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ON CENTRAL EXTENSIONS OF A GALOIS EXTENSION
OF ALGEBRAIC NUMBER FIELDS

KATSUYA MIYAKE

Introduction

Let % be an algebraic number field of finite degree, and K a finite
Galois extension of 2. A central extension L of K/k is an algebraic number
field which contains K and is normal over k, and whose Galois group
over K is contained in the center of the Galois group Gal(L/k). We de-
note the maximal abelian extensions of £ and K in the algebraic closure
of k by k,, and K,, respectively, and the maximal central extension of
K|k by MC,,,. Then we have K, DMCy, Dk K.

Put g=Gal(K/k), and let &(K/k) be the dual group of the Schur
multiplicator H*(g, Q/Z) of g. It is known as was explained in [5] for
example, that there exists a canonical isomorphism

Oxsm - S(K[R) —> Gal(MCqg/i/ky,- K).

Therefore, especially, MC,,, is a finite extension of k,,-K. For a central
extension L of K|k, this ¢, induces a surjective homomorphism rest; o ¢z
of &(K/k) onto Gal(L/LNk,,-K). It is also known that there exists a finite
central extension L of K/k such that ¢, induces an isomorphism of S(K/k)
onto Gal(L/LNk,,-K). Such an L is said to be an abundant central
extension of K/k for convenience in [5], where we posed the following
problem:

ProBLEM. Is there an abundant central extension M of K/k such that
MNk,, -K=K? If not, then what determines the structure of Gal(MN k&, -
K/K) for an abundant central extension M of minimum degree?

In this paper, we give a couple of sufficient conditions under which
MNk,, K coincides with K, and examine some cases for which the con-
ditions hold. We also give an upper bound for [M : K] in the final section.
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There is a certain kind of important central extensions which were
introduced by Opolka [6] and others as a substitute for the Hasse norm
theorem in K/k. Let S(K/k) be Scholz’s number knot of K/k, that is the
quotient group of

{a e k*]a is a norm locally everywhere in K}

by its subgroup {a € £*|a is a global norm in K}. There exists a canonical
surjective homomorphism +,,, of ©(K/k) onto R(K/k). (See [5] for example.)
A central solution of ®(K/k) is, according to Opolka, a finite central ex-
tension L of K/k such that an element a of 2~ is a global norm in K if
a is a norm locally everywhere in L. For a finite central extension L of
K|k to be a solution of K(KJk), it is necessary and sufficient that there
exists a homomorphism +: Gal(L/LN k,,- K)—>R(K[k) such that ;=10
rest, o gk

In this paper, we also show the result of Opolka [7] which gives an
upper bound of [L : K] for a minimal central solution L of K(K/k), and
improve his sufficient condition for such an L to satisfy that LNk,,-K=K.

1. Notation and Preliminaries

Let K/k be a finite Galois extension of algebraic number fields of
finite degree with g=Gal(K[k). Put &(K/k)=the dual group of H*(g, Q/Z),
as was in Introduction. Let KX be the idele group of K, and a,: K% —
Gal(K,,/K) the Artin map of class field theory with K*=Ker ay. Through-
out this paper, we consider the idele group kX naturally imbedded into
K%. Define a closed subgroup of KX by

K3 =(x'|xeK}¥,aeg)
under the natural action of ¢ on K%. Then a, induces an isomorphism

g : K5/K%- K* -~ Gal(MCg/,/K). (See [5] for example.) Let Ng, : KX —
k% be the norm map. Then Scholz’s number knot is given as

@(K/k) = kN NK/k(Ki)/NK/k(KX)

where k* and K* are the multiplicative groups of 2 and K respectively.
From the divisibility properties of k*/k* and K*/ K*, we easily see that
R(K/k) is isomorphic to A*N N, (KX)/Ng,i(K*). Therefore we have

R(K[k) = Nizp(K)[Ngi(1)- K*.
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(Cf. [3] for example.) Since a, induces an isomorphism of Nz!.(k*)/K* onto
Gal(K,,/k,,- K), we have the following commutative diagram:

GalMCy,,/K) «—= GalMCy,/k., - K) ;N—/k S(K/[R)

*) Tz ix Tz * T~

KK K* <= N (KK - K o N Nzjp(1)- K* > K(K][k).

