ 0.

(25.13) Claim: m = 2.

It is enough to derive a contradiction assuming /n = 4. Since Λ4 7̂  0,

one has 3 wt x = «;ί/ι 4Ξ2 i ί i ί « Ξ 2 (4), hence zttf Λ: = 2, wty ^ wtz (4).

Thus by (25.11), wty + wtz = 0 (4). Let ^ be a generator of Z4 such that

-̂zitfs of x, y, 2, w are 2, 6, c, 3 (0 < 6, c < 4). Then b + c = 4. Let u =

(p-wt)4. Then ι;(/) = 6, and Theorem 2 gives contradiction; 0 < 2 + 6 +

c + 3 — 4 — 6 = — 1. Thus Case 2 is finished and Theorem 25 is proved.
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