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ON CENTRAL EXTENSIONS OF A GALOIS EXTENSION

OF ALGEBRAIC NUMBER FIELDS

KATSUYA MIYAKE

Introduction

Let k be an algebraic number field of finite degree, and K a finite

Galois extension of k. A central extension L of K/k is an algebraic number

field which contains K and is normal over k, and whose Galois group

over K is contained in the center of the Galois group Gal(L/£). We de-

note the maximal abelian extensions of k and K in the algebraic closure

of k by kΆh and KΆh respectively, and the maximal central extension of

Kjk by MC^/fc. Then we have ifabDMCπ/fcZ)£ab i5f.

Put a = Gal(UL/Jfe), and let ^{Kjk) be the dual group of the Schur

multiplicator H2(Q, QjZ) of q. It is known as was explained in [5] for

example, that there exists a canonical isomorphism

Therefore, especially, MCπ/fc is a finite extension of feab K. For a central

extension L of K/k, this φκ/k induces a surjective homomorphism restL o φκ/1c

of &(KIJi) onto Gal(L/L Π k&h K). It is also known that there exists a finite

central extension L of Kjk such that φκ/k induces an isomorphism of (S(Kjk)

onto Gal(L/L Π kΆh K). Such an L is said to be an abundant central

extension of K/k for convenience in [5], where we posed the following

problem:

PROBLEM. IS there an abundant central extension M of K/k such that

Mf)Kh K=K? If not, then what determines the structure of Gal(MΠ£ab

KjK) for an abundant central extension M of minimum degree?

In this paper, we give a couple of sufficient conditions under which

MΓϊKh'K coincides with K, and examine some cases for which the con-

ditions hold. We also give an upper bound for [M: K] in the final section.
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134 KATSUYA MIYAKE

There is a certain kind of important central extensions which were
introduced by Opolka [6] and others as a substitute for the Hasse norm
theorem in Kjk. Let ®(K/k) be Scholz's number knot of Kjk, that is the
quotient group of

{aekx\a is a norm locally everywhere in K)

by its subgroup [a e kx \a is a global norm in K}. There exists a canonical
surjective homomorphism ψκ/k of &(Kjk) onto ^(K/k). (See [5] for example.)
A central solution of ®(Kjk) is, according to Opolka, a finite central ex-
tension L of K/k such that an element a of kx is a global norm in K if
a is a norm locally everywhere in L. For a finite central extension L of
K/k to be a solution of ^(Kjk), it is necessary and sufficient that there
exists a homomorphism ψ: Gal(L/L Π £ab K)-^^(K/k) such that ψZ A = ψo
restL o ^ / f c .

In this paper, we also show the result of Opolka [7] which gives an
upper bound of [L : K] for a minimal central solution L of ^(K/k)9 and
improve his sufficient condition for such an L to satisfy that Lf|έa b if = if.

1. Notation and Preliminaries

Let Kjk be a finite Galois extension of algebraic number fields of
finite degree with g = GalCKyjfe). Put <&(Klk)=the dual group of iJ2(g, Q/Z),
as was in Introduction. Let if £ be the idele group of K, and aκ : K% —>
Gal(i£abλΌ the Artin map of class field theory with if#=Ker aκ. Through-
out this paper, we consider the idele group k% naturally imbedded into
K^. Define a closed subgroup of K% by

under the natural action of g on K^. Then aκ induces an isomorphism

aκ : KϊlKi' K* -^> Gal(MCκ/k/K). (See [5] for example.) Let Nκ/k : K% -•

k^ be the norm map. Then Scholz's number knot is given as

where kx and Kx are the multiplicative groups of k and K respectively.
From the divisibility properties of k*/kx and K>/Kκ, we easily see that

is isomorphic to k«Γ\Nκ/k(K$)lNκ/k(K*). Therefore we have
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(Cf. [3] for example.) Since aκ induces an isomorphism of Nκ)k(k*)IK* onto

Gal(ifab/£ab if), we have the following commutative diagram:

Gal(MC*/fc/if) <—=» Ga\(MCκ/Jkab'K) <^-
-k >f ΨK/Jc

KϊlK'J • K* <—= N-κ)k{k*)IK% • K* —? N-κ)k(k*)IN-κ)k{l) • X* -f^ Λ( W
proj. Nκ/k

•> K^/K^-K* be the natural projection, and put

^ = {L\ a finite central extension of K/k},

U = {U\ an open subgroup of π(K%)}.