Let o : K5 — KX/K%-K* be the natural projection, and put

% = {L| a finite central extension of K/k},

Il = {U] an open subgroup of z(K3})}.
Then we have a perfect correspondence between ¥ and U assigning U=
(N, (L)) to Le%. If L is a finite abelian extension of K, then Le %
if and only if N,,(L3)-K*DK%-K* Therefore, for L e %, we have a sur-
jective homomorphism of S(K/k)(= Nz} (k)/K%-K*) onto Ny, (L3) - Nzi.(kY/
N, (LY)-K* which is naturally isomorphic to Ngz.(k) /N, (L) -K*N
Nz (k). Because the last isomorphism corresponds to the isomorphism

Gal(L-k,,/k,,- K) —> Gal(L/LN k,,- K)

by the Artin map ag, the surjection is the idelic version of rest;o ¢y, of
&(K/k) onto Gal(L/LNk,,- K), which was stated in Introduction. Therafore
we have:

A member L of ¥ is abundant
&= Gal(L/LNk,,-K) = &(K/k)
& Ny(LY)-K*NNgj (k) = K$-K*.

It is also clear that:

A member L of € is a solution of K(K/k)
& Ny (LX) - K*N Ngj(R)C Ngj(1) - K*
&= There exists a homomorphism +: Gal(L/LN k,,- K) —> S(K/k)
such that g, = Y orest, o g,.

The following proposition is now almost obvious:

PropositioN 1. There exists an abundant central extension M of K|k
such that MNk,,- K=K if and only if there exists a member U of 1l such
that UNa(Nzi (k) = 1 and U-zn(Nz (k) = n(KX).

Now, let p and B be prime divisors of & and K, respectively, with
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the completion %, and K;. We denote the maximal order of %2 or the ring
of integers of %k, by O(k) or O(k,), respectively, and the unit groups by
O*(k) or O*(k,). We also denote O*(k,) = kX-[],O0%(k,) where kX is the
Archimedian part of K%. For an Archimedian prime divisor p, let us
write O*(k,) = kY where k, is the completion of 2 by p. Then O*(k, =
[1, O*(k,) where [], is the direct product over all prime divisors of k.
We naturally identify (K®, k,)* with [[g, K%, and denote the norm map
(K®FE)<— kX by N@,. For a prime divisor P of K, the norm map K}
— kY is simply denoted by Ny if p = P|,. Let g(B) be the decomposition
group of B, and put
K§® = (x'7|x e K§, 0 € g(B)).
We also put
(K@ k)" = (@~ |xe (K@ k)", 0 € g).
The following three propositions are well known:

PropoSITION 2. Let P and ' be prime divisors of K such that R,
= P’y = p. Then there exists an element g € g such that Nz'(1) = Nz} (1)
in (KQ®*k,)*. Especially, we have (N®),)'(1) = (KQ k)" -Nz'(1) for any L
dividing ».

ProrosiTiON 3. NF*(1)/K#™ ~ the dual of H*(g(R), Q/Z).

Remark. This is the local version of the isomorphism of S(K/k) ~
Nz (kH/K%-K* in the diagram (*).

PropositioN 4. If Ky is cyclic over k, for a prime divisor B dividing
p, then N3'(1) = K#® and (N®,)'(1) = (KQ k).

If p is unramified in K/k, then K is cyclic over &, for any B|p. Put
D = {p|a prime divisor of 2 ramified in K/k}.

ProposrTiON 5. For each y e D, take a prime divisor p of K dividing
p. Then we have

Nz(D=K2%- T N;*(D).
peD
Here each N;%(1) is considered to be naturally imbedded in KX.

2. The condition C(m) and the key theorem

For a positive integer m, let us consider a few conditions on K/k.
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C(m) : {u € Ngp(K3) -k*|u™ = 1JC Nep({z e Kj|2" € KED{Le kX[ = 1};
C'(m) : {w & Nl K- |um = 1 Ngol KD (L e ¥ = 1)
C(m):ue Ny (K3)-k* and u™ = 1=—=3 e Vpe D (u), = 1).

Here for an idele x € k{ and a prime divisor p, x, is the p-component of
x, le x=C(-,x, -)eki=1][lk

Remark. It is obvious that C(m) implies C(y) for every u|m.
PropositioN 6. C(m) = C(m) = C'(m).

