ON CENTRAL EXTENSIONS OF A GALOIS EXTENSION OF ALGEBRAIC NUMBER FIELDS

KATSUYA MIYAKE

Introduction

Let k be an algebraic number field of finite degree, and K a finite Galois extension of k. A central extension L of K / k is an algebraic number field which contains K and is normal over k, and whose Galois group over K is contained in the center of the Galois group $\operatorname{Gal}(L / k)$. We denote the maximal abelian extensions of k and K in the algebraic closure of k by k_{ab} and K_{ab} respectively, and the maximal central extension of K / k by $\mathrm{MC}_{K / k}$. Then we have $K_{\mathrm{ab}} \supset \mathrm{MC}_{K / k} \supset k_{\mathrm{ab}} \cdot K$.

Put $\mathrm{g}=\operatorname{Gal}(K / k)$, and let $\widetilde{S}(K / k)$ be the dual group of the Schur multiplicator $H^{2}(\mathrm{~g}, \boldsymbol{Q} / \boldsymbol{Z})$ of g . It is known as was explained in [5] for example, that there exists a canonical isomorphism

$$
\varphi_{K / k}: \subseteq(K / k) \xrightarrow{\sim} \operatorname{Gal}\left(\mathrm{MC}_{K / k} / k_{\mathrm{ab}} \cdot K\right)
$$

Therefore, especially, $\mathrm{MC}_{K / k}$ is a finite extension of $k_{\mathrm{ab}} \cdot K$. For a central extension L of K / k, this $\varphi_{K / k}$ induces a surjective homomorphism rest ${ }_{L} \circ \varphi_{K / k}$ of $\subseteq(K / k)$ onto $\operatorname{Gal}\left(L / L \cap k_{\mathrm{ab}} \cdot K\right)$. It is also known that there exists a finite central extension L of K / k such that $\varphi_{K / k}$ induces an isomorphism of $\subseteq(K / k)$ onto $\operatorname{Gal}\left(L / L \cap k_{\text {ab }} \cdot K\right)$. Such an L is said to be an abundant central extension of K / k for convenience in [5], where we posed the following problem:

Problem. Is there an abundant central extension M of K / k such that $M \cap k_{\mathrm{ab}} \cdot K=K$? If not, then what determines the structure of $\operatorname{Gal}\left(M \cap k_{\mathrm{ab}}\right.$. K / K) for an abundant central extension M of minimum degree?

In this paper, we give a couple of sufficient conditions under which $M \cap k_{\mathrm{ab}} \cdot K$ coincides with K, and examine some cases for which the conditions hold. We also give an upper bound for [$M: K$] in the final section.

[^0]There is a certain kind of important central extensions which were introduced by Opolka [6] and others as a substitute for the Hasse norm theorem in K / k. Let $\AA(K / k)$ be Scholz's number knot of K / k, that is the quotient group of

$$
\left\{a \in k^{\times} \mid a \text { is a norm locally everywhere in } K\right\}
$$

by its subgroup $\left\{a \in k^{\times} \mid a\right.$ is a global norm in $\left.K\right\}$. There exists a canonical surjective homomorphism $\psi_{K / k}$ of $\subseteq(K / k)$ onto $\mathscr{\AA}(K / k)$. (See [5] for example.) A central solution of $\Omega(K / k)$ is, according to Opolka, a finite central extension L of K / k such that an element a of k^{\times}is a global norm in K if a is a norm locally everywhere in L. For a finite central extension L of K / k to be a solution of $\Omega(K / k)$, it is necessary and sufficient that there exists a homomorphism $\psi: \operatorname{Gal}\left(L / L \cap k_{\mathrm{ab}} \cdot K\right) \rightarrow \mathfrak{A}(K / k)$ such that $\psi_{K / k}=\psi$ 。 rest $_{L} \circ \varphi_{K / k}$.

In this paper, we also show the result of Opolka [7] which gives an upper bound of [$L: K$] for a minimal central solution L of $\Omega(K / k)$, and improve his sufficient condition for such an L to satisfy that $L \cap k_{\text {ab }} \cdot K=K$.

1. Notation and Preliminaries

Let K / k be a finite Galois extension of algebraic number fields of finite degree with $\mathfrak{g}=\operatorname{Gal}(K / k)$. Put $\widetilde{(}(K / k)=$ the dual group of $H^{2}(\mathfrak{g}, \boldsymbol{Q} / Z)$, as was in Introduction. Let K_{A}^{\times}be the idele group of K, and $\mathfrak{a}_{K}: K_{A}^{\times} \rightarrow$ $\operatorname{Gal}\left(K_{\mathrm{ab}} / K\right)$ the Artin map of class field theory with $K^{*}=\operatorname{Ker} \mathfrak{a}_{K}$. Throughout this paper, we consider the idele group k_{A}^{\times}naturally imbedded into K_{A}^{\times}. Define a closed subgroup of K_{A}^{\times}by

$$
K_{A}^{\Delta_{g}}=\left\langle x^{1-\sigma} \mid x \in K_{A}^{\times}, \sigma \in \mathfrak{g}\right\rangle
$$

under the natural action of \mathfrak{g} on K_{A}^{\times}. Then \mathfrak{a}_{K} induces an isomorphism $\overline{\mathfrak{a}}_{K}: K_{A}^{\times} / K_{A}^{A_{s}} \cdot K^{\sharp} \xrightarrow{\sim} \operatorname{Gal}\left(\mathrm{MC}_{K / k} / K\right)$. (See [5] for example.) Let $N_{K / k}: K_{A}^{\times} \rightarrow$ k_{A}^{\times}be the norm map. Then Scholz's number knot is given as

$$
\Re(K / k)=k^{\times} \cap N_{K / k}\left(K_{A}^{\times}\right) / N_{K / k}\left(K^{\times}\right)
$$

where k^{\times}and K^{\times}are the multiplicative groups of k and K respectively. From the divisibility properties of k^{\sharp} / k^{\times}and K^{\sharp} / K^{\times}, we easily see that $\Re(K / k)$ is isomorphic to $k^{*} \cap N_{K / k}\left(K_{A}^{\times}\right) / N_{K / k}\left(K^{*}\right)$. Therefore we have

$$
\mathscr{\Re}(K / k) \simeq N_{\bar{K} / k}^{-1}\left(k^{*}\right) / N_{\bar{K} / k}^{-1}(1) \cdot K^{\#} .
$$

(Cf. [3] for example.) Since \mathfrak{a}_{K} induces an isomorphism of $N_{K / k}^{-1}\left(k^{*}\right) / K^{\#}$ onto $\operatorname{Gal}\left(K_{\mathrm{ab}} / k_{\mathrm{ab}} \cdot K\right)$, we have the following commutative diagram:

Let $\pi: K_{A}^{\times} \rightarrow K_{A}^{\times} / K_{A}^{\Delta_{8}} \cdot K^{\#}$ be the natural projection, and put

$$
\begin{aligned}
& \mathscr{C}=\{L \mid \text { a finite central extension of } K / k\}, \\
& \mathfrak{U}=\left\{U \mid \text { an open subgroup of } \pi\left(K_{A}^{\times}\right)\right\} .
\end{aligned}
$$

Then we have a perfect correspondence between \mathscr{C} and \mathfrak{U} assigning $U=$ $\pi\left(N_{L / K}\left(L_{A}^{\times}\right)\right)$to $L \in \mathscr{C}$. If L is a finite abelian extension of K, then $L \in \mathscr{C}$ if and only if $N_{L / K}\left(L_{A}^{\times}\right) \cdot K^{\times} \supset K_{A}^{\Delta_{A}} \cdot K^{\#}$. Therefore, for $L \in \mathscr{C}$, we have a surjective homomorphism of $\Theta(K / k)\left(\simeq N_{K / k}^{-1}\left(k^{\sharp}\right) / K_{A}^{\Delta_{A}} \cdot K^{\#}\right)$ onto $N_{K / k}\left(L_{A}^{\times}\right) \cdot N_{K / k}^{-1}\left(k^{*}\right) /$ $N_{L / K}\left(L_{A}^{\times}\right) \cdot K^{\times}$which is naturally isomorphic to $N_{K / k}^{-1}\left(k^{*}\right) / N_{L / K}\left(L_{A}^{\times}\right) \cdot K^{\times} \cap$ $N_{K / k}^{-1}\left(k^{*}\right)$. Because the last isomorphism corresponds to the isomorphism

$$
\operatorname{Gal}\left(L \cdot k_{\mathrm{ab}} / k_{\mathrm{ab}} \cdot K\right) \xrightarrow{\sim} \operatorname{Gal}\left(L / L \cap k_{\mathrm{ab}} \cdot K\right)
$$

by the Artin map \mathfrak{a}_{K}, the surjection is the idelic version of rest ${ }_{L} \circ \varphi_{K / k}$ of $\mathfrak{S}(K / k)$ onto $\operatorname{Gal}\left(L / L \cap k_{\mathrm{ab}} \cdot K\right)$, which was stated in Introduction. Therefore we have:

A member L of \mathscr{C} is abundant

$$
\begin{aligned}
& \Longleftrightarrow \operatorname{Gal}\left(L / L \cap k_{\mathrm{ab}} \cdot K\right) \simeq \subseteq(K / k) \\
& \Longleftrightarrow N_{L / K}\left(L_{A}^{\times}\right) \cdot K^{\times} \cap N_{K / k}^{-1}\left(k^{*}\right)=K_{A}^{s_{\mathrm{A}}} \cdot K^{\ddagger} .
\end{aligned}
$$

It is also clear that:
A member L of \mathscr{C} is a solution of $\mathscr{\Re}(K / k)$
$\Longleftrightarrow N_{L / K}\left(L_{A}^{\times}\right) \cdot K^{\times} \cap N_{K / k}^{-1}\left(k^{*}\right) \subset N_{K / k}^{-1}(1) \cdot K^{*}$
\Longleftrightarrow There exists a homomorphism $\psi: \operatorname{Gal}\left(L / L \cap k_{\mathrm{ab}} \cdot K\right) \longrightarrow \mathscr{A}(K / k)$ such that $\psi_{K / k}=\psi \circ \operatorname{rest}_{L} \circ \varphi_{K / k}$.

The following proposition is now almost obvious:
Proposition 1. There exists an abundant central extension M of K / k such that $M \cap k_{\mathrm{ab}} \cdot K=K$ if and only if there exists a member U of \mathfrak{U} such that $U \cap \pi\left(N_{K / k}^{-1}\left(k^{*}\right)\right)=1$ and $U \cdot \pi\left(N_{K / k}^{-1}\left(k^{*}\right)\right)=\pi\left(K_{A}^{\times}\right)$.

Now, let \mathfrak{p} and \mathfrak{P} be prime divisors of k and K, respectively, with
the completion $k_{\mathfrak{p}}$ and K_{\Re}. We denote the maximal order of k or the ring of integers of k_{p} by $O(k)$ or $O\left(k_{\mathrm{p}}\right)$, respectively, and the unit groups by $O^{\times}(k)$ or $O^{\times}\left(k_{p}\right)$. We also denote $O^{\times}\left(k_{A}\right)=k_{\infty}^{\times} \cdot \prod_{p} O^{\times}\left(k_{p}\right)$ where k_{∞}^{\times}is the Archimedian part of K_{A}^{\times}. For an Archimedian prime divisor \mathfrak{p}, let us write $O^{\times}\left(k_{p}\right)=k_{p}^{\times}$where $k_{\mathfrak{p}}$ is the completion of k by \mathfrak{p}. Then $O^{\times}\left(k_{A}\right)=$ $\Pi_{p} O^{\times}\left(k_{p}\right)$ where Π_{p} is the direct product over all prime divisors of k. We naturally identify $\left(K \otimes_{k} k_{\mathfrak{p}}\right)^{\times}$with $\prod_{\mathfrak{B} \mid \mathfrak{p}} K_{\mathfrak{ß}}^{\times}$, and denote the norm map $\left(K \otimes k_{\mathrm{p}}\right)^{\times} \rightarrow k_{\mathrm{p}}^{\times}$by $N_{K / k}^{(\mathrm{p})}$. For a prime divisor \mathfrak{P} of K, the norm map $K_{队>}^{\times}$ $\rightarrow k_{\mathfrak{p}}^{\times}$is simply denoted by $N_{\mathfrak{ß}}$ if $\mathfrak{p}=\left.\mathfrak{P}\right|_{k}$. Let $\mathfrak{g}(\mathfrak{P})$ be the decomposition group of \mathfrak{P}, and put

$$
K_{\Re_{\beta} \Delta^{(}(\mathfrak{F})}=\left\langle x^{1-\sigma} \mid x \in K_{\mathfrak{\beta}}^{\times}, \sigma \in \mathfrak{g}(\mathfrak{P})\right\rangle .
$$

We also put

$$
\left(K \otimes k_{p}\right)^{\Lambda_{g}}=\left\langle x^{1-\sigma} \mid x \in\left(K \otimes k_{p}\right)^{\times}, \sigma \in \mathfrak{g}\right\rangle .
$$

The following three propositions are well known:
Proposition 2. Let \mathfrak{P} and \mathfrak{B}^{\prime} be prime divisors of K such that $\left.\mathfrak{P}\right|_{k}$ $=\left.\mathfrak{P}^{\prime}\right|_{k}=\mathfrak{p}$. Then there exists an element $\sigma \in \mathfrak{g}$ such that $N_{\mathfrak{\beta}}^{-1}(1)=N_{\mathfrak{\beta}^{-1}}^{-1}(1)^{\sigma}$ in $\left(K \otimes k_{\mathfrak{p}}\right)^{\times}$. Especially, we have $\left(N_{K / k}^{(\mathfrak{p})}\right)^{-1}(1)=\left(K \otimes k_{\mathfrak{p}}\right)^{\Lambda_{8}} \cdot N_{\mathfrak{B}}^{-1}(1)$ for any $\mathfrak{ß}$ dividing \mathfrak{p}.

Proposition 3. $\quad N_{\mathfrak{\beta}}^{-1}(1) / K_{\mathfrak{\beta}}^{\Delta_{\mathfrak{\beta}}(\mathfrak{P})} \simeq$ the dual of $H^{2}(\mathfrak{g}(\mathfrak{P}), \boldsymbol{Q} / Z)$.
Remark. This is the local version of the isomorphism of $\mathbb{S}(K / k) \simeq$ $N_{K / k}^{-1}\left(k^{*}\right) / K_{A}^{\Lambda_{a}} \cdot K^{\#}$ in the diagram (*).

Proposition 4. If $K_{\mathfrak{B}}$ is cyclic over $k_{\mathfrak{p}}$ for a prime divisor \mathfrak{P} dividing \mathfrak{p}, then $N_{\Re}^{-1}(1)=K_{\Re}^{A_{8}(\mathfrak{P})}$ and $\left(N_{K / k}^{(p)}\right)^{-1}(1)=\left(K \otimes k_{p}\right)^{\Lambda_{8}}$.

If \mathfrak{p} is unramified in K / k, then $K_{\mathfrak{F}}$ is cyclic over $k_{\mathfrak{p}}$ for any $\mathfrak{P} \mid \mathfrak{p}$. Put $D=\{\mathfrak{p} \mid$ a prime divisor of k ramified in $K / k\}$.

Proposition 5. For each $\mathfrak{p} \in D$, take a prime divisor \mathfrak{p} of K dividing \mathfrak{p}. Then we have

$$
N_{K / k}^{-1}(1)=K_{A}^{\Delta_{q}} \cdot \prod_{p \in D} N_{\rho}^{-1}(1) .
$$

Here each $N_{\rho}^{-1}(1)$ is considered to be naturally imbedded in K_{A}^{\times}.

2. The condition $C(m)$ and the key theorem

For a positive integer m, let us consider a few conditions on K / k.

$$
\begin{aligned}
& C(m):\left\{u \in N_{K / k}\left(K_{A}^{\times}\right) \cdot k^{\times} \mid u^{m}=1\right\} \subset N_{K / k}\left(\left\{z \in K_{A}^{\times} \mid z^{m} \in K_{A}^{\left.\Delta_{A}\right\}}\right) \cdot\left\{\zeta \in k^{\times} \mid \zeta^{m}=1\right\} ;\right. \\
& C^{\prime}(m):\left\{u \in N_{K / k}\left(K_{A}^{\times}\right) \cdot k^{\times} \mid u^{m}=1\right\} \subset N_{K / k}\left(K_{A}^{\times}\right) \cdot\left\{\zeta \in k^{\times} \mid \zeta^{m}=1\right\} ; \\
& C_{1}(m): u \in N_{K / k}\left(K_{A}^{\times}\right) \cdot k^{\times} \text {and } u^{m}=1 \Longrightarrow \zeta \zeta k^{\times \forall \mathfrak{p} \in D\left((u \zeta)_{p}=1\right) .}
\end{aligned}
$$

Here for an idele $x \in k_{A}^{\times}$and a prime divisor $\mathfrak{p}, x_{\mathfrak{p}}$ is the \mathfrak{p}-component of x, i.e. $x=\left(\cdots, x_{p}, \cdots\right) \in k_{A}^{\times}=\prod_{p}^{\prime} k_{p}^{\times}$.