Then we have a perfect correspondence between ^ and 11 assigning U =

π(NL/κ(Lj)) to L e #\ If L is a finite abelian extension of if, then L e ^

if and only if NL/K(L%)-KX^KJJ.K*. Therefore, for L e ? , w e have a sur-

jective homomorphism of &{Klk)(~Nκ)k(W)IKΔJ-K*) onto Nκίk{L^) Nκ)k(k*)l

NL/κ{Ll)'Kx which is naturally isomorphic to Nκ)k(M)INL/κ(L^)'KxΓi

Nκ)k(ffl). Because the last isomorphism corresponds to the isomorphism

Gal(L kJkΆh. if) - ^ > Gal (L/L Π &ab if)

by the Artin map aκ, the surjection is the idelic version of restL o φκ/]c of

(S(K/k) onto Gal(L/L(Ί ̂ ab ^ ) ? which was stated in Introduction. Therefore

we have:

A member L of Ή is abundant

<=> Gal (L/L Π^a b if) ~ (B(Klk)

4=^ N,,ΛLX). if >< Π iV^.ί^*) - ifΔI if*.

It is also clear that:

A member L of ^ is a solution of

There exists a homomorphism ψ: Gal (L/L Π feab ^ ) >®(K/k)

such that ψ̂ /fc = ψ

The following proposition is now almost obvious:

PROPOSITION 1. There exists an abundant central extension M of K/k

such that Mp\kSLh'K=K if and only if there exists a member U of U such

that UΠπiNϊMk*)) = 1 and U π(Nϊ)k(k*)) = π(Ki).

Now, let p and ?β be prime divisors of k and if, respectively, with
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the completion kp and K%. We denote the maximal order of k or the ring

of integers of kp by O(k) or O(kp), respectively, and the unit groups by

Ox(k) or Ox(kp). We also denote 0x(kA) = kxΎ\pO
x(kp) where kx is the

Archimedian part of K%. For an Archimedian prime divisor p, let us

write Ox(kp) = kx where kp is the completion of k by p. Then Ox(kA) =

ΠpO x(^) where J]p is the direct product over all prime divisors of k.

We naturally identify (K®kkp)
x with \[%[pKL and denote the norm map

(K (g) kp)
x-^ kx by 2Vjgfc. For a prime divisor Sβ of K, the norm map Kx

-»&* is simply denoted by iV̂  if p = ψ\k. Let g($β) be the decomposition

group of Sβ, and put

We also put

(K®kpy* = (xι-°\xe {K®kp)
x, σ e β>.

The following three propositions are well known:

PROPOSITION 2, Let Sβ and ψ be prime divisors of K such that Sβ|fc
= ψ\k = p. Then there exists an element σeg such that N^(ΐ) = N$}(ϊ)σ

in (K®kp)
x. Especially, we have (N^yXΐ) = (K®kpy«.Ny1(ϊ) for any ψ

dividing p.

PROPOSITION 3. NϊXΐ)IK#™ ~ the dual of iϊ2(g0β), Q\Z\

Remark, This is the local version of the isomorphism of (B(K/k) ~

Nϊ\{h!)lK$-K* in the diagram (*).

PROPOSITION 4. // K% is cyclic over kp for a prime divisor ψ dividing

p, then Ni\l) = K#™ and (##*)"'(1) = (K®kp)\

If p is unramified in Kjk, then K% is cyclic over kp for any $β | p. Put

Σ> = {p | a prime divisor of k ramified in K/k}.

PROPOSITION 5. For each pe D, take a prime divisor p of K dividing

p. Then we have

Here each Np

ι(V) is considered to be naturally imbedded in K%.

2. The condition C(m) and the key theorem

For a positive integer m, let us consider a few conditions on Kfk.
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C(m):{ueNκ/k(K$).kx\um = l}aNκ/k({ze K$\zm e #i9}) {ζe kx\ζm = 1};

C'(m):{ueNκ/k(KXA)'k*\u™ = l}<zNx,k(Kϊ) {ζek*\ζr = 1};

C^m) : a e NKJk(Kx) £ x and um = 1 = > 3ζ e &xVp 6

Here for an idele xek% and a prime divisor p, xp is the p-component of

x, i .e . x - (•••,*„ • • • ) € / £ - Π ί * ?

Remark. It is obvious that CΊ(/n) implies Cx(μ) for every μ|m.

PROPOSITION 6. C^m) => C(/n) => C"(m).

Proof, It is obvious that C(m) implies C\m). We show that C^w)

implies C(m). Let M be an element of Nκ/k(K%)-kx such that um = 1.