Proof. It is obvious that C(m) implies C'(m). We show that C,(m)
implies C(m). Let u be an element of Ng,(KX)-k* such that u™ = 1.
Choose (e k* for u by C(m). Then in k, we have (' = u, Therefore,
especially, {™=1. Since (u{)™ = 1, we have uf e O*(k,). For each prime
divisor p of &, fix a prime divisor § of K dividing p. For a prime divisor
LB of K, put 25 =1 if either B, eD or B£pH for p=P|,. If P=75p for
pe D, then K, is unramified over k, Therefore there is an element 2z,
in O*(Ky) such that Ny(zg) = (), Let z=(---, 2y ---) be the idele of
K% with 2z, determined in this way as the P-component. Then we have
Ny(@) = uf. Since Ng,(z™) = ()™ = 1, 2™ belongs to Nz(1). Then by
Proposition 4, we have z™ ¢ K% because of the choice of z,’s for f|, € D.
This shows that u = (W0)-£™' = Ni,(2)-£ ! belongs to the set at the right
hand side of C(m). Q.E.D.

ProposiTioNn 7. Suppose that m = q-r and (q,r) =1. Then C(m)
implies C(q) and C(r).

Proof. Take p and v in Z so that pg + vr = 1. Let u be an element
of N (K%)-k* such that u? = 1. Then by C(m), we can find ze KX and
e k* such that 2" e K%, {™ =1 and N,,(2)-{ = u. Therefore we have

U = urttv = = K/k(zvr).Cw—.

Because we have ()? = (z™)'¢ K% and ({")? = ({™) =1, we have seen
that C(m) implies C(g). Q.E.D.

ProrosiTion 8. Suppose that m = q-r and (q,r) =1. Then C'(m)
implies C'(q) and C'(r).

The proof is similar to the one of Proposition 7.
Now, define a set of prime numbers & and a positive integer m(g) by
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Z = {p|a prime number, p||S(K/k)|};
m(g) = the exponent of S(K/k).

Then m(g) divides the order |g|. (See the proof of Proposition 10.) Note
that S(K/k) = H¥g, Q/Z).

THEOREM 1. Suppose that the condition C(m) is satisfied for every
m|m(g) by the Galois extension K|k, and that R*NEkX™® = k*™®, Then
there exists an abundant central extension M of K|k such that MNk,, -K
= K. Especially, Gal(M/K) is isomorphic to &(K/k).

Remark. As is well known, [E*NEX™® : B*m®] < 2. If k(,) is cyclic
over k, then the index is equal to 1 where {, is a primitive 2’-th root of
1 for 2¢||m(g). (See Artin-Tate [1, Ch. 10, §1].)

We prove the theorem by showing the existence of an open subgroup
U of z(K%) = K%/K%-K* which satisfies the condition of Proposition 1.

LemmMA 1. Suppose that the condition C(q), g = p*® for a prime number
p, is satisfied. If p =2, we assume that kR*Nk5* = k*%. Let X be an
element of n(Ng}(k"). If x belongs to n(K%)?-U for every open subgroup
U of o(K%) such that UN{x) = 1, then % belongs to n(Nx. (k")

Proof. Because n(KX)? = {z%|Z € z(K})} is a closed subgroup of n(K%),
we have My n(K%)?- U = n(KX%)* where (), is the intersection over all the
open subgroup U of =n(KX) such that UN<{x) =1. (Remember that
o(Nz(k") is isomorphic to S(K/k), and finite. Therefore (x) — {1} is a
closed subset of 7(K%).) By the assumption, therefore, x belongs to z(K%)".
Take xe Ngj (k") and y € KX so that X = #(x) = n(y)?. Then x = y‘wa with
we K% and ae K*¥. Therefore Ny, (xa ") e *NKX% We have k* = k*-k*
by the divisibility property of k*/k* (see [3] for example), and R*NEX? =
k*? (by the assumption if p = 2). Therefore there exists b ¢ K* such that
Ngyp(xa™?) = b% Then we have N, (y) =u-b with ue Ng, (K) -k =
Ny (KX)-B* such that u? = 1. By C(q), take ze K% and { e k* such that
22c¢ K%, 7=1 and Ny,(2)-{ =u. Then N, (yz") =C-bekt, ie yzle
Nzl (k). Since n(2)? =1, we finally have X = n(x) = n(y)? = n(yz~)? ¢
(N g (k) . Q.E.D.