Remark. It is obvious that $C_{1}(m)$ implies $C_{1}(\mu)$ for every $\mu \mid m$.
Proposition 6. $\quad C_{1}(m) \Rightarrow C(m) \Rightarrow C^{\prime}(m)$.
Proof. It is obvious that $C(m)$ implies $C^{\prime}(m)$. We show that $C_{1}(m)$ implies $C(m)$. Let u be an element of $N_{K / k}\left(K_{A}^{\times}\right) \cdot k^{\times}$such that $u^{m}=1$. Choose $\zeta \in k^{\times}$for u by $C_{1}(m)$. Then in k_{p}, we have $\zeta^{-1}=u_{p}$. Therefore, especially, $\zeta^{m}=1$. Since $(u \zeta)^{m}=1$, we have $u \zeta \in O^{\times}\left(k_{A}\right)$. For each prime divisor \mathfrak{p} of k, fix a prime divisor \tilde{p} of K dividing \mathfrak{p}. For a prime divisor \mathfrak{P} of K, put $z_{\mathfrak{\beta}}=1$ if either $\left.\mathfrak{P}\right|_{k} \in D$ or $\mathfrak{B} \neq \tilde{\mathfrak{p}}$ for $\mathfrak{p}=\left.\mathfrak{P}\right|_{k}$. If $\mathfrak{\beta}=\tilde{\mathfrak{p}}$ for $\mathfrak{p} \notin D$, then $K_{\mathfrak{p}}$ is unramified over $k_{\mathfrak{p}}$. Therefore there is an element $z_{\mathfrak{\beta}}$ in $O^{\times}\left(K_{\mathfrak{F}}\right)$ such that $N_{\mathfrak{\beta}}\left(z_{\mathfrak{\beta}}\right)=(u \zeta)_{p}$. Let $z=\left(\cdots, z_{\mathfrak{\beta}}, \cdots\right)$ be the idele of K_{A}^{\times}with $z_{\mathfrak{B}}$ determined in this way as the \mathfrak{B}-component. Then we have $N_{K / k}(z)=u \zeta$. Since $N_{K / k}\left(z^{m}\right)=(u \zeta)^{m}=1, z^{m}$ belongs to $N_{K / k}^{-1}(1)$. Then by Proposition 4, we have $z^{m} \in K_{A}^{\Delta_{g}}$ because of the choice of $z_{\mathfrak{\beta}}$'s for $\left.\mathfrak{P}\right|_{\epsilon} \in D$. This shows that $u=(u \zeta) \cdot \zeta^{-1}=N_{K / k}(z) \cdot \zeta^{-1}$ belongs to the set at the right hand side of $C(m)$.
Q.E.D.

Proposition 7. Suppose that $m=q \cdot r$ and $(q, r)=1$. Then $C(m)$ implies $C(q)$ and $C(r)$.

Proof. Take μ and ν in Z so that $\mu q+\nu r=1$. Let u be an element of $N_{K / k}\left(K_{A}^{\times}\right) \cdot k^{\times}$such that $u^{q}=1$. Then by $C(m)$, we can find $z \in K_{A}^{\times}$and $\zeta \in k^{\times}$such that $z^{m} \in K_{A}^{\Delta_{8}}, \zeta^{m}=1$ and $N_{K / k}(z) \cdot \zeta=u$. Therefore we have

$$
u=u^{\mu q+\nu r}=u^{\nu r}=N_{K / k}\left(z^{\nu r}\right) \cdot \zeta^{\nu r} .
$$

Because we have $\left(z^{\nu r}\right)^{q}=\left(z^{m}\right)^{\nu} \in K_{A}^{\Delta_{g}}$ and $\left(\zeta^{\nu r}\right)^{q}=\left(\zeta^{m}\right)^{\nu}=1$, we have seen that $C(m)$ implies $C(q)$.
Q.E.D.

Proposition 8. Suppose that $m=q \cdot r$ and $(q, r)=1$. Then $C^{\prime}(m)$ implies $C^{\prime}(q)$ and $C^{\prime}(r)$.

The proof is similar to the one of Proposition 7.
Now, define a set of prime numbers \mathscr{P} and a positive integer $m(\mathrm{~g})$ by

$$
\begin{aligned}
& \mathscr{P}=\{p \mid \text { a prime number, } p \| \subseteq(K / k) \mid\} ; \\
& m(\mathfrak{g})=\text { the exponent of } \subseteq(K / k) .
\end{aligned}
$$

Then $m(g)$ divides the order $|g|$. (See the proof of Proposition 10.) Note that $\subseteq(K / k) \cong H^{2}(\mathfrak{g}, \boldsymbol{Q} / Z)$.

Theorem 1. Suppose that the condition $C(m)$ is satisfied for every $m \mid m(\mathrm{~g})$ by the Galois extension K / k, and that $k^{\times} \cap k_{A}^{\times m(g)}=k^{\times m(g)}$. Then there exists an abundant central extension M of K / k such that $M \cap k_{\mathrm{ab}} \cdot K$ $=K . \quad$ Especially, $\operatorname{Gal}(M / K)$ is isomorphic to $\subseteq(K / k)$.

Remark. As is well known, $\left[k^{\times} \cap k_{A}^{\times m(\Omega)}: k^{\times m(\Omega)}\right] \leq 2$. If $k\left(\zeta_{2}\right)$ is cyclic over k, then the index is equal to 1 where $\zeta_{2 t}$ is a primitive 2^{t}-th root of 1 for $2^{t} \| m(\mathrm{~g})$. (See Artin-Tate [1, Ch. 10, § 1].)

We prove the theorem by showing the existence of an open subgroup U of $\pi\left(K_{A}^{\times}\right)=K_{A}^{\times} / K_{A}^{\Delta_{8}} \cdot K^{\#}$ which satisfies the condition of Proposition 1.

Lemma 1. Suppose that the condition $C(q), q=p^{e}$ for a prime number p, is satisfied. If $p=2$, we assume that $k^{\times} \cap k_{A}^{\times q}=k^{\times q}$. Let \bar{x} be an element of $\pi\left(N_{K / k}^{-1}\left(k^{*}\right)\right)$. If \bar{x} belongs to $\pi\left(K_{A}^{\times}\right)^{q} \cdot U$ for every open subgroup U of $\pi\left(K_{A}^{\times}\right)$such that $U \cap\langle\bar{x}\rangle=1$, then \bar{x} belongs to $\pi\left(N_{\bar{K} / k}^{-1}\left(k^{*}\right)\right)^{q}$.

Proof. Because $\pi\left(K_{A}^{\times}\right)^{q}=\left\{\bar{z}^{q} \mid \bar{z} \in \pi\left(K_{A}^{\times}\right)\right\}$is a closed subgroup of $\pi\left(K_{A}^{\times}\right)$, we have $\bigcap_{U} \pi\left(K_{A}^{\times}\right)^{q} \cdot U=\pi\left(K_{A}^{\times}\right)^{q}$ where \bigcap_{U} is the intersection over all the open subgroup U of $\pi\left(K_{A}^{\times}\right)$such that $U \cap\langle\bar{x}\rangle=1$. (Remember that $\pi\left(N_{K_{/ k}}^{-1}\left(k^{*}\right)\right)$ is isomorphic to $\mathbb{S}(K / k)$, and finite. Therefore $\langle\bar{x}\rangle-\{1\}$ is a closed subset of $\pi\left(K_{A}^{\times}\right)$.) By the assumption, therefore, \bar{x} belongs to $\pi\left(K_{A}^{\times}\right)^{q}$. Take $x \in N_{K / k}^{-1}\left(k^{*}\right)$ and $y \in K_{A}^{\times}$so that $\bar{x}=\pi(x)=\pi(y)^{q}$. Then $x=y^{q} w a$ with $w \in K_{A}^{\Delta_{8}}$ and $a \in K^{\#}$. Therefore $N_{K / k}\left(x a^{-1}\right) \in k^{\sharp} \cap K_{A}^{\times q}$. We have $k^{\#}=k^{\times} \cdot k^{\sharp q}$ by the divisibility property of k^{\sharp} / k^{\times}(see [3] for example), and $k^{\times} \cap k_{A}^{\times q}=$ $k^{\times q}$ (by the assumption if $p=2$). Therefore there exists $b \in K^{*}$ such that $N_{K / k}\left(x a^{-1}\right)=b^{q}$. Then we have $N_{K / k}(y)=u \cdot b$ with $u \in N_{K / k}\left(K_{A}^{\times}\right) \cdot k^{\#}=$ $N_{K / k}\left(K_{A}^{\times}\right) \cdot k^{\times}$such that $u^{q}=1$. By $C(q)$, take $z \in K_{A}^{\times}$and $\zeta \in k^{\times}$such that $z^{q} \in K_{A}^{\Delta_{9}}, \zeta^{q}=1$ and $N_{K / k}(z) \cdot \zeta=u$. Then $N_{K / k}\left(y z^{-1}\right)=\zeta \cdot b \in k^{\#}$, i.e. $y z^{-1} \in$ $N_{K / k}^{-1}\left(k^{*}\right)$. Since $\pi(z)^{q}=1$, we finally have $\bar{x}=\pi(x)=\pi(y)^{q}=\pi\left(y z^{-1}\right)^{q} \in$ $\pi\left(N_{\bar{K} / k}^{-1}\left(k^{*}\right)\right)^{q}$.
Q.E.D.