Choose ζ e ^ x for M by C^m). Then in kp, we have ζ"1 = up. Therefore,

especially, ζm — l. Since (uζ)m = 1, we have uζeOx(kA). For each prime

divisor p of £, fix a prime divisor £ of K dividing p. For a prime divisor

φ of iξ put % - 1 if either ψ\k e D or Sβ ̂  p for |> = φ|fc. If φ = # for

p g D, then i£φ is unramified over k9. Therefore there is an element z%

in OX(K%) such that Nχ(z#) = (wζ)r Let ^ = ( , z%, •) be the idele of

K% with z% determined in this way as the ^-component. Then we have

Nκ/k(z) = uζ. Since Nκ/k(zm) = (uζ)m = 1, 2m belongs to iV^^l). Then by

Proposition 4, we have zm eK^ because of the choice of z$s for 9β\keD.

This shows that u = (wζ) ζ"1 = Nκ/k(z) ζ-1 belongs to the set at the right

hand side of C(m). Q.E.D.

PROPOSITION 7. Suppose that m = q-r and (q, r) — 1. Then C(m)

implies C(q) and C(r).

Proof. Take μ and v in Z so that μq + vr = 1. Let w be an element

of Nκ/k(Kl)-kx such that w« - 1. Then by C(m), we can find zeKl and

ζekx such that 2m e KJJ, ζm - 1 and Nκ/k(z) ζ = u. Therefore we have

u = uμq+vr = uvr = Nκ/k(zvr) ζvr.

Because we have (zvr)q = (2:m)υ e i^iq and (ζ υ0 9 = (Cm)v = 1, we have seen

t h a t C(m) implies C(q). Q.E.D.

PROPOSITION 8. Suppose that m = q r and (q, r) == 1. Then Cf(m)

implies C'(q) and Cf(r).

The proof is similar to the one of Proposition 7.

Now, define a set of prime numbers @> and a positive integer m(g) by
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& = {p|a prime number, p\\(B{K/k)\};

m(q) = the exponent of (5(K/k).

Then m(o) divides the order |g|. (See the proof of Proposition 10.) Note

that <5{Klk) £ iP(g, QIZ).

THEOREM 1. Suppose that the condition C(m) is satisfied for every

m\m(o) by the Galois extension K/k, and that kx Π&5w(β) = &xm(9). Then

there exists an abundant central extension M of Kjk such that MΓ\kΛh-K

= K. Especially, Gal (M/K) is ίsomorphic to (B(K/k).

Remark. As is well known, [kx Π /£ w(β) : &xm(3)] < 2. If k(ζ2t) is cyclic

over k, then the index is equal to 1 where ζ2t is a primitive 2ί-th root of

1 for 2*11/71(8). (See Artin-Tate [1, Ch. 10, §1].)

We prove the theorem by showing the existence of an open subgroup

U of π(Kj) = K%/KJJ K* which satisfies the condition of Proposition 1.

LEMMA 1. Suppose that the condition C(q), q — pe for a prime number

p, is satisfied. If p = 2, we assume that kx Π k%q = kxq. Let x be an

element of π(Nκ)k(k*)). If x belongs to π(K%)q U for every open subgroup

U of π(K$) such that UΓ\ <x> = 1, then x belongs to π(Ni1

/jB(ki))q.

Proof. Because π(K$)q = {zq\z e π(K%)} is a closed subgroup of π(K%),

we have Π^ ^(KlY U = K(KA)Q where Π^ is the intersection over all the

open subgroup U of π(K%) such that Uf] <x> = 1. (Remember that

^{^κ)JJ^)) is isomorphic to ^(K/k), and finite. Therefore <x> — {1} is a

closed subset of π(K%).) By the assumption, therefore, x belongs to π(K$)q.

Take x e N^k*) and y e K% so that x = π(x) = π{y)q. Then x = 3/?α;α with

α; e i^i9 and σ e K*. Therefore Nκ/Ίt{xa'1) ek*Π Klq. We have k* = kx - k*q

by the divisibility property of U\kx (see [3] for example), and kx Π k%q =

kxq (by the assumption if p = 2). Therefore there exists b e if* such that

NjvΛxa-1) = bq. Then we have Nκ/lc(y) = u-b with M eNκ/lc(Kl)*k* =

Nκ/lc(Kl)'kx such t h a t ^ = 1. By C(q), take 2 6 ^ and ζekx such t h a t

^ e i ^ i 9 , ζ 9 - 1 and Nκ/k(z) ζ = M. Then Nκnt(yrι) = C 6 e A , i.e. y^"1 e

Nκ)k(W). Since φ ) β - 1, we finally have x = π(x) = π(^) 9 = π{yz-ι)q e

Q.E.D.