LEMMA 2. Let A be a finite abelian p-group, and B be a subgroup
of A. Suppose that A*N\ BC B for each q (1<q<exp(B)), then there exists
a subgroup C of A such that B-C= A and BNC = 1.
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Proof. Choose a set of generators {b,, ---,b,} of B such that B is
the direct product {(b,>X ---x(b,>. Then B? = (b¢, ---, b%). Among the
subsets {c, - - -, ¢,} of A such that A=<(b,, ---,b,, ¢, ---,¢,), take{c,, - -, ¢,}
so that |{c)|+ -+ + [{¢,)| is minimum. Put C =<{c, ---,¢,). Assume

that BN C+{1}, and let x be an element of BN C different from 1. Then
x = [[j-,ci*"" where g, is a power of p and (r,p)=1 Put g=
min{q;|cf*"* #+ 1}. Then x belongs to B? since this contains A?N B. Take
ue B such that u?=x. Put s, =gq,-r,/q for i such that c¥7 =1, and
c=u"-T]'c¥ where [[’ is the product over all such i that c%7": 1.

Then we have ¢* = 1. Let j be one of the indices such that ¢; = ¢ (and
¢4 1), Replacing ¢; by ¢, we have a set of generators {b, ---, b, ¢,

-6 --+,c} of A. Since ¢!+ 1, we also have [{c)|<|{c;>|. This con-
tradicts the choice of {c,, ---,¢,}. The proof is completed.

Proof of the theorem. Put X = n(Nzh (k). This is finite. Take p e &,
and let p‘|m(g). Then for each ¢ = p° (p < g < p'), the condition C(q)
is satisfied. By Lemma 1, we see that, for every x ¢ X — X7, there exists
and open subgroup U, of z(K}) such that U,NX = {1} and ~(K})*-U, 3 x.
Put U, = MNiex-x2U,. Then we have

«(K3)r-U, N X c X

Next, for every ye X? — X**, take an open subgroup V, of n(K%), by
Lemma 1, such that V,N X = {1} and z(K%)**- V, 2 y. Put U, = (,exr_x2V,)
N U,. Then we have

{n(Kﬁ)p- U, NXc X,
o(K3)*-U, N Xc X7,

Continue the process and obtain an open subgroup U of n(KX) such that
UN X =1{1} and

n(KD-UNXcX? for gq=p° (p<q<p).

Let X® be the p-primary part of X and X, be the p-complementary part
of X. Let A be the p-primary part of n(K%)/U and put B = X®.U/U.
Then A is a finite abelian p-group and B is its subgroup. By the choice
of U, we can apply Lemma 2 to A and B. Therefore we can find an open
subgroup W of #(K%) containing U and X, such that z(K}) = W-X® and
WN X® = {1}. Take another prime factor p, of m(g) and proceed the
similar process to the above for W and X, in place of x(KX) and X re-
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spectively. In this way, we can finally find an open subgroup of z(K%)
which satisfies the conditions of Proposition 1, and complete the proof.

In the following Sections 3~6, we see examples to which Theorem 1
is applicable. Therefore, we assume there that the following condition
is satisfied by K/k:

ASSUMPTION. kX () B5™® = pxm@,

Note that this implies £*NkX™ = k*™ for every m|m(g). (See Artin-
Tate [1, Ch. 10, Theorem 1].)

3. The case of unramified extensions

Suppose that K/k is unramified. Then by Proposition 5, we have
Nzi(1) = K% in this case. Then it is easily seen that the conditions
C(m) and C’(m) coincides for each m. It follows, moreover, from the
commutative diagram (¥) at once that ©(K/k) is isomorphic to R(K/E).
We also easily see that the following condition Ci(m) holds for any m in
this case, that implies C’(m) immediately:

Citm) : {w € k5 u™ = 1} C Neu(K).
Hence we have

THEOREM 2. Suppose that K|k is a finite (not necessarily abelian)
unramified extension. Then there exists an abundant central extension M
of K|k such that M N k,,-K = K. Furthermore, S(K/k) is isomorphic to
K(K/E), and also to Gal (M|K) for such an M.

4. The case that k is either @ or an imaginary quadratic field

In this section, let & be either the rational number field @ or an
imaginary quadratic field. In this case, the units of £ are roots of 1, and
very few. Therefore, for almost every ray class field K of %, the condition
Ci(m(g)) holds.

