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A REMARK ON SMITH’S RESULT ON A DIVISOR PROBLEM
IN ARITHMETIC PROGRESSIONS

KOHJI MATSUMOTO

§1. Introduction

Let d.(n) be the number of the factorizations of n into k positive
numbers. It is known that the following asymptotic formula holds:

2. dln) = p(@)'xP.(log () + 4ulg; 1),
nE’r(Eﬁd q)
where r and ¢ are co-prime integers with 0 <r <gq, P, is a polynomial
of degree k — 1, ¢(q) is the Euler function, and 4,(q;r) is the error term.
(See Lavrik [3]).
In 1982, R. A. Smith [5] proved that if (r, ¢) = 1, then for x = g*+?,

(LD 4(q; 1) = Fi(0) + O(x*-Y/¢+(log (2x))*~'d(q)) ,
where the function F,(s) is the meromorphic continuation of the Dirichlet
series

d.(mn-*.

n=r(med q)

The proof of Smith depends essentially on Deligne’s famous work con-
cerning Weil’s conjecture [1].

A remaining problem is the estimation of the term F,(0). In the “Note
added in proof” of [5], Smith announced the estimate F,(0) < ¢**(log (¢))*,
so the explicit upper bound of 4,.(q;r) obtained by Smith is as follows:

1.2) 4(g; 1) = O(g**(log (9))* + ="~/ (log (2x))*~'d(q)) -

Furthermore, Smith conjectured that the upper bound of F,(0) can be
improved to ¢**-V+¢ for any ¢ > 0. He said, “I will return to this prob-
lem at another time.” But, unfortunately, he suddenly passed away in
March 1983, at forty-six years old.
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In this note we shall prove this conjecture of Smith:
THEOREM. If (q,r) = 1, then for any ¢ > 0,
F.(0) = O(g**-"+),
where the O-constant depends only on k and ..

This result was already proved in 1982, and appeared in [4] in March
1983, without knowing the existence of Smith’s paper [5].

Our method also depends on Deligne’s work. We shall use Weinstein’s
version [7] of Deligne’s result, which gives the following sharp estimate
of the “hyper-Kloosterman sum”.

LeEmMmA (Deligne-Weinstein). If we put

S(mn cee, My Q) = Z exp (Zﬂiq_l(mlal + -+ mka'k)) ’
1fai=q(1sisk)
ayerrap=1(mod q)

then,
S(ml’ cey, My, q) <L kv(q)qi(k—l)(m“ my, Q)% e (mk-h my, Q)% >

where v(q) is the number of distinct prime factors of q, and (a, b, ¢) is the
greatest common divisor of a, b and c.

In the next section, we shall prove the Theorem. In Section 3, we
mention briefly further comments concerning the estimation of 4, (q;r).

The author would like to thank Dr. Masao Toyoizumi for some sim-
plifying of the original manuscript. He would also like to thank the
referee for valuable advices.

§2. Proof of the Theorem
The function F(s) = F,(s) is defined as the Dirichlet series

Fie) = 3. dmn~

n=r(mod q)

for s = ¢ +it, 6 = Re(s) > 1. Then,

Fo= 3 (S w)-(Z w)

Sa,een,apSq \U1=ay Ug=ag
ajecap=T

=q% 3 s q'a)--Ls 97,

1<a,e-s,ap<q
ayecap=T

where,
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L(s, w)=i(n+w)‘s o<wLl
n=0

is the Hurwitz zeta-function. The Hurwitz zeta-function can be analyt-
ically continued over whole plane, and holomorphic except at the pole
of order one at s = 1. And, if Re(s) < 0, then

Ls,w)y=—il'd — S)(27€)s'1m2::1 m*"{e(mw)e (%s) — e(— mw)e(— % )} ,

where I'(s) is the I'-function, and e(x) = exp (2rix). (See Titchmarsh [6],
Chap. II) Hence, the function F(s) is also meromorphic over whole plane,
holomorphic except at s = 1, and if Re (s) < 0,

Fs)=q® 2 (=il —s)@n))

k oo
X1 25 my™ {e(mj“j/Q)e<lS> —e(— m,oej/q)e(— _l_s)} .
j=1ms=1 4 4
Let ;=+1(1=j<k), and E(s,, - -+, ¢,) be the number of j such that
g; = — 1. Then,
F(S) = CI'“(— lF(]. —_ s)(27r)5“)" Z (._. l)E(elw--,ek)

o=k

X e(%‘(el + 0 4 ek)s)i]lux“ >

myesemp=u 1y, a5 =g
ayrecap =71

X e(q(emuay + - -+ + emyay)) .