LEMMA 2. Lei A 6e α /ϊmte abelίan p-group, and B be a subgroup

of A. Suppose that Aqf)BdBq for each q (l<g<exp(S)), then there exists

a subgroup C of A such that BC = A and BΓ\C = 1.
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Proof. Choose a set of generators {bl9 , bμ} of B such that B is

the direct product (b^X X(bμ). Then Bq = <&?, , bf). Among the

subsets {cu , cv} of A such that A = (bly , bμ, cu , cy>, take {cj, , cv}

so that Kc!>| + + |<cυ)| is minimum. Put C = <c1? , cv>. Assume

that BΓ) Cφ{l}, and let x be an element of BΓ) C different from 1. Then
x = Uvi=icϊi'ri where qt is a power of p and (r4,p) = 1. Put g =

min{g1|c?< r< =£ 1}. Then x belongs to Bq since this contains Aqf)B. Take

we 2? such that uq = x. Put s< = qi rjq for i such that cf'ri Φ 1, and

c = u~1'Y\/ cγ where γ[/ is the product over all such i that cf'riΦl.

Then we have cq = 1. Let 7 be one of the indices such that q, = g (and

cγrj ψ -±y Replacing cό by c, we have a set of generators {61? , bμ, cί9

• , c, , c j of A. Since c) Φ 1, we also have |<c>|<|<cJ>|. This con-

tradicts the choice of {cί9 , cv}. The proof is completed.

Proof of the theorem. Put X = π{Nι)k(¥)\ This is finite. Take pe&,

and let p'llmfa). Then for each q = pe (p < q <pι), the condition C(g)

is satisfied. By Lemma 1, we see that, for every xeX — Xv, there exists

and open subgroup Ux of π(K$) such that Uxf]X = {1} and π(K$)p-UX3X.

Put E7i = Π*€Z-ZJ»ΪΛ Then we have

Next, for every y e Xp — Xp2, take an open subgroup Vy of π(K"X), by

Lemma 1, such that Vy Π X = {1} and ̂ ( ^ ) p 2 Vy 0 y. Put U2 = ( Π ^ Z P - J W ^ )

(Ί J7i Then we have

KϊY%.Ut Π I c F ,

Continue the process and obtain an open subgroup U of π(K%) such that

U Π X = {1} and

c l 9 for q=Pe (p<q< pι).

Let X(p) be the p-primary part of X and X1 be the p-complementary part

of X. Let A be the p-primary part of π(K$)IU and put B = X^-UjU.

Then A is a finite abelian p-group and S is its subgroup. By the choice

of U, we can apply Lemma 2 to A and B. Therefore we can find an open

subgroup W of π(K$) containing U and X, such that π(Kl) = W X(P) and

W Π X(p) = {1}. Take another prime factor pt of w(g) and proceed the

similar process to the above for W and X, in place of π(K%) and X re-
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spectively. In this way, we can finally find an open subgroup of

which satisfies the conditions of Proposition 1, and complete the proof.

In the following Sections 3 — 6, we see examples to which Theorem 1

is applicable. Therefore, we assume there that the following condition

is satisfied by Kjk'.

ASSUMPTION. kx Π ^ m ( 9 ) = &xm(9).

Note that this implies kxf]k^m = kxm for every m\m(g). (See Artin-

Tate [1, Ch. 10, Theorem 1].)

3. The case of unramified extensions

Suppose that Kjk is unramified. Then by Proposition 5, we have

Nκ)iSX) = KA i n this case. Then it is easily seen that the conditions

C(m) and C'(m) coincides for each m. It follows, moreover, from the

commutative diagram (*) at once that &(K/k) is isomorphic to S$(Kjk).

We also easily see that the following condition C[(m) holds for any m in

this case, that implies Cf{m) immediately:

dim) :{uekϊ\um = l}a Nκ/t(Kϊ).

Hence we have

THEOREM 2. Suppose that Kjk is a finite (not necessarily abelίaή)

unramified extension. Then there exists an abundant central extension M

of Kjk such that M i l kΆh-K — K. Furthermore, <B(K/k) is isomorphic to

S§(Klk), and also to Gal (M/K) for such an M.

4. The case that k is either Q or an imaginary quadratic field

In this section, let k be either the rational number field Q or an

imaginary quadratic field. In this case, the units of k are roots of 1, and

very few. Therefore, for almost every ray class field K of k, the condition

C^miQ)) holds.