Lemma 2. Let A be a finite abelian p-group, and B be a subgroup of A. Suppose that $A^{q} \cap B \subset B^{q}$ for each $q(1 \leq q \leq \exp (B))$, then there exists a subgroup C of A such that $B \cdot C=A$ and $B \cap C=1$.

Proof. Choose a set of generators $\left\{b_{1}, \cdots, b_{\mu}\right\}$ of B such that B is the direct product $\left\langle b_{1}\right\rangle \times \cdots \times\left\langle b_{\mu}\right\rangle$. Then $B^{q}=\left\langle b_{1}^{q}, \cdots, b_{\mu}^{q}\right\rangle$. Among the subsets $\left\{c_{1}, \cdots, c_{\nu}\right\}$ of A such that $A=\left\langle b_{1}, \cdots, b_{\mu}, c_{1}, \cdots, c_{\nu}\right\rangle$, take $\left\{c_{1}, \cdots, c_{\nu}\right\}$ so that $\left|\left\langle c_{1}\right\rangle\right|+\cdots+\left|\left\langle c_{\nu}\right\rangle\right|$ is minimum. Put $C=\left\langle c_{1}, \cdots, c_{\nu}\right\rangle$. Assume that $B \cap C \neq\{1\}$, and let x be an element of $B \cap C$ different from 1. Then $x=\prod_{i=1}^{\nu} c_{i}^{q_{i} \cdot r_{i}}$ where q_{i} is a power of p and $\left(r_{i}, p\right)=1$. Put $q=$ $\min \left\{q_{i} \mid c_{i}^{q_{i} \cdot r_{i}} \neq 1\right\}$. Then x belongs to B^{q} since this contains $A^{q} \cap B$. Take $u \in B$ such that $u^{q}=x$. Put $s_{i}=q_{i} \cdot r_{i} / q$ for i such that $c_{i}^{q_{i} \cdot r_{i}} \neq 1$, and $c=u^{-1} \cdot \Pi^{\prime} c_{i}^{s_{i}}$ where Π^{\prime} is the product over all such i that $c_{i}^{q_{i} \cdot r_{i}} \neq 1$. Then we have $c^{q}=1$. Let j be one of the indices such that $q_{j}=q$ (and $c_{j}^{q_{j} \cdot r_{j}} \neq 1$). Replacing c_{j} by c, we have a set of generators $\left\{b_{1}, \cdots, b_{\mu}, c_{1}\right.$, $\left.\cdots, c, \cdots, c_{\nu}\right\}$ of A. Since $c_{j}^{q} \neq 1$, we also have $|\langle c\rangle|<\left|\left\langle c_{j}\right\rangle\right|$. This contradicts the choice of $\left\{c_{1}, \cdots, c_{\nu}\right\}$. The proof is completed.

Proof of the theorem. Put $X=\pi\left(N_{K / k}^{-1}\left(k^{*}\right)\right)$. This is finite. Take $p \in \mathscr{P}$, and let $p^{t} \| m(\mathfrak{g})$. Then for each $q=p^{e}\left(p \leq q \leq p^{t}\right)$, the condition $C(q)$ is satisfied. By Lemma 1, we see that, for every $x \in X-X^{p}$, there exists and open subgroup U_{x} of $\pi\left(K_{A}^{\times}\right)$such that $U_{x} \cap X=\{1\}$ and $\pi\left(K_{A}^{\times}\right)^{p} \cdot U_{x} \nexists x$. Put $U_{1}=\bigcap_{x \in X-X p} U_{x}$. Then we have

$$
\pi\left(K_{A}^{\times}\right)^{p} \cdot U_{1} \cap X \subset X^{p}
$$

Next, for every $y \in X^{p}-X^{p^{2}}$, take an open subgroup V_{y} of $\pi\left(K_{A}^{\times}\right)$, by Lemma 1, such that $V_{y} \cap X=\{1\}$ and $\pi\left(K_{A}^{\times}\right)^{p^{2}} \cdot V_{y} \nexists y$. Put $U_{2}=\left(\bigcap_{y \in X^{p}-X^{p 2}} V_{\nu}\right)$ $\cap U_{1}$. Then we have

$$
\left\{\begin{array}{l}
\pi\left(K_{A}^{\times}\right)^{p} \cdot U_{2} \cap X \subset X^{p}, \\
\pi\left(K_{A}^{\times}\right)^{p^{2}} \cdot U_{2} \cap X \subset X^{p^{2}} .
\end{array}\right.
$$

Continue the process and obtain an open subgroup U of $\pi\left(K_{A}^{\times}\right)$such that $U \cap X=\{1\}$ and

$$
\pi\left(K_{A}^{\times}\right)^{q} \cdot U \cap X \subset X^{q} \quad \text { for } \quad q=p^{e}\left(p \leq q \leq p^{t}\right) .
$$

Let $X^{(p)}$ be the p-primary part of X and X_{1} be the p-complementary part of X. Let A be the p-primary part of $\pi\left(K_{A}^{\times}\right) / U$ and put $B=X^{(p)} \cdot U / U$. Then A is a finite abelian p-group and B is its subgroup. By the choice of U, we can apply Lemma 2 to A and B. Therefore we can find an open subgroup W of $\pi\left(K_{A}^{\times}\right)$containing U and X_{1} such that $\pi\left(K_{A}^{\times}\right)=W \cdot X^{(p)}$ and $W \cap X^{(p)}=\{1\}$. Take another prime factor p_{1} of $m(\mathfrak{g})$ and proceed the similar process to the above for W and X_{1} in place of $\pi\left(K_{A}^{\times}\right)$and X re-
spectively. In this way, we can finally find an open subgroup of $\pi\left(K_{A}^{\times}\right)$ which satisfies the conditions of Proposition 1, and complete the proof.

In the following Sections $3 \sim 6$, we see examples to which Theorem 1 is applicable. Therefore, we assume there that the following condition is satisfied by K / k :

Assumption. $k^{\times} \cap k_{A}^{\times m(g)}=k^{\times m(\theta)}$.
Note that this implies $k^{\times} \cap k_{A}^{\times m}=k^{\times m}$ for every $m \mid m(g)$. (See ArtinTate [1, Ch. 10, Theorem 1].)

3. The case of unramified extensions

Suppose that K / k is unramified. Then by Proposition 5, we have $N_{K / k}^{-1}(1)=K_{A}^{\Lambda_{8}}$ in this case. Then it is easily seen that the conditions $C(m)$ and $C^{\prime}(m)$ coincides for each m. It follows, moreover, from the commutative diagram $\left(^{*}\right)$ at once that $\Theta(K / k)$ is isomorphic to $\Omega(K / k)$. We also easily see that the following condition $C_{1}^{\prime}(m)$ holds for any m in this case, that implies $C^{\prime}(m)$ immediately:

$$
C_{1}^{\prime}(m):\left\{u \in k_{A}^{\times} \mid u^{m}=1\right\} \subset N_{K / k}\left(K_{A}^{\times}\right) .
$$

Hence we have
Theorem 2. Suppose that K / k is a finite (not necessarily abelian) unramified extension. Then there exists an abundant central extension M of K / k such that $M \cap k_{\mathrm{ab}} \cdot K=K$. Furthermore, $\mathbb{S}(K / k)$ is isomorphic to $\mathfrak{A}(K / k)$, and also to $\mathrm{Gal}(M / K)$ for such an M.

4. The case that k is either Q or an imaginary quadratic field

In this section, let k be either the rational number field \boldsymbol{Q} or an imaginary quadratic field. In this case, the units of k are roots of 1 , and very few. Therefore, for almost every ray class field K of k, the condition $C_{1}(m(g))$ holds.

Let $D_{k / Q}$ be the discriminant of k over \boldsymbol{Q}, and \mathfrak{f} be the conductor of K / k. Suppose that the following conditions are satisfied:
(1) If $2 \nmid D_{k / \boldsymbol{Q}}$, then $\mathfrak{p}\left|(2, \mathfrak{f}) \Longrightarrow \mathfrak{p}^{2}\right| \mathfrak{f}$;
(2) If $2 \mid D_{k / Q}$, then $\mathfrak{p}\left|(2, f) \Longrightarrow \mathfrak{p}^{3}\right| \mathfrak{f}$;
(3) If $k=\boldsymbol{Q}(\sqrt{-3})$, then $\mathfrak{p}\left|(\sqrt{-3}, \mathfrak{f}) \Longrightarrow \mathfrak{p}^{2}\right| \mathfrak{f}$.