Let D,/ be the discriminant of 2 over @, and | be the conductor of
K/k. Suppose that the following conditions are satisfied:

(1) If 2fDq, then p|(2, ) = ¥*|f;

(2) If 2| Dy, then p|(2,)) = p°|T;

(3) If k= Q( — 3), then p|(v — 3, 1) = p|f.

Now, put U(f) = {x € O*(k)|x = 1 mod {}. Then N, (K%) -k = U() k.
Let u be an element of this group such that ™ = 1 for m = m(g). Then
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u belongs to O*(ky) N U(f)-k* = U(f)-O*(k). Since O*(k) consists of roots
of 1, we easily see the condition C;(m(g)) holds if the conditions (1)~(3)
are satisfied. Hence we have

THEOREM 3. Let K be a ray class field of k, and suppose that the
conducor { satisfies the conditions (1)~(3). Then there exists an abundant
central extension M of K|k such that M N k,,-K = K.

Remark. Shirai [8] gave an M of Theorem 3 more explicitly in the
case that k= Q and | = {,-p. unless (f,16) = 8. Note that, if 2 = Q,
the condition (1) is automatically satisfied by any conductor {. Further-
more we have @*N Q5™ = Q™ for every m.

5. The case of ray class fields, I

If Gal(K/k) is a nilpotent group, Gal(L/k) is also nilpotent for any
central extension L of K/k. Therefore it is essential to study the case
of p-extensions for a prime p as far as K/k is nilpotent at most.

In this section and in the next, we consider the maximal p-extension
K of k contained in a ray class field of 2 Let { be the conductor of
K/k. Then K is also the maximal p-extension contained in the ray class
field modulo { of &.

For a positive integer ¢, let {, be a primitive g-th root of 1. We
define an integer i = i(p) > 0 for a prime divisor p of & by the condition
that {,. ek, and (.. €k, For a prime divisor p of p, let £ = 4(p) be the
minimal positive integer among those for which ¢, # 1 mod p* if i(p) > 0,
and put 4(p) = 1if i(p) = 0. Then £ = 4(p) is the minimal positive integer
such that 1 + p°-O(k,) does not contain any p-power root of 1 except 1
itself.

Let e, ¢, -+ +,¢, be a set cf generators of O*(k) such that {¢,) is finite,
and that ¢, - - -, ¢, are Z-free.

TeHEOREM 4. Suppose that p*®|f for each prime divisor v of (p,i). If
there is a positive integer m such that (m,p) =1 and e =1mod | (I = 1,
..., 1), then there exists an abundant central extension M satisfying MN
k. K = K.

Proof. It is sufficient to show that the condition C,(m(g)) is satisfied.
Put ¢ =m(g) and U() = {xe O*(k)|x =1 modf}. Then the order of
Ny (K3 BXJU)-k* is relatively prime to p. Therefore an element u of
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Ny, (KX)-k* belongs to U(j)-k* if u? = 1. Then ue U(f)-O*(k) = U(f)-k*
N O*(k,). It follows from the assumption that the exponent of the quotient
group U(f) - O*(k)[U(§)-<{e,y is relatively prime to p. Therefore z has to
be in U(f)-{gy. Let ¢ be an element of {¢) such that uf e U(f). Because
2% = (ud)? belongs to U(f), we may assume that { is a p-power root of 1
adjusting ¢ with an element of {¢) N U(f). Then by the condition on f,
we have {? = 1. Therefore (u)? = 1. Since ufe U(f), we have (u), =1
for each p dividing { by the same reason. Q.E.D.

6. The case of ray class fields, II

Let K/k be same as in the previous section. In this section, we
suppose that Leopoldt’s conjecture on the units of k& for p is valid. (See
[4] for example.) Now put q = [[,, ¥, and

U(q) = {xe O*(ky|x =1 mod q}.
By Leopoldt’s conjecture for p, we show

ProrosiTioN 9. For each q = p* (t > 1), there exists a positive integer
x such that

O*(k) N U(g) < (0*(k) N U(@)"

Proof. Let ¢ = max{4(p)| p|p}, and put E = O*(k) N U(g®). Then E is
a free Z-module. Let ¢, ---,e, be a set of generators of E over Z (r =
rank E). We imbed E into [],,( + p-O(k,)) diagonally, and take the
closure E of E. Then the ring of p-adic integers Z, naturally acts on E
as powers. It follows, furthermore, from Leopoldt’s conjecture that E is
a free Z,-module of rank r. In other words, the elements e, -- -, e, of E
are free over Z, in E and generate E over Z,. (See [4] for example.)