Let Dk/Q be the discriminant of k over Q, and f be the conductor of

Kjk. Suppose that the following conditions are satisfied:

( 1 ) If 2\Dm, then p|(2, f) = Φ j)2|f

( 2 ) If 2\Dm, thenί) | (2, f)=>t) 3 | f ;

( 3 ) If k = Q(V^=~3), then p\W^~S, f) = » P2\l

Now, put *7(ΐ) = {xeO x(&J|xΞΞlmodf}. Then Nκ/k(Kϊ)-k*

Let u be an element of this group such that um — 1 for m = m(q). Then
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u belongs to Ox(kA)f] U(\)-kx = U<$)Όx(k). Since Ox(k) consists of roots

of 1, we easily see the condition CΊ(ra(g)) holds if the conditions (1) —(3)

are satisfied. Hence we have

THEOREM 3. Let K be a ray class field of k, and suppose that the

conducor f satisfies the conditions (1) —(3). Then there exists an abundant

central extension M of K/k such that M Π k&h-K = K.

Remark. Shirai [8] gave an M of Theorem 3 more explicitly in the

case that k = Q and f = fo ^ unless (f0,16) = 8. Note that, if k = Q,

the condition (1) is automatically satisfied by any conductor f. Further-

more we have QxΠQ^m = Qxm for every m.

5. The case of ray class fields, I

If Gal(Klk) is a nilpotent group, Gal(L/&) is also nilpotent for any

central extension L of K/k. Therefore it is essential to study the case

of p-extensions for a prime p as far as Kjk is nilpotent at most.

In this section and in the next, we consider the maximal p-extension

K of k contained in a ray class field of k. Let f be the conductor of

Kjk. Then K is also the maximal p-extension contained in the ray class

field modulo f of k.

For a positive integer q, let ζq be a primitive q-th root of 1. We

define an integer i = i(p) > 0 for a prime divisor p of k by the condition

that ζpi e kp and ζpi+i & kp. For a prime divisor p of p, let ί = ί(p) be the

minimal positive integer among those for which ζp^l mod pe if i(p) > 0,

and put β(p) = 1 if i(p) = 0. Then i = ί(p) is the minimal positive integer

such that 1 + pe O(kp) does not contain any p-power root of 1 except 1

itself.

Let ε0, εu , εr be a set cf generators of Ox(k) such that <ε0) is finite,

and that εu , εr are Z-free.

THEOREM 4. Suppose that pew | f for each prime divisor p of (p, f). If

there is a positive integer m such that (m, p) = 1 and εf ~ 1 mod f (ί = 1,

• , r), then there exists an abundant central extension M satisfying MΠ

Proof. It is sufficient to show that the condition Cj(m(g)) is satisfied.

Put q = m(a) and Z7(f) = {x e Ox(kA)\x = 1 modf}. Then the order of

Nκ/Jc(Kj)'kxl U(})'kx is relatively prime t o p . Therefore an element M of
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Nκ/k(K$).k* belongs to C7(f) Λx if uq = 1. Then u e C7(f) 0x(&) = C/(f) fex

Π 0x(kA), It follows from the assumption that the exponent of the quotient

group C/(f) Ox(^)/ϊ7(f) <ε0) is relatively prime to p. Therefore u has to

be in C7(f) <εo>. Let ζ be an element of <ε0) such that uζe U(f). Because

ζq — (uζ)q belongs to ί/(f), we may assume that ζ is a p-power root of 1

adjusting ζ with an element of <εo> Π U{\). Then by the condition on f,

we have ζq = 1. Therefore (uζ)Q = 1. Since uζ e £7(f), we have (uζ\ = 1

for each p dividing f by the same reason. Q.E.D.

6. The case of ray class fields, II

Let K/k be same as in the previous section. In this section, we

suppose that Leopoldt's conjecture on the units of k for p is valid. (See

[4] for example.) Now put q = Y\P\PP>
 a n ( *

U(q) = {xe Ox(kA)\x = 1 mod q}.

By Leopoldt's conjecture for p, we show

PROPOSITION 9. For each q = pι (t> 1), there exists a positive integer

tc such that

o*(k) n u(<f) c (0*(k) n

Proof. Let £ = max{^(p)| p\p], and put E = Ox(k) Π C7(qO Then E is

a free Z-module. Let eu , er be a set of generators of E over Z (r =

rankjEJ). We imbed 2? into ΓLiί>(l + P'O(kJ) diagonally, and take the

closure E of E. Then the ring of p-adic integers Zp naturally acts on E

as powers. It follows, furthermore, from Leopoldt's conjecture that E is

a free Z^-module of rank r. In other words, the elements eί9 , er of E

are free over Zp in E and generate E over Zp. (See [4] for example.)

