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SOME RESULTS ON THE VARIETY OF COMPLEXES
YUJI YOSHINO

§1. Main theorems

Let R be a (commutative) Noetherian ring, and let {n, n, ---, n,
{ky, Ry, - - -, Ry} be two sequences of integers satisfyingm >0, &k, = 0 (i = 1,
2,---,m) and n, =k, + k;,, 6=0,1,2, ..., m) with kb, =Fk,,, =0. We

consider the m-ple of matrices (X, X®, ..., X™), where X® = (x{) is
an n,., X n, matrix of indeterminates over R (s = 1,2, ---,m). In this
case we denote by R[X®, X® ... X™] a polynomial ring over R with

the indeterminates {x{¥ |1 <s<m, 1<i,<n,., 1 <j, <n}. Now we

isfs

define an algebra B,i,(n°]’en" ];n"‘> as follows,

1 "y ep

Bﬂ("«» Ny, -y nm) i= R[X®, X® ... X™]/I
k” ceey km
where I is the ideal generated by all the elements of matrices X¢-"X®
(s =2,3,---,m) and the minors of X©® of size b, +1 (s =1,2, ---, m).
These algebras first appeared in the following setting: In the affine
space AY = @™, Homy(4%, A%-") if we define the subvariety W(k,, &, - - -, ky)
of A% to be the closed subset consisting of (f,f:, - -, fn) With f, €
Homg(4%, A%, fifi.ci=00=2,8,---,m) and rank (f) =k, (=1,2, ---,

m), then the algebra BR<n°]’e My - ]; n”‘) is nothing but the coordinate ring
1 "y o

of W(k, k,, ---,k,). (See [3; Theorem 1.7].)

These varieties are called the (Buchsbaum-Eisenbud) varieties of
complexes. (Notice that for m = 1, we obtain the determinantal varieties,
whose properties have been considerably studied.)

Recently in their paper [3] DeConcini and Strickland have proved

that By (n"];n‘f o ]; n’") is normal iff R is normal, and Cohen-Macaulay
19 Yy Fvm

iff R is Cohen-Macaulay, and their work encourages us to make our way
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into the deeper study of these algebras.
In relation with their results, one of the purposes of the present

paper is to determine the divisor class group of BR<n°I’en" Y n,,,) in

19 * s fvm

normal case and another is to get a necessary and sufficient condition
for these algebras to be Gorenstein.
Our main theorems are the following.

THEOREM 1.1. Let R be a normal domain (and {n, n,, ---, n,}, {k. k&,
-+, k,} as above). If we put t,=n,—k;,— ki, 0 =0,1, .-, m) with k,

Mgy Nyy =+ 2y Ny

= Rpn,, = 0, then the divisor class group of BR( bk ) is given as
19 ’ m

follows;

a5y ) ~amo

where h = ${i|0 < k, < ny, t,_, >0} + #{i|0 < k, < ny, &, = t,_, = O}.

THEOREM 1.2. Assume that k, >0 (i =1,2,---,m). If we denote i,

=n,—k, — ki, G=0,1, ..., m), then Bg(n"l;:"" A ,k:”‘> is a Gorenstein
ring if and only if R is Gorenstein and the integers t, t,, ---,t, satisfy
one of the following conditions;

(1) thy=ti=- - =ty

(i) £ =0,¢, =8, = --- =tp,,

(i) £, =0t =t = - =tp_y,

GV) b=t =0t =t,= - =t,_,.

Remark 1.3. The assumption that 2, >0(G@ = 1,2, ---, m) in Theorem
1.2 is not so serious. In fact if &, = 0 for some s, then by the definition
of those algebras we have an isomorphism;

B <nos Ny, v 00y n'm) ~ B (n(» Ny -y ns—l) B <n37 Ngyyy *° 0y nm).
" kls"'7km " kl"",ks—l ®H " ks«H!"'}km
So we can apply our theorem also in this case, because if A and B are
finitely generated and faithfully flat R-algebras, then A ®, B is Gorenstein
if and only if A, B and R are all Gorenstein. (Cf. [10; Theorem 2])

Remark 1.4. In the case m = 1, our results are contained in Bruns
[2] and Svanes [9] respectively.
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Whole of this paper is devoted to the proof of these theorems. Since
our method is mainly based on the one developed by DeConcini and
Strickland, we will often refer the reader to their paper [3].