Now, put $U(\mathrm{f})=\left\{x \in O^{\times}\left(k_{A}\right) \mid x \equiv 1 \bmod \dagger\right\}$. Then $N_{K / k}\left(K_{A}^{\times}\right) \cdot k^{\times}=U(\mathrm{f}) \cdot k^{\times}$. Let u be an element of this group such that $u^{m}=1$ for $m=m(\mathrm{~g})$. Then
u belongs to $O^{\times}\left(k_{A}\right) \cap U(\uparrow) \cdot k^{\times}=U(\uparrow) \cdot O^{\times}(k)$. Since $O^{\times}(k)$ consists of roots of 1 , we easily see the condition $C_{1}(m(g))$ holds if the conditions (1) $\sim(3)$ are satisfied. Hence we have

Theorem 3. Let K be a ray class field of k, and suppose that the conducor f satisfies the conditions (1)~(3). Then there exists an abundant central extension M of K / k such that $M \cap k_{\mathrm{ab}} \cdot K=K$.

Remark. Shirai [8] gave an M of Theorem 3 more explicitly in the case that $k=\boldsymbol{Q}$ and $f=f_{0} \cdot p_{\infty}$ unless $\left(\mathfrak{f}_{0}, 16\right)=8$. Note that, if $k=\boldsymbol{Q}$, the condition (1) is automatically satisfied by any conductor f. Furthermore we have $\boldsymbol{Q}^{\times} \cap \boldsymbol{Q}_{\boldsymbol{A}}^{\times m}=\boldsymbol{Q}^{\times m}$ for every m.

5. The case of ray class fields, I

If $\operatorname{Gal}(K / k)$ is a nilpotent group, $\operatorname{Gal}(L / k)$ is also nilpotent for any central extension L of K / k. Therefore it is essential to study the case of p-extensions for a prime p as far as K / k is nilpotent at most.

In this section and in the next, we consider the maximal p-extension K of k contained in a ray class field of k. Let f be the conductor of K / k. Then K is also the maximal p-extension contained in the ray class field modulo f of k.

For a positive integer q, let ζ_{q} be a primitive q-th root of 1 . We define an integer $i=i(\mathfrak{p}) \geq 0$ for a prime divisor \mathfrak{p} of k by the condition that $\zeta_{p^{i}} \in k_{p}$ and $\zeta_{p^{i+1}} \notin k_{p}$. For a prime divisor \mathfrak{p} of p, let $\ell=\ell(p)$ be the minimal positive integer among those for which $\zeta_{p} \not \equiv 1 \bmod \mathfrak{p}^{e}$ if $i(\mathfrak{p})>0$, and put $\ell(p)=1$ if $i(p)=0$. Then $\ell=\ell(p)$ is the minimal positive integer such that $1+\mathfrak{p}^{\ell} \cdot O\left(k_{p}\right)$ does not contain any p-power root of 1 except 1 itself.

Let $\varepsilon_{0}, \varepsilon_{1}, \cdots, \varepsilon_{r}$ be a set of generators of $O^{\times}(k)$ such that $\left\langle\varepsilon_{0}\right\rangle$ is finite, and that $\varepsilon_{1}, \cdots, \varepsilon_{r}$ are Z-free.

Theorem 4. Suppose that $\mathfrak{p}^{\ell(p)} \mid \mathfrak{j}$ for each prime divisor \mathfrak{p} of $(p, \mathfrak{\eta})$. If there is a positive integer m such that $(m, p)=1$ and $\varepsilon_{i}^{m} \equiv 1 \bmod f(i=1$, $\cdots, r)$, then there exists an abundant central extension M satisfying $M \cap$ $k_{\mathrm{ab}} \cdot K=K$.

Proof. It is sufficient to show that the condition $C_{1}(m(\mathrm{~g}))$ is satisfied. Put $q=m(\mathfrak{g})$ and $U(\mathfrak{\uparrow})=\left\{x \in O^{\times}\left(k_{A}\right) \mid x \equiv 1 \bmod \mathfrak{f}\right\}$. Then the order of $N_{K / k}\left(K_{A}^{\times}\right) \cdot k^{\times} / U(\mathfrak{f}) \cdot k^{\times}$is relatively prime to p. Therefore an element u of
$N_{K / k}\left(K_{A}^{\times}\right) \cdot k^{\times}$belongs to $U(\mathfrak{\uparrow}) \cdot k^{\times}$if $u^{q}=1$. Then $u \in U(\mathrm{f}) \cdot O^{\times}(k)=U(\mathrm{f}) \cdot k^{\times}$ $\cap O^{\times}\left(k_{A}\right)$. It follows from the assumption that the exponent of the quotient group $U(\mathrm{f}) \cdot O^{\times}(k) / U(\mathrm{f}) \cdot\left\langle\varepsilon_{0}\right\rangle$ is relatively prime to p. Therefore u has to be in $U(\mathrm{f}) \cdot\left\langle\varepsilon_{0}\right\rangle$. Let ζ be an element of $\left\langle\varepsilon_{0}\right\rangle$ such that $u \zeta \in U(\mathrm{f})$. Because $\zeta^{q}=(u \zeta)^{q}$ belongs to $U(\mathfrak{f})$, we may assume that ζ is a p-power root of 1 adjusting ζ with an element of $\left\langle\varepsilon_{0}\right\rangle \cap U(\mathrm{f})$. Then by the condition on f , we have $\zeta^{q}=1$. Therefore $(u \zeta)^{q}=1$. Since $u \zeta \in U(f)$, we have $(u \zeta)_{p}=1$ for each \mathfrak{p} dividing f by the same reason.
Q.E.D.

6. The case of ray class fields, II

Let K / k be same as in the previous section. In this section, we suppose that Leopoldt's conjecture on the units of k for p is valid. (See [4] for example.) Now put $\mathfrak{q}=\prod_{p \mid p} \mathfrak{p}$, and

$$
U(\mathfrak{q})=\left\{x \in O^{\times}\left(k_{A}\right) \mid x \equiv 1 \bmod \mathfrak{q}\right\} .
$$

By Leopoldt's conjecture for p, we show
Proposition 9. For each $q=p^{t}(t \geq 1)$, there exists a positive integer κ such that

$$
O^{\times}(k) \cap U\left(\mathfrak{q}^{x}\right) \subset\left(O^{\times}(k) \cap U(\mathfrak{q})\right)^{q}
$$

Proof. Let $\ell=\max \{\ell(\mathfrak{p})|\mathfrak{p}| p\}$, and put $E=O^{\times}(k) \cap U\left(q^{\ell}\right)$. Then E is a free Z-module. Let e_{1}, \cdots, e_{r} be a set of generators of E over $Z(r=$ rank E). We imbed E into $\prod_{p \mid p}\left(1+\mathfrak{p} \cdot O\left(k_{p}\right)\right)$ diagonally, and take the closure \bar{E} of E. Then the ring of p-adic integers Z_{p} naturally acts on \bar{E} as powers. It follows, furthermore, from Leopoldt's conjecture that \bar{E} is a free Z_{p}-module of rank r. In other words, the elements e_{1}, \cdots, e_{r} of E are free over Z_{p} in \bar{E} and generate \bar{E} over Z_{p}. (See [4] for example.)

Now, assume that there exists $q=p^{t}$ such that $O^{\times}(k) \cap U\left(q^{t}\right)$ is not contained in $\left(O^{\times}(k) \cap U(\mathfrak{q})\right)^{q}$ for any positive integer κ. For each $n=1$, $2,3, \cdots$, take $x_{n} \in O^{\times}(k) \cap U\left(q^{\ell+n}\right)-\left(O^{\times}(k) \cap U(\mathfrak{q})\right)^{q}$. Then in $\bar{E},\left\{x_{n}\right\}_{n=1}^{+\infty}$ converges to 1. Each x_{n} determines an element $\nu_{n}=\left(i_{1}(n), \cdots, i_{r}(n)\right)$ in $\boldsymbol{Z} \times \cdots \times \boldsymbol{Z}$ (r copies) by $x_{n}=\prod_{\mu=1}^{r} e_{\mu}^{i_{\mu}(n)}$. Because $x_{n} \notin E^{q}$, we have $\nu_{n} \not \equiv$ $(0, \cdots, 0) \bmod q \cdot \boldsymbol{Z}$. Since $\boldsymbol{Z}_{p} \times \cdots \times \boldsymbol{Z}_{p}$ (r copies) is compact, we may assume that $\left\{\nu_{n}\right\}_{n=1}^{+\infty}$ converges to an element $\nu=\left(i_{1}, \cdots, i_{r}\right)$ in $\boldsymbol{Z}_{p} \times \cdots \times \boldsymbol{Z}_{p}$, replacing $\left\{\nu_{n}\right\}$ by a suitable subsequence if necessary. This ν is not equal to $(0, \cdots, 0)$ because $\nu_{n} \not \equiv(0, \cdots, 0) \bmod q \cdot Z$. But we have $\prod_{\mu=1}^{r} e_{\mu}^{i_{\mu}}=\lim x_{n}$ $=1$. This contradicts the fact that e_{1}, \cdots, e_{r} are free over Z_{p}. Hence
the proposition is proved.
Remark. Leopoldt's conjecture for p is actually equivalent to Proposition 9.