Now, assume that there exists q = pι such that Ox(k) Π £^(#0 is not

contained in (Oy(k)Γ) U(q))q for any positive integer Λ\ For each n = 1,

2, 3, , take *„ e O*(ft) Π U(q^) - (Ox(k) Π t/(q))ς. Then in g, {x,}ίΓi

converges to 1. Each xn determines an element vn = (hiri), , ir(n)) in

ZX - > XZ (r copies) by xn = Πί=i e ^ ( w ) Because xn$Eq, we have ρn ^

(0, , 0) mod q Z. Since ZPX - - XZP (r copies) is compact, we may

assume that {vJ^Γί converges to an element v=(il9 , ίr) in ZPX XZP,

replacing {vn} by a suitable subsequence if necessary. This v is not equal

to (0, , 0) because vn ^ (0, , 0) mod q Z. But we have Π ϊ - i e ^ = ϋ m ^n

= 1. This contradicts the fact that ei9 , er are free over Zp. Hence
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the proposition is proved.

Remark. Leopoldt's conjecture for p is actually equivalent to Propo-

sition 9.

By Proposition 9, we define /c(q) for each q = pι as the minimal K

that satisfies the condition of the proposition for q.

Now, decompose the conductor f in such way as, f = f fp, (f,p) = 1

and \p = Up\pPeW> a n ( * define q = q(Y,p) to be the minimum such that

q >pHp) for every, ί>|f,

(1 + pΌ(kp)y c 1 + p£W-O(kp) for every p|fp.

THEOREM 5. If c(p) > m&x{tc(m(o)q), £(p)} for each p\p, then there exists

an abundant central extension M of K\k such that Mf]k&h K = K.

Proof. We show that the condition CΊ(m(g)) holds. Put m = w(g). Let

u be an element of Nκ/k(Kj)-kx satisfying um = 1. As in the first step

of the proof of Theorem 4, we see u e J7(f) Ox(k). Let u = υ e with v e

£7(f) and ε e Ox(k). Then εm = υ~m e U(\). Therefore εm belongs to U(qκ{mq)).

Take a e Ox(k)Γ) U(q) so that εm = amq. Then aq = ε ζ with ζ e kx, ζm = 1.

Therefore uζ = vεζ = vaq. Now, i; e E7(f). Therefore, for p\\\ we have

(wζ), = (or)? mod p, and so, (wCX = 1 because q>pu»\ For p|p, (wζ)p ΞΞ (α)J

mod^ ( p ). By the choice of q, we have (ά)q = 1 modp ί ( ? ). Then by the

choice of ^(p), we conclude that (uζ)p = 1. Therefore C^w) is certainly

satisfied. The proof is completed.

7. On solutions of the number knot

An abundant central extension M of K/k is a solution of ®(K/k) itself.

But we can always find such a subfield L of M that L is a solution of

®(Klk), and that Gal(L/L Π feab ̂ ) is isomorphic to $(#/&). Therefore, if

Mf)Kh-K= K9 then we have L Π kΆh K = K, and Gal(L/ίΓ) - ft(«/ft).

In this section, we see sufficient conditions for such a central solution L

of St(K/k) to exist.

Now, let π' : K% -> KϊJNi)k(ί)-K* be the natural projection, and put

m'(Klk) = the exponent of ®(K/k).

Then replacing π : if^ -> K^jK^K* by this ^ , and m(g) by m\K\k\ we

can prove the following theorem in the same way as we did for Theorem 1.

THEOREM 6. Suppose that the condition Cf(m) is satisfied for every
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m\m!(K\k) by the Galois extension K/k and that kx Π k^m^κ/lc) = kxm'{K/lc\

Then there exists a central solution L of ^(K/k) such that L d kΆh-K = K

and GaXL/K) ~ ®(K/k).

Here we give an application of this theorem. As before, let D be

the set of prime divisors of k which ramify in K/k, and fix a prime divisor

p of p in K for each peD. Let g(:p) be the decomposition group of p,

Φ) = β(ίO/[β(ί>X β(ί>)L and t(p) the inertial group of p in q(p). For a prime

number p, let t(p)(p) be the p-Sylow group of {((5). Define a subset ^ ' of

^ by

&' = {p e ̂ | p | |ϊ(p)| for some p e D},

and positive integers e(p) and e'(p) for p e 3Pf and v(Kjh) by

pe(p> = the p-factor of m W , i.e. p'™\\m'(Klk),

pew = maχ{the exponent of t(p)(?))|p e D},

PROPOSITION 10. v(K/k)\\i\ = [K:k].