Now we assume (¢, 7) = 1, and estimate the right-hand side by Deligne-
Weinstein’s lemma. Let af be the unique solution of the congruence
aaf =1(modq), 1 < af < q. Then, o, = af - - - af 1, so the last sum of
the right-hand side is S(emy, -« -, ey, exm,r; q@).  Using Weinstein’s
estimate and Stirling’s formula, we have

F(s) < (@ + lt!)i—”e_*"'“q‘%)ke%nltl/c

X Z uet > kv(q)q%(k—n(mb m,r, Q)} <o (Mmyy, My, Q)lr s
u=1

My eMp =1
for s = g, + it, 0, <O.
Let

Z(u) = Z (m,, m,r, o) LI (my—y, myr, CI)J" .

MieeME=U

Then,
1Zw| s X (M- me, @) K uf(u, ¢ ).

Myesomp=u
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So,

U U
212w« U Zl(u, gt g Ut ¢|Z dU/d] € U'+eq- .
U= qk—1

u=1

Hence, by partial summation,
Z,l urZ(u) £ q° .

Also, since v(q) < log (g)/log log(q), we have k@ « ¢°. Substituting these
estimates in (2.1), we have (for ¢, = Re (s) < 0)

@2) F(s) < (1 + [t)-worgie-nmretse
Now, let
f(s) = F(s) — du(@)a™*,
where a=r (mod q) and 0 < a < q. Then, for s = g, -+ it,

(2.3) f(s) € (1 + [tE-0kqoeghE-D=k(aq)®
Next, it is easily shown that for Re (s) = ¢, > 1,
(2.4) fle) € g

Now we introduce the function

f(s) = f(s) — M(s),

where M(s) is the meromorphic part of F(s) at s = 1. Smith [5] showed
that M(s) has the same meromorphic part as the function @.(s; q){*(s),
where the definition of @,(s; q) is as follows:

D(s;9) = (@)} ,I?_q. d-u(d),

here u(d) is the Mobius function.
Smith ([5], p. 263) proved that @,(s; ¢) has the Taylor expansion

D,(s; 9 = g Cin; g)(s — )"

at s = 1, where the coefficients C,(n; q) satisfy the following estimates:

n!-Cy(n; @) € q~'(loglog (39))" .

So we can easily show that M(s) satisfies the estimate
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(2.5) M(s) < q~'(loglog (3g))*"

in the range {|s — 1| = ¢/2}. Hence, f(s) satisfies the same estimates as
(2.3) and (2.4), if ¢, — 1 is sufficiently small.

Applying the Phragmén-Lindeléf principle to the holomorphic function
f(s), we can deduce from (2.3) and (2.4) the following estimate of f(s), for
g6<oc=Re(s) <o,

(2.6) F(8) < (1 + [t skte=ator=o0) goator=a)/(er=au)
Xq((é(k—l)—aok)(al—-U)—01(«7~llo))/(01-vo) (aq)s .

If we substitute the values ¢, =1+ ¢, 6, =— 4¢ and s = 0 in (2.6), we

get

}?(0) << qé(k—1)+5 .
This result with (2.5) completes the proof of the theorem.

§3. Remarks on some estimations of 4,

Heath-Brown [2] handled the Dirichlet series Fi(s), and got an esti-
mate of 4,q;r). A generalization of Heath-Brown’s argument leads to the
following estimate ([4]): If (¢,r) = 1 and x = ¢***?, then for any ¢ > 0,

(3.1) Ak(q; 7') = O(xk/(k”)*eq-i/(kﬂ)m) .

This result improves Smith’s estimate (1.2) in the range ¢***" < x <
gD/

Now, using the estimate of our theorem, the result (1.1) leads to the
estimate

(3.2) dlg; m) = O(g*~+e + x*-0/% 0 (Jog (2x))*~'du(q))

instead of (1.2), and this is sharper than (3.1) for any x = ¢***b, (We
note here that better estimates are known for some special values of &
such as k2 = 4. For general &, however, results as sharp as the estimate
(3.2) seem to be not known before.)

Our theorem is a direct consequence of Deligne-Weinstein’s lemma,
so it seems difficult to improve the result (3.2) by the method of this
paper. On the other hand, there is a possibility to improve the estimate
(3.1), if we can refine the generalization of Heath-Brown’s argument [2].
Such a result will improve the estimate of 4,(¢; r) for some range of x.
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