By Proposition 9, we define $\kappa(q)$ for each $q=p^{t}$ as the minimal κ that satisfies the condition of the proposition for q.

Now, decompose the conductor f in such way as, $\left\lceil=\dot{\gamma}^{\prime} \cdot \dot{f}_{p},\left(\tilde{f}^{\prime}, p\right)=1\right.$ and $\mathrm{f}_{p}=\prod_{p \mid p} p^{c(p)}$, and define $q=q\left(f^{\prime}, p\right)$ to be the minimum such that

$$
\left\{\begin{array}{l}
q \geq p^{i(p)} \quad \text { for every, } \mathfrak{p} \mid \mathfrak{f}^{\prime}, \\
\left(1+\mathfrak{p} \cdot O\left(k_{\mathfrak{p}}\right)\right)^{q} \subset 1+\mathfrak{p}^{\rho(p)} \cdot O\left(k_{\mathfrak{p}}\right) \quad \text { for every } \mathfrak{p l} \mid \tilde{\tau}_{p} .
\end{array}\right.
$$

Theorem 5. If $c(\mathfrak{p}) \geq \max \{\kappa(m(\mathfrak{g}) q), \ell(\mathfrak{p})\}$ for each $\mathfrak{p} \mid p$, then there exists an abundant central extension M of K / k such that $M \cap k_{\mathrm{ab}} \cdot K=K$.

Proof. We show that the condition $C_{1}(m(\mathrm{~g}))$ holds. Put $m=m(\mathfrak{g})$. Let u be an element of $N_{K / k}\left(K_{A}^{\times}\right) \cdot k^{\times}$satisfying $u^{m}=1$. As in the first step of the proof of Theorem 4, we see $u \in U(\mathrm{f}) \cdot O^{\times}(k)$. Let $u=v \cdot \varepsilon$ with $v \in$ $U(\mathrm{f})$ and $\varepsilon \in O^{\times}(k)$. Then $\varepsilon^{m}=v^{-m} \in U(\mathrm{f})$. Therefore ε^{m} belongs to $U\left(\mathrm{q}^{\kappa(m q)}\right)$. Take $\alpha \in O^{\times}(k) \cap U(\mathfrak{q})$ so that $\varepsilon^{m}=\alpha^{m q}$. Then $\alpha^{q}=\varepsilon \cdot \zeta$ with $\zeta \in k^{\times}, \zeta^{m}=1$. Therefore $u \zeta=v \varepsilon \zeta=v \alpha^{q}$. Now, $v \in U(\mp)$. Therefore, for $\mathfrak{p} \mid \dagger^{\prime}$, we have $(u \zeta)_{\mathfrak{p}} \equiv(\alpha)_{p}^{q} \bmod \mathfrak{p}$, and so, $(u \zeta)_{\mathfrak{p}}=1$ because $q \geq p^{i(p)}$. For $\mathfrak{p} \mid p,(u \zeta)_{p} \equiv(\alpha)_{p}^{q}$ $\bmod p^{\ell(p)}$. By the choice of q, we have $(\alpha)_{p}^{q} \equiv 1 \bmod p^{c(q)}$. Then by the choice of $\ell(\mathfrak{p})$, we conclude that $(u \zeta)_{p}=1$. Therefore $C_{1}(m)$ is certainly satisfied. The proof is completed.

7. On solutions of the number knot $\Omega(K / k)$

An abundant central extension M of K / k is a solution of $\mathscr{\Re}(K / k)$ itself. But we can always find such a subfield L of M that L is a solution of $\mathscr{R}(K / k)$, and that $\operatorname{Gal}\left(L / L \cap k_{\mathrm{ab}} \cdot K\right)$ is isomorphic to $\Omega(K / k)$. Therefore, if $M \cap k_{\mathrm{ab}} \cdot K=K$, then we have $L \cap k_{\mathrm{ab}} \cdot K=K$, and $\operatorname{Gal}(L / K) \simeq \mathscr{A}(K / k)$. In this section, we see sufficient conditions for such a central solution L of $\Omega(K / k)$ to exist.

Now, let $\pi^{\prime}: K_{A}^{\times} \rightarrow K_{A}^{\times} / N_{K_{/ k}}^{-1}(1) \cdot K^{\#}$ be the natural projection, and put

$$
m^{\prime}(K / k)=\text { the exponent of } \AA(K / k) .
$$

Then replacing $\pi: K_{A}^{\times} \rightarrow K_{A}^{\times} / K_{A}^{A_{A}} \cdot K^{\#}$ by this π^{\prime}, and $m(\mathrm{~g})$ by $m^{\prime}(K / k)$, we can prove the following theorem in the same way as we did for Theorem 1.

Theorem 6. Suppose that the condition $C^{\prime}(m)$ is satisfied for every
$m \mid m^{\prime}(K / k)$ by the Galois extension K / k and that $k^{\times} \cap k_{A}^{\times m^{\prime}(K / k)}=k^{\times m^{\prime}(K / k)}$. Then there exists a central solution L of $\AA(K / k)$ such that $L \cap k_{\mathrm{ab}} \cdot K=K$ and $\operatorname{Gal}(L / K) \simeq \mathscr{A}(K / k)$.

Here we give an application of this theorem. As before, let D be the set of prime divisors of k which ramify in K / k, and fix a prime divisor \tilde{p} of \mathfrak{p} in K for each $\mathfrak{p} \in D$. Let $\mathfrak{g}(\mathfrak{p})$ be the decomposition group of \mathfrak{p}, $\overline{\mathfrak{g}}(\mathfrak{p})=\mathfrak{g}(\mathfrak{p}) /[\mathfrak{g}(\mathfrak{p}), \mathfrak{g}(\mathfrak{p})]$, and $\bar{f}(\mathfrak{p})$ the inertial group of $\tilde{\mathfrak{p}}$ in $\overline{\mathfrak{g}}(\mathfrak{p})$. For a prime number p, let $\overline{\mathfrak{f}}(\mathfrak{p})^{(p)}$ be the p-Sylow group of $\overline{\mathfrak{t}}(\mathfrak{p})$. Define a subset \mathscr{P}^{\prime} of \mathscr{P} by

$$
\mathscr{P}^{\prime}=\{p \in \mathscr{P}|p \| \overline{\mathfrak{t}}(\mathfrak{p})| \text { for some } \mathfrak{p} \in D\}
$$

and positive integers $e(p)$ and $e^{\prime}(p)$ for $p \in \mathscr{P}^{\prime}$ and $\nu(K / k)$ by

$$
\begin{aligned}
& p^{e(p)}=\text { the } p \text {-factor of } m^{\prime}(K / k), \text { i.e. } p^{e(p)} \| m^{\prime}(K / k), \\
& p^{e^{\prime}(p)}=\max \left\{\text { the exponent of } \overline{\mathfrak{t}}(\mathfrak{p})^{(p)} \mid \mathfrak{p} \in D\right\}, \\
& \nu(K / k)=\prod_{p \in \boldsymbol{q}^{\prime}} p^{e(p)+e^{\prime}(p)} .
\end{aligned}
$$

Proposition 10. $\quad \nu(K / k)||\mathfrak{g}|=[K: k]$.
Proof. It is obvious that $\nu(K / k)$ divides $\exp (\mathrm{g}) \cdot \exp (\Im(K / k))$. Since $\exp (\varsigma(K / k))=\exp \left(H^{2}(\mathrm{~g}, \boldsymbol{Q} / Z)\right)$, we have the proposition by Huppert [2, Ch. V , The proof of 24.5 , pp. 640-641] at once.

Remark. If \mathfrak{g} is abelian, then

$$
\mathscr{P}=\left\{p \mid \text { prime } ; \mathrm{g}^{(p)} \text { is not cyclic }\right\} .
$$

If $\mathfrak{g}^{(p)}$ is not cyclic, $\exp \left(\mathfrak{g}^{(p)}\right) \cdot \exp \left(H^{2}\left(\mathfrak{g}^{(p)}, \boldsymbol{Q} \mid Z\right)\right) \||\mathfrak{g}|$ if and only if $\mathfrak{g}^{(p)}$ is a direct product of two cyclic groups.