Proof. It is obvious that v(K/k) divides exp(g) exp(©(iί/A)). Since

exp(<5(Klk)) = exp(iϊ2(g, Q/Z)), we have the proposition by Huppert [2, Ch.

V, The proof of 24.5, pp. 640-641] at once.

Remark. If g is abelian, then

&> = {p\ prime; g(p) is not cyclic}.

If g(p) is not cyclic, exp(g(ί))) exp(flr2(g(p)

? Q/Z))|| |g| if and only if g(2?) is a

direct product of two cyclic groups.

THEOREM 7. If k contains a primitive v(Kjk)-th root of 1, then Cf(m)

holds for every m\m'(Klk). Therefore there exists a central solution L of

St(K/k) such that L Π Kh-K = K and Gal(L/iQ - R(K/k).

Proof. If 23\m'(Klk), then V^Λ is contained in k. Therefore we have

kx Π kT'mh) =kxm'iK/Jc) in any case.

For a prime divisor p, let ψ be a prime divisor of p in if. Let F be

the maximal abelian extension of kp in K%y and iV^ : F x —> kx the norm

map. Then N%(K$)Γ\Ox(kp) = NF(OX(F)). Furthermore, the quotient group

Ox(kp)INF(Ox(F)) is isomorphic to ϊfo). Therefore, if p is not in 0>', then

every p-power root of 1 in kp is contained in NF(OX(F)), and so in N%(K%).
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Letp belong to 0*'. By the assumption, we see that a primitive pe^>+e'^>-th

root ζ of 1 belongs to kr Since the exponent of Ox(kp)INF(Ox(F)) is at

most pe'< p\ the primitive pe™-th root ζpenp) of 1 has to be in NF(OX(F)),

and so, in N%(KX). Thus we have seen that the condition Cί(m'(Klk))

holds. Therefore C'(m) is certainly satisfied for every m\m\Kjk). The

proof is completed.

Remark. Opolka [β] showed the existence of a central solution L of

®(K/k) satisfying that L Π kΆh-K = K and Gal(L/K)~®(Klk) in the case

that k contains a primitive [K: £]-th root of 1.

8. An upper bound for the degree of a small abundant central

extension

Put n = [K: k] and let d be the minimal number of generators of

<5(K/k). In this section, we give a positive number λ = λ{Kjk) for the

Galois extension Kjk such that there exists an abundant central exten-

sion M of Kjk whose Galois group GSLI(M/K) is isomorphic to a subgroup

of (Z/2λnZ)χ χ(Zl2λnZ) (d copies).

PROPOSITION 11. π(K$)n c π(Nκ/k(K$)).

The proposition is clear because we have, for xeK^,

PROPOSITION 12. [π(Nκ/t(Kϊ) Nϊ)k(X)) Π π(N-κ)kψ)) : π(2V

Proo/. Let x be an element of N^k*), and suppose that x = y 3 with

3/ e Nx/k(Kϊ) and 3 e Nκ)k0). Then ^w = iV^y) - Nx/k(x) e ft = Λ*.#\

Take aekx and 6 6 A* so that yn = α6w. As is well known (cf. Artin-Tate

[1], Ch. 10, § 1), we have [kx Π k? : kxn] < 2. If we can choose b to have

o = l, then y = ub, ue k%, un = 1. Since un = Nκ/k(u), we have x = yz

= (uz)-b with ^ e i V ^ ( l ) and bek*aKK Therefore τr(x) e π(N^/k(ΐ)) in

this case. Suppose now that there exists an x0 such that α0 corresponding

to it does not belong to kxn. Then [kx Π kT : ^ x n] = 2. Therefore, for

each x, we can choose b so that a is either α0 or l Then according to

the cases, either TΓ(Λ:Λ:0) belongs to ^(iV^l)) or π(x) does. The proposition

is now clear.

Remark. If [£XΓ)£;Γ : ^x"] = 1, then the index of the proposition is

also equal to 1.
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LEMMA 3. For a positive integer m, we have

π(Nκ/km))2m Π π(Ni)t(H)) C π({u e (Nκ/k(K^)2 k*)" | a« = 1}).

Proof. Let x be an element of Nκ/k(K%), and suppose xlm e Nϊ)kQ#).

Then Nκ/k(x2m) = x2mn e ¥ = kx-k**mn. Because A>x Π &Γmn C &xmn (cf. Artin-

Tate [1], Ch. 10), we have an element a of ¥ such that x2mn = amn. Put

u = (Λf.α-1)"1. Then ue(Nκ/k(K%)2'kψ and z^ = 1. Since β# = Aχ.Jfe*2n =

kx'Nκ/k(k*)2, π(x)2m = π(u) belongs to the set at the right hand side of

the lemma. Q.E.D.