The author wishes to thank Professor Kei-ichi Watanabe for his
stimulative suggestion and helpful discussion on this topic.

§2. Preliminaries

1 "ty fom

Let BR<n°kn“ I’e n'") be as in the previous section. (We always

assume that k, > 0 and n, = k, + ki, for any i =0,1, .-, m with &, =
kniy = 0 and denote ¢, = n, — k; — k;.1.)

The symbol [iy, iy -+, 8| J1Js -, J:Js Will denote the element of
B,e(n"ljz TR A n"‘) which is given by the minor of the matrix X whose
19 "ty fvm

rows are those of indices i, i, ---,i, and whose columns are those of
indices jl, j29 ) jt' If {hl’ hz’ ct hn,—t’ jl) C ]t} = {1’ 27 M n’s}’ then
iy, &5y - -, 0,1 J1 Jo» =+ > Ju)s can also be written as

U[i]9 Y i:lhl’ tT hn,—t]s

where ¢ is the sign of permutation (A, - -+, ho, iy jis -+, ;). (For more
detail see [3; §1]).

The following lemma will be useful for us in proving inductively
something about the property of these algebras.

LEmmA 2.1. (See also [3; Lemma 2.10].) If we denote

a:[il""9it‘jl,""jt]x (lgsém’ lgt_g_:ks’
1§i1<i2<"‘<it§ns—1, 1§]1<]2<<]t§_ns),

then there exists an isomorphism;

BR<n0, ny, - - ,nm)[l] ~ Bk<n0’ cry Ry — t9 n, — t> Ngiyy * 07y nm)
kly"'7km a kl,“‘,ks_t,kxﬂy"',km

as R-algebras, where
R — )7 — § : P .01
R—‘R[{xijll—ll""lt Or."“]ly"'a]t}? ;]

Proof. To prove this lemma we have only to consider the case of

a=1[1,2---,¢t1,2 -.-,¢,, Then it is easy to see that there exist Pe
GL(n,..; R) and Q¢ GL(n,; R) such that
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1
PX®0Q =

l » 0 7 Y®

where Y® is an (n,., — t) X (n, — ) matrix. Furthermore if we put

* }¢
Q—lX(sH) S [ ] and X(s—l)P_1 — [* |Y(3_1)]
Y(s+1) _i_,

(we assume that X© = X™*D = (), and if Y® = X® (1#£s — 1,55+ 1),

then we can easily verify that BR(n"I’e , ]’en"‘) [_1-] is generated by
19 * "y oy a

those elements of Y®’s over B and all their relations must be induced
by those of X*’s. So we can consider this algebra to be the variety of
complexes over R with the generic matrices (Y®, ..., Y™). We leave to
the reader the detail of this proof.

Remark 22, If a=1[1,---,¢]1,---,¢], is as in Lemma 2.1, then the
matrices P and @ are given in the following form:

t{{ P 0 t{{Q:
P= 1 et B, Q= . 1 leGLn; B
)k : . .
: .1 : 1
t t

In this case let [i), ---,i,]j;, -« -, Jpl; denote the element of

B;}(no’nl’ cry Ny — t:”’s'— t, ""nm)
kl: "'3ks—t, ’km

which is given by the determinant of [y{#],_, ..., in the notation of the

1, 2005 Ip
=715 Jp

above proof.
Then by this remark it is not so difficult to see the following

LemMmA 2.3. Let a=11,2,---,¢|1,2,---,t], be as in Lemma 2.1 and
f be the natural map

B (nO’ nl’ > nm) > B_(noa B n.s 1 s fhs ’ ’ m)
" ku"'ykm " kh"'yks—ta"'akm

which is given in Lemma 2.1.