Theorem 7. If k contains a primitive $\nu(K / k)$-th root of 1 , then $C^{\prime}(m)$ holds for every $m \mid m^{\prime}(K / k)$. Therefore there exists a central solution L of $\mathfrak{R}(K / k)$ such that $L \cap k_{\mathrm{ab}} \cdot K=K$ and $\operatorname{Gal}(L / K) \simeq \mathscr{R}(K / k)$.

Proof. If $2^{3} \mid m^{\prime}(K / k)$, then $\sqrt{-1}$ is contained in k. Therefore we have $k^{\times} \cap k_{A}^{\times m^{\prime}(K / k)}=k^{\times m^{\prime}(K / k)}$ in any case.

For a prime divisor \mathfrak{p}, let \mathfrak{P} be a prime divisor of \mathfrak{p} in K. Let F be the maximal abelian extension of $k_{\mathfrak{p}}$ in $K_{\mathfrak{P}}$, and $N_{F}: F^{\times} \rightarrow k_{\mathfrak{p}}^{\times}$the norm map. Then $N_{\mathfrak{F}}\left(K_{\mathfrak{\beta}}^{\times}\right) \cap O^{\times}\left(k_{\mathfrak{p}}\right)=N_{F}\left(O^{\times}(F)\right)$. Furthermore, the quotient group $O^{\times}\left(k_{\mathrm{p}}\right) / N_{F}\left(O^{\times}(F)\right)$ is isomorphic to $\overline{\mathrm{f}}(\mathfrak{p})$. Therefore, if p is not in \mathscr{P}^{\prime}, then every p-power root of 1 in $k_{\mathfrak{v}}$ is contained in $N_{F}\left(O^{\times}(F)\right)$, and so in $N_{\mathfrak{\beta}}\left(K_{ね}^{\times}\right)$.

Let p belong to \mathscr{P}^{\prime}. By the assumption, we see that a primitive $p^{e(p)+e^{\prime}(p)}$-th root ζ of 1 belongs to k_{p}. Since the exponent of $O^{\times}\left(k_{p}\right) / N_{F}\left(O^{\times}(F)\right)$ is at most $p^{e^{\prime}(p)}$, the primitive $p^{e(p)}$ th root $\zeta^{p^{e(p)}}$ of 1 has to be in $N_{F}\left(O^{\times}(F)\right)$, and so, in $N_{\mathfrak{F}}\left(K_{\mathfrak{\beta}}^{\times}\right)$. Thus we have seen that the condition $C_{1}^{\prime}\left(m^{\prime}(K / k)\right)$ holds. Therefore $C^{\prime}(m)$ is certainly satisfied for every $m \mid m^{\prime}(K / k)$. The proof is completed.

Remark. Opolka [6] showed the existence of a central solution L of $\mathscr{N}(K / k)$ satisfying that $L \cap k_{\mathrm{ab}} \cdot K=K$ and $\operatorname{Gal}(L / K) \simeq \mathscr{A}(K / k)$ in the case that k contains a primitive [$K: k$]-th root of 1 .

8. An upper bound for the degree of a small abundant central extension

Put $n=[K: k]$ and let d be the minimal number of generators of $\subseteq(K / k)$. In this section, we give a positive number $\lambda=\lambda(K / k)$ for the Galois extension K / k such that there exists an abundant central extension M of K / k whose Galois group $\operatorname{Gal}(M / K)$ is isomorphic to a subgroup of $(Z / 2 \lambda n Z) \times \cdots \times(Z / 2 \lambda n Z)$ (d copies).

Proposition 11. $\pi\left(K_{A}^{\times}\right)^{n} \subset \pi\left(N_{K / k}\left(K_{A}^{\times}\right)\right)$.
The proposition is clear because we have, for $x \in K_{A}^{\times}$,

$$
x^{n}=N_{K / k}(x) \cdot \prod_{\sigma \in \mathfrak{B}} x^{1-\sigma} \in N_{K / k}\left(K_{A}^{\times}\right) \cdot K_{A}^{J_{\beta}}
$$

PRoposition 12. $\left[\pi\left(N_{K / k}\left(K_{A}^{\times}\right) \cdot N_{K / k}^{-1}(1)\right) \cap \pi\left(N_{K / k}^{-1}\left(k^{*}\right)\right): \pi\left(N_{K / k}^{-1}(1)\right)\right] \leq 2$.
Proof. Let x be an element of $N_{\bar{K} / k}^{-1}\left(k^{*}\right)$, and suppose that $x=y \cdot z$ with $y \in N_{K / k}\left(K_{A}^{\times}\right)$and $z \in N_{K / k}^{-1}(1)$. Then $y^{n}=N_{K / k}(y)=N_{K / k}(x) \in k^{\#}=k^{\times} \cdot k^{\# n}$. Take $a \in k^{\times}$and $b \in k^{*}$ so that $y^{n}=a b^{n}$. As is well known (cf. Artin-Tate [1], Ch. 10, §1), we have $\left[k^{\times} \cap k_{A}^{\times n}: k^{\times n}\right] \leq 2$. If we can choose b to have $a=1$, then $y=u b, u \in k_{A}^{\times}, u^{n}=1$. Since $u^{n}=N_{K / k}(u)$, we have $x=y z$ $=(u z) \cdot b$ with $u z \in N_{\bar{K} / k}^{-1}(1)$ and $b \in k^{\#} \subset K^{\#}$. Therefore $\pi(x) \in \pi\left(N_{K / k}^{-1}(1)\right)$ in this case. Suppose now that there exists an x_{0} such that a_{0} corresponding to it does not belong to $k^{\times n}$. Then $\left[k^{\times} \cap k_{A}^{\times n}: k^{\times n}\right]=2$. Therefore, for each x, we can choose b so that a is either a_{0} or 1 . Then according to the cases, either $\pi\left(x x_{0}\right)$ belongs to $\pi\left(N_{K / k}^{-1}(1)\right)$ or $\pi(x)$ does. The proposition is now clear.

Remark. If $\left[k^{\times} \cap k_{A}^{\times n}: k^{\times n}\right]=1$, then the index of the proposition is also equal to 1.

Lemma 3. For a positive integer m, we have

$$
\pi\left(N_{K / k}\left(K_{A}^{\times}\right)\right)^{2 m} \cap \pi\left(N_{K / k}^{-1}\left(k^{*}\right)\right) \subset \pi\left(\left\{u \in\left(N_{K / k}\left(K_{A}^{\times}\right)^{2} \cdot k^{\times}\right)^{m} \mid u^{n}=1\right\}\right) .
$$

Proof. Let x be an element of $N_{K / k}\left(K_{A}^{\times}\right)$, and suppose $x^{2 m} \in N_{K / k}^{-1}\left(k^{*}\right)$. Then $N_{K / k}\left(x^{2 m}\right)=x^{2 m n} \in k^{\sharp}=k^{\times} \cdot k^{\sharp 2 m n}$. Because $k^{\times} \cap k_{\boldsymbol{A}}^{\times 2 m n} \subset k^{\times m n}$ (cf. ArtinTate [1], Ch. 10), we have an element a of k^{*} such that $x^{2 m n}=a^{m n}$. Put $u=\left(x^{2} \cdot a^{-1}\right)^{m}$. Then $u \in\left(N_{K / k}\left(K_{A}^{\times}\right)^{2} \cdot k^{*}\right)^{m}$ and $u^{n}=1$. Since $k^{\sharp}=k^{\times} \cdot k^{\sharp 2 n}=$ $k^{\times} \cdot N_{K / k}\left(k^{\sharp}\right)^{2}, \pi(x)^{2 m}=\pi(u)$ belongs to the set at the right hand side of the lemma.
Q.E.D.

Lemma 4. For a positive integer m, we have

$$
\pi\left(\left\{u \in\left(N_{K / k}\left(K_{A}^{\times}\right)^{2} \cdot k^{\times}\right)^{m} \mid u^{n}=1\right\}\right) \subset \pi\left(\prod_{p \in D}\left\{u \in k_{p}^{\times m} \mid u^{n(p)}=1\right\}\right),
$$

where D is the set of prime divisors of k which ramify in K / k, and $n(p)$ $=\left[K_{\mathfrak{p}}: k_{p}\right]$.