LEMMA 4. For a positive integer m, we have

π{{ue(Nκ/k{Kl)2 k*Y\un = 1}) c τr(Π {uekϊm\u»™ = 1}),
peD

where D is the set of prime divisors of k which ramify in K/k, and n(p)

Proof For uek%, we have Nκ/k(u) = un. Therefore

{uekT\un == 1} = kT ΐ\ N-K)k(l).

It is easy to see, by Propositions 4 and 5,

Ni)k(X) Π kT c i f ί ΠWe k™\u«™ = 1}.
peD

Because π(KJj) = 1, we have shown the lemma.

Remark. Throughout this paper, we consider k% a subset of K\ by

the natural imbedding. But each factor {uek*m\un(p) = 1} for p e D in

this lemma is a subset of the p-component Kf of K^, and is equal to

*? m n ^-xi ) .
Now, for peD, let §(p) = Gal(K9 Π ^ , a b / ^ ) , and Q(pYp) be the p-Sylow

group of Q(p). Put

^ i = {p\ prime, p | |g(p)| for some p e D},

and determine i = i(p, p) by the condition that CP* € k9 and ζ p ί + 1 g /̂ p, and

j — j(p9 p) so that p3 is the exponent of g(p)(p). Put

) = max({0} U {i(p, ί>) ~ i ( p , ϊ>)|p e JO}),

Π ^ ( p ) .

LEMMA 5. {w 6 Ap

X/ί| ww(ί)) = 1} c Kp™ for each peD.
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Proof. Let u be an element of kfx such that un(p) = 1. Take v e k*

satisfying vλ = u. Then v is a root of 1 in kp. By the choice of j(p, p),

iίp contains a cyclic extension of kp of degree Upe&iPj(p'p)' Put

pe&i

and let ζ be a primitive q-th root of 1. Then ζ e kr Therefore, K$ con-

tains a Kummer extension of kp of degree #. Hence we have ζ e Kp(p).

We easily see that

μθ) + min{;θ, p),j(p, p)} > ί(p, p).

Therefore, we have λq> Upe?iPίiPip) Then by the choice of i(p, p), we

see uq = vλq = 1, and w e ( ζ ) c Kpw. Q.E.D.

PROPOSITION 13. π(K%)2λn f] π(N^/k(k")) = 1.

Proof. We have τ τ ( ^ ) 2 ^ = (π(K$)n)2λ c πiNκ/k(Ki))u by Proposition

11. Then by Lemmas 3 — 5, we have

^(iV, / f c(^)r Π π{N~κ)k{k*)) = 1.

Therefore τr(i^)2^ Π π(N^/k(k")) = 1. Q.E.D.

THEOREM 8. Lβί d α ĉ? λ = λ(Kjk) be as above. Then there exists an

abundant central extension M of K/k such that Gal(M/if) is isomorphic to

a subgroup of the direct product of d copies of Zj2λnZ.

Proof. The subgroup π(K$)2λn of π(K%) is compact and closed. There-

fore we easily see by Proposition 13 that there is an open subgroup Ux

of π(Ki) such that Ut z> π(K$)2λn and Ux ΓΊ π(N^/k(k")) = 1. Then by the

fundamental theorem of finite abelian groups applied to π(Kf)jUι and its

subgroup π{Nκ)k(W)) UJU19 we can find an open subgroup U of π(K$) such

that Uz>UuUΓ\ π(Nκ)k(k*)) = 1 and π(K^)/U is generated by d elements.

Since U contains π(K%)2λn, π(K^)jU is certainly isomorphic to a subgroup

of (Z/2λnZ) X X {ZβλnZ) (d copies). Let M be the abelian extension

of K corresponding to the open subgroup π~\U) of K%. Then it is obvious

that this M is a desired one.

Using Proposition 12 and Lemma 3 for m = 1, we can prove the

following theorem by the same way as in the proof of Theorem 8.

THEOREM 9. Let dγ be the minimal number of generators of

Then there exists a central solution L of ^(K/k) such that Gal(L/L Π kΛb K)
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~ ®(K/k) and Gal(L/2£) is isomorphic to a subgroup of the direct product

of di copies of Z/2nZ.

It is also obvious that we can show the following result of Opolka
[7] by the same way using Proposition 12 on account of Remark just after
the proposition.

THEOREM (Opolka). Suppose that the index [kx Π k%n : kxn] is equal

to 1. Then there exists a central solution L of ^(Kjk) such that Gal(L/if)

is isomorphic to a subgroup of the direct product of dγ copies of ZjnZ.
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