Now, assume that there exists ¢ = p* such that O*(k) N U(q") is not
contained in (O0*(k)N U(q))* for any positive integer x. For each n =1,
2,8, .-, take x,eO%(k) N U(g**") — (O*(k) N U(Q))%. Then in E, {x,};3
converges to 1. Each x, determines an element v, = (i,(n), - - -, i,(n)) in
ZX - XZ (r copies) by x, = [[i..e#™. Because x,¢ E?% we have v, %
©,---,0) mod ¢q-Z. Since Z,X---XZ, (r copies) is compact, we may
assume that {v,};=; converges to an element v=(i, ---,i,) in Z, X --- XZ,,
replacing {v,} by a suitable subsequence if necessary. This v is not equal
to (0, - - -, 0) because v, (0, - - -,0) mod ¢-Z. But we have [[;.,e* = limx,
= 1. This contradicts the fact that e, ---,e, are free over Z,. Hence
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the proposition is proved.

Remark. Leopoldt’s conjecture for p is actually equivalent to Propo-
sition 9.

By Proposition 9, we define k(q) for each ¢ = p* as the minimal &
that satisfies the condition of the proposition for q.

Now, decompose the conductor { in such way as, { = {’-{,, (f,p) =1
and f, = [[,,9°®, and define g = ¢(j’, p) to be the minimum such that

{q >p'®  for every, p|f,
@+ p-Ok)) C 1+ p@-O(k,) for every pli,.

THEOREM 5. If c(p) > max{e(m(g)q), £(p)} for each p|p, then there exists
an abundant central extension M of K|k such that MNk, -K = K.

Proof. We show that the condition C,(m(g)) holds. Put m = m(g). Let
u be an element of Ng,(K%)-k* satisfying u™ = 1. As in the first step
of the proof of Theorem 4, we see uec U(f)-O*(k). Let u = v-c with ve
U(@f) and e € O*(k). Then ¢™ = v-™ € U(f). Therefore <™ belongs to U(q*™?).
Take a € O*(k)N U(q) so that e™ = a™?. Then a? = ¢-{ with e k*, {™ = 1.
Therefore uf = ve{ = va®. Now, ve U(f). Therefore, for p|f’, we have
(), = (@)? mod p, and so, (uf), = 1 because g > p'®. For p|p, (ul), = (a)?
mod p*®. By the choice of g, we have (¢)! =1 mod p*®. Then by the
choice of 4(p), we conclude that (uf), = 1. Therefore C,(m) is certainly
satisfied. The proof is completed.

7. On solutions of the number knot S(K/k)

An abundant central extension M of K/k is a solution of &(K/k) itself.
But we can always find such a subfield L of M that L is a solution of
K(K/k), and that Gal(L/LNk,,-K) is isomorphic to S(K/k). Therefore, if
MnNky, K=K, then we have LN k,,-K = K, and Gal(L/K) ~ R(K/k).
In this section, we see sufficient conditions for such a central solution L
of R(K[k) to exist.

Now, let 7z’ : KX — KX/Nz}(1)- K* be the natural projection, and put

m/(K|k) = the exponent of Q(K/k).

Then replacing = : KX — K%/K%-K* by this z’, and m(g) by m/(K/k), we
can prove the following theorem in the same way as we did for Theorem 1.

THEOREM 6. Suppose that the condition C'(m) is satisfied for every
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m|m/(K/k) by the Galois extension K|k and that k* N k™ &E/® = pxm'&/m),
Then there exists a central solution L of S(K/[k) such that L N k,,-K = K
and Gal(L/K) ~ R(K|/k).

Here we give an application of this theorem. As before, let D be
the set of prime divisors of £ which ramify in K/k, and fix a prime divisor
p of p in K for each peD. Let g(p) be the decomposition group of P,
gl = g()/[a(®), a(®)], and t(p) the inertial group of § in §(p). For a prime

number p, let I(p)® be the p-Sylow group of {(p). Define a subset &’ of
Z by

P = {pe?| p||t(p)| for some pe D},
and positive integers e(p) and e’(p) for p e #' and w(K[k) by

p*® = the p-factor of m/(K/k), i.e. p*®|m/(K/R),
p”® = max{the exponent of (p)®|pe D},
V(K/k) — n,pe(p)u’(p)_

PEZF

Prorosition 10. u(K/k)||g| = [K : E].