Proof. For $u \in k_{A}^{\times}$, we have $N_{K / k}(u)=u^{n}$. Therefore

$$
\left\{u \in k_{A}^{\times m} \mid u^{n}=1\right\}=k_{A}^{\times m} \cap N_{K / k}^{-1}(1) .
$$

It is easy to see, by Propositions 4 and 5,

$$
N_{K / k}^{-1}(1) \cap k_{A}^{\times m} \subset K_{A}^{\Delta_{p}} \cdot \prod_{p \in D}\left\{u \in k_{p}^{\times m} \mid u^{n(p)}=1\right\} .
$$

Because $\pi\left(K_{A}^{d_{g}}\right)=1$, we have shown the lemma.
Remark. Throughout this paper, we consider k_{A}^{\times}a subset of K_{A}^{\times}by the natural imbedding. But each factor $\left\{u \in k_{p}^{\times m} \mid u^{n(p)}=1\right\}$ for $\mathfrak{p} \in D$ in this lemma is a subset of the \tilde{p}-component $K_{\tilde{p}}^{\times}$of K_{A}^{\times}, and is equal to $k_{p}^{\times m} \cap N_{\mathfrak{p}}^{-1}(1)$.

Now, for $\mathfrak{p} \in D$, let $\overline{\mathfrak{g}}(\mathfrak{p})=\operatorname{Gal}\left(K_{\mathfrak{p}} \cap k_{\mathfrak{p}, \mathrm{ab}} / k_{\mathfrak{p}}\right)$, and $\overline{\mathfrak{g}}(\mathfrak{p})^{(p)}$ be the p-Sylow group of $\bar{g}(\mathfrak{p})$. Put

$$
\mathscr{P}_{1}=\{p \mid \text { prime }, p| | \bar{g}(\mathfrak{p}) \mid \text { for some } \mathfrak{p} \in D\}
$$

and determine $i=i(p, \mathfrak{p})$ by the condition that $\zeta_{p^{i}} \in k_{\mathfrak{p}}$ and $\zeta_{p^{i+1}} \notin k_{\mathrm{p}}$, and $j=j(p, \mathfrak{p})$ so that p^{j} is the exponent of $\overline{\mathfrak{g}}(\mathfrak{p})^{(p)}$. Put

$$
\begin{aligned}
& \mu(p)=\mu_{K / k}(p)=\max (\{0\} \cup\{i(p, \mathfrak{p})-j(p, \mathfrak{p}) \mid \mathfrak{p} \in D\}), \\
& \lambda=\lambda(K / k)=\prod_{p \in \mathscr{F}_{1}} p^{\mu(p)}
\end{aligned}
$$

Lemma 5. $\left\{u \in k_{\mathfrak{p}}^{\times \lambda} \mid u^{n(p)}=1\right\} \subset K_{\mathfrak{p}}^{d_{\mathfrak{p}}(p)}$ for each $\mathfrak{p} \in D$.

Proof. Let u be an element of $k_{p}^{\times \lambda}$ such that $u^{n(p)}=1$. Take $v \in k_{p}^{\times}$ satisfying $v^{2}=u$. Then v is a root of 1 in $k_{\mathfrak{p}}$. By the choice of $j(p, \mathfrak{p})$, $K_{\mathfrak{p}}$ contains a cyclic extension of $k_{\mathfrak{p}}$ of degree $\prod_{p \in \mathfrak{q}_{1}} p^{j(p, p)}$. Put

$$
q=\prod_{p \in \mathscr{F}_{1}} p^{\min (i(p, p), j(p, p))},
$$

and let ζ be a primitive q-th root of 1 . Then $\zeta \in k_{p}$. Therefore, $K_{\mathfrak{p}}$ contains a Kummer extension of $k_{\mathfrak{p}}$ of degree q. Hence we have $\zeta \in K_{\mathfrak{p}}^{d^{s}(p)}$. We easily see that

$$
\mu(p)+\min \{i(p, \mathfrak{p}), j(p, \mathfrak{p})\} \geq i(p, \mathfrak{p})
$$

Therefore, we have $\lambda q \geq \prod_{p \in \mathscr{F}_{1}} p^{i(p, p)}$. Then by the choice of $i(p, \mathfrak{p})$, we see $u^{q}=v^{2 q}=1$, and $u \in\langle\zeta\rangle \subset K_{\rho_{g}(\varphi)}^{d^{(p)}}$.
Q.E.D.

Proposition 13. $\pi\left(K_{A}^{\times}\right)^{22 n} \cap \pi\left(N_{K / k}^{-1}\left(k^{*}\right)\right)=1$.
Proof. We have $\pi\left(K_{A}^{\times}\right)^{22 n}=\left(\pi\left(K_{A}^{\times}\right)^{n}\right)^{2 \lambda} \subset \pi\left(N_{K / k}\left(K_{A}^{\times}\right)\right)^{2 \lambda}$ by Proposition 11. Then by Lemmas $3 \sim 5$, we have

$$
\pi\left(N_{K / k}\left(K_{A}^{\times}\right)\right)^{2 \lambda} \cap \pi\left(N_{K / k}^{-1}\left(k^{*}\right)\right)=1
$$

Therefore $\pi\left(K_{A}^{\times}\right)^{22 n} \cap \pi\left(N_{K^{\prime} / k}^{-1}\left(k^{*}\right)\right)=1$.
Q.E.D.

Theorem 8. Let d and $\lambda=\lambda(K / k)$ be as above. Then there exists an abundant central extension M of K / k such that $\operatorname{Gal}(M / K)$ is isomorphic to a subgroup of the direct product of d copies of $Z / 2 \lambda n Z$.

Proof. The subgroup $\pi\left(K_{A}^{\times}\right)^{2 \lambda n}$ of $\pi\left(K_{A}^{\times}\right)$is compact and closed. Therefore we easily see by Proposition 13 that there is an open subgroup U_{1} of $\pi\left(K_{A}^{\times}\right)$such that $U_{1} \supset \pi\left(K_{A}^{\times}\right)^{2 \lambda n}$ and $U_{1} \cap \pi\left(N_{\bar{K} / k}^{-1}\left(k^{\sharp}\right)\right)=1$. Then by the fundamental theorem of finite abelian groups applied to $\pi\left(K_{A}^{\times}\right) / U_{1}$ and its subgroup $\pi\left(N_{K / k}^{-1}\left(k^{*}\right)\right) \cdot U_{1} / U_{1}$, we can find an open subgroup U of $\pi\left(K_{A}^{\times}\right)$such that $U \supset U_{1}, U \cap \pi\left(N_{K / k}^{-1}\left(k^{*}\right)\right)=1$ and $\pi\left(K_{A}^{\times}\right) / U$ is generated by d elements. Since U contains $\pi\left(K_{A}^{\times}\right)^{22 n}, \pi\left(K_{A}^{\times}\right) / U$ is certainly isomorphic to a subgroup of $(Z / 2 \lambda n Z) \times \cdots \times(Z / 2 \lambda n Z)$ (d copies). Let M be the abelian extension of K corresponding to the open subgroup $\pi^{-1}(U)$ of K_{A}^{\times}. Then it is obvious that this M is a desired one.

Using Proposition 12 and Lemma 3 for $m=1$, we can prove the following theorem by the same way as in the proof of Theorem 8.

Theorem 9. Let d_{1} be the minimal number of generators of $\Omega(K / k)$. Then there exists a central solution L of $\AA(K / k)$ such that $\operatorname{Gal}\left(L / L \cap k_{a b} \cdot K\right)$
$\simeq \mathscr{N}(K / k)$ and $\operatorname{Gal}(L / K)$ is isomorphic to a subgroup of the direct product of d_{1} copies of $Z / 2 n Z$.

It is also obvious that we can show the following result of Opolka [7] by the same way using Proposition 12 on account of Remark just after the proposition.

Theorem (Opolka). Suppose that the index $\left[k^{\times} \cap k_{A}^{\times n}: k^{\times n}\right]$ is equal to 1. Then there exists a central solution L of $\Omega(K / k)$ such that $\operatorname{Gal}(L / K)$ is isomorphic to a subgroup of the direct product of d_{1} copies of $Z / n Z$.

References

[1] E. Artin and J. Tate, Class field theory, W. A. Benjamin, Inc., New York•Amsterdam, 1967.
[2] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin•Heidelberg•New York, 1967.
[3] K. Miyake, On the structure of the idele group of an algebraic number field, Nagoya Math. J., 80 (1980), 117-127.
[4] --, On the units of an algebraic number field, J. Math. Soc. Japan, 34 (1982), 515-525.
[5] ——, Central extensions and Schur's multiplicators of Galois groups, Nagoya Math. J., 90 (1983), 137-144.
[6] H. Opolka, Zur Auflösung zahlentheoretischer Knoten, Math. Z., 173 (1980), 95103.
[7] -, Some remarks on the Hasse norm theorem, Proc. Amer. Math. Soc., 84 (1982), 464-466.
[8] S. Shirai, On the central class field mod m of Galois extensions of an algebraic number field, Nagoya Math. J., 71 (1978), 61-85.

Department of Mathematics
College of General Education
Nagoya University
Chikusa-ku, Nagoya 464
Japan

[^0]: Received September 27, 1982.
 Revised January 28, 1983.