Proof. It is obvious that v(K/k) divides exp(g)- exp(©S(K/k)). Since
exp(&(K/k)) = exp(H*(g, Q/Z)), we have the proposition by Huppert [2, Ch.
V, The proof of 24.5, pp. 640-641] at once.

Remark. If g is abelian, then
Z = {p| prime; g® is not cyclic}.

If g is not cyclic, exp(g®)-exp(H*(g®, Q/Z))| |g| if and only if g® is a
direct product of two cyclic groups.

THEOREM 7. If k contains a primitive v(K/k)-th root of 1, then C'(m)
holds for every m|m/(K|k). Therefore there exists a central solution L of
K(K[k) such that L N k,,-K = K and Gal(L/K) ~ Q(K/E).

Proof. If 2°|m/(K/k), then ¥ —1 is contained in 2. Therefore we have
kX N k™ = pxm"(E/M in any case.

For a prime divisor p, let P be a prime divisor of p in K. Let F be
the maximal abelian extension of %, in Ky, and N;:F* — kX the norm
map. Then Ny(K{)N O*(k,) = N(OX(F)). Furthermore, the quotient group
O*(k,)[N(O*(F)) is isomorphic to f(p). Therefore, if p is not in &, then
every p-power root of 1in &, is contained in N (O*(F)), and so in Ny (K3}).
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Let p belong to #/. By the assumption, we see that a primitive p°®+¢'®_th
root { of 1 belongs to &k, Since the exponent of O*(k)/N(O*(F)) is at
most p®®, the primitive p*®-th root {**” of 1 has to be in N (O*(F)),
and so, in Ng(K3). Thus we have seen that the condition C{(m/(K/k))
holds. Therefore C’(m) is certainly satisfied for every m|m’(K/k). The
proof is completed.

Remark. Opolka [6] showed the existence of a central solution L of
K(K/k) satisfying that L N k,,-K = K and Gal(L/K)~Q(K/k) in the case
that %k contains a primitive [K : k]-th root of 1.

8. An upper bound for the degree of a small abundant central
extension

Put n = [K:k] and let d be the minimal number of generators of
©(K/E). In this section, we give a positive number 1 = A(K/k) for the
Galois extension K/k such that there exists an abundant central exten-
sion M of K/k whose Galois group Gal(M/K) is isomorphic to a subgroup
of (Z/2anZ) X - - - X(Z/2anZ) (d copies).

ProrosiTioN 11. #(K%)" C n(INVg,(KX)).
The proposition is clear because we have, for x € K,

x" = Ny, (x)- 1;[ x'77 € N, (KX) K4
7€y

ProposiTioN 12. [a(Ng/(KX) - Nzj(D) N w(Ngh(F)) : a(Ng(INI<L2.

Proof. Let x be an element of Nz}.(k*), and suppose that x = y-z with
y € Ng(Kx) and z € Nz(1). Then y* = Ng,(y) = Niu(x) € B = E* k.
Take ack* and bek* so that y* = ab™. As is well known (cf. Artin-Tate
[1], Ch. 10, § 1), we have [k* N k" : k"] < 2. If we can choose b to have
a=1, then y =ub, uck}, u"=1. Since u" = Ng,(u), we have x = yz
= (u2)-b with uze Nz}(1) and bek* C K*. Therefore n(x) € s(INz)(1)) in
this case. Suppose now that there exists an x, such that q, corresponding
to it does not belong to k£*". Then [k* N k™ :k*"] = 2. Therefore, for
each x, we can choose b so that a is either a, or 1. Then according to
the cases, either n(xx,) belongs to #(Nz(1)) or =(x) does. The proposition
is now clear.

Remark. If [R*NEX™:kX"] = 1, then the index of the proposition is
also equal to 1.
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Lemma 3. For a positive integer m, we have
(N (KDI™ N a(Nihu(k)) C n({u € (Neu(K5P )™ [ut = 1)).

Proof. Let x be an element of N, (KJ), and suppose x*™e Ngj.(k*).
Then Ng, (™) = 2™ € k¥ = k*.k¥™". Because kX N k5" C k*™" (cf. Artin-
Tate [1], Ch. 10), we have an element a of k* such that x*"* = q¢™*. Put
u=(x*-a")™ Then ue Vg, (KX) k)™ and u" = 1. Since kf = k*-k*" =
k% Ny, (B, n(xy™ = n(u) belongs to the set at the right hand side of
the lemma. Q.E.D.

LemMA 4. For a positive integer m, we have
r({u e (N (KXY -R)™u* = 1}) C n(ﬂp{u e k™ ur® = 1)),
pe

where D is the set of prime divisors of k which ramify in K|k, and n(p)
= [K;: k)

Proof. For uek}, we have Ny, (u) = u". Therefore

{ueki™u" =1} = k™ N Ng) (D).

It is easy to see, by Propositions 4 and 5,

N?{)k(l) Nk™cC Ke ] {ue k™M ur® = 1}.
veD

Because n(K%) = 1, we have shown the lemma.

Remark. Throughout this paper, we consider kX a subset of KX by
the natural imbedding. But each factor {ueck)™|u"® =1} for pe D in
this lemma is a subset of the p-component K} of KX, and is equal to
k0 N7,

Now, for pe D, let g(p) = Gal(K, N k&, ./k,), and §(p)® be the p-Sylow
group of g(p). Put

Z, = {p|prime, p|[g(p)| for some pe D},

and determine i = i(p, p) by the condition that {,.ek, and (,... ¢k, and
Jj = J(p,p) so that p’ is the exponent of g(p)®. Put

#(p) = px(p) = max ({0} U {i(p, p) — j(p, p)|p € D}),
1= AKJE) = ] p*.

PEZ1

Lemma 5. {ueck?|u"® = 1} C K{*¥ for each pe D.
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Proof. Let u be an element of kY* such that u"® = 1. Take ve k)
satisfying v* = u. Then v is a root of 1 in k,. By the choice of j(p, ),
K; contains a cyclic extension of %, of degree [],.,, p’®". Put

g = ]‘[ pmin(i<p,w),j<z>~p)>
’
PEFL

and let { be a primitive g-th root of 1. Then {ek, Therefore, K; con-
tains a Kummer extension of %k, of degree q. Hence we have {e K.
We easily see that

1(p)+min {i(p, p),J (2, P)} = i(p, p).

Therefore, we have g > [],c,, p'*®". Then by the choice of i(p, p), we
see u! = v =1, and ue{{) C Kp. Q.E.D.

ProposITION 13. z(K})*" N a(Nxh(k)) = 1.

Proof. We have n(K})*" = (a(K3)")* C n(Ng,(K%))* by Proposition
11. Then by Lemmas 3~5, we have

a(Ngp (KD N a(N (k) = 1.
Therefore z(K})*" N n(Nz,(kY)) = 1. Q.E.D.

THEOREM 8. Let d and 2 = A(K|k) be as above. Then there exists an
abundant central extension M of K|k such that Gal(M/K) is isomorphic to
a subgroup of the direct product of d copies of Z[22nZ.

Proof. The subgroup z(KX)*" of n(KX%) is compact and closed. There-
fore we easily see by Proposition 13 that there is an open subgroup U,
of n(K}) such that U, D n(K%)*" and U, N =(Ngj(k")) = 1. Then by the
fundamental theorem of finite abelian groups applied to =(K})/U, and its
subgroup n(NzL(k"))-U,/U,, we can find an open subgroup U of n(K}) such
that UD U,, UN o(Nz(k)) = 1 and n(K})/U is generated by d elements.
Since U contains #(KX)*", z(KX)/U is certainly isomorphic to a subgroup
of (Z/2AnZ) X - - - X (Z|2AnZ) (d copies). Let M be the abelian extension
of K corresponding to the open subgroup z~%(U) of K%. Then it is obvious
that this M is a desired one.

Using Proposition 12 and Lemma 3 for m =1, we can prove the
following theorem by the same way as in the proof of Theorem 8.

THEOREM 9. Let d, be the minimal number of generators of S(K/E).
Then there exists a central solution L of R(K/k) such that Gal(L/LNk,,- K)
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~ RQ(K/k) and Gal(L/K) is isomorphic to a subgroup of the direct product
of d, copies of Z|2nZ.

It is also obvious that we can show the following result of Opolka
[7] by the same way using Proposition 12 on account of Remark just after
the proposition.

TaeEOREM (Opolka). Suppose that the index [k* N kX" :k*"] is equal
to 1. Then there exists a central solution L of R(K/k) such that Gal(L/K)
is isomorphic to a subgroup of the direct product of d, copies of Z/nZ.
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