VARIETY OF COMPLEXES 43

(1) If {in ~~~,l:p}g {t+ 19t+2’ "‘1ns—1} and
{jl’jZ’ "'7jp} g {t“l‘ 1,t+2, "‘,ns}, then

f([l, 2) ot '7t’ il, ot ',ip|19 2’ R t’jl’ "'sjp]x)
= u[il - t,i2 - t’ "'9ip - t]jl - t7j2 - t’jp - t]:

where u is a unit in R.
@ If i, - i) St +1,t+2,---,n} and
{jly . "jp} g {1: 2’ Tty ns+1}y then

f([in c ',ipljb . 'yjp]s-rl) = [ll - t, iz - t} ot "ip - t]ju : "jp];;l .

(3) If {ily Sty ip} g {11 2’ Tty ns—z} and
{Jy - Jnt E{t+1,t+ 2, ---,n,.,}, then

f([ily .t "ipljh . '9j;n]s—l) = [iu . 'aipljl - t’ . '7jp - t]:—l
4 Ifq+s—1,8.s+1, then

f([il’ M) ipljl, b '3jp]q) = [ily c '9ip|j1’ ‘ot ',jp]:;

In the I‘ing B3<nol;nlj s I;nm> let I(T)(il’ ) ip Ijl’ v '}jq) denote the

19 "ty om

ideal generated by the maximal minors of the matrix [x{} i And
in the same way we define 1(i,, - - -, i,|j, - - -, j,) as the ideiajlhogq
Bg(n"’ ey, — b, — 18, -, nm)
kR, -k, — 1t - Ry
generated by the maximal minors of the matrix [y{?],_;, ..., Then as a

J=J1a7%0
corollary of Lemma 2.3 we get )

COROLLARY 24. Leta=11,2,---,t|1,2, ---, ], be as in Lemma 2.3, then
(1) I<3)(1,2,---,t,il,---,ip|1,2,---,t,jl,-~-,jq)[%]
=IOG —ti, —t, - iy — bl — b o=t g — D)
ft<i,<n_, (u=212 ---,pand t<j,<n, (v=12---,9).
2 IeQ,2,---,n,j, -, Jq)[%‘:l
=I01,2, -, n, —tljy, -, Q) ifq<n —t
3 Iev3G, - --, 1,2 -, ns_l)[_i_]

= j(s—l)(i“ ° e '7ip117 29 ey Mgy — t) ifp g. ng., — L.
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1
a

(4) I"G, -, ip|j1, .. .,jq)[

ifr+s—1,s,s+ 1L

] = f(r)(il, . "ipljl’ ° "jq)

Facr 2.5. Let H be the set consisting of all the determinants. We

partially order H by the following; When x = [i,, - --,i,|j;, -+, J.J, and
x =T, -, ij, -5 Jile, x and &’ are incomparable if s # s’, while if
s=8thenx<« if t=>¢ and i, <08, j, <j,foru=1,2.--,¢. The

product xx’ (s’ = s) is said to be standard if one of the following condi-
tions holds;
Q) ¢>s+1
(2) s’ =s and x and x’ are comparable in the partial order on H.
B §=s+4+1n—t=¢ and writing v, <, < --- < u,,_,
for the complement of {j,, ---,j} in {1, 2, ---, n,}, we have

um—t—v+1 g_jc’-'(ﬁl fOI' V= 19 2’ Ct t,'

(If we symbolically write x = [I|J],, ' = [I’|J"],., and if we define a per-
mutation x, on {1,2, --.,n,} as

Tcs(u)=na_”u+1 (1§U§ns),

then this condition could be re-written as ns(j ) < n(I).)

Now we define an arbitrary product x,x, - - - x, of minors to be standard
if each product x,x; is standard in a suitable order.

Then the theorem of DeConcini and Strickland says that the algebra

B R(n",’zf‘_’ A ,}’e:’”> is a Hodge algebra over R generated by H. (Cf. [3] and

[5; §16])
Remark. QOur notion of standardness does not coincide with that of

[3]. In fact the condition (3) above corresponds to the standardness given
in [3] by considering the product matrices

1 1
X® L s L X s+
1 1

instead of X and X¢*». This is necessary if one wishes to make

Bg(nol,efl-’ . ,i,e: ”‘> a Hodge algebra defined in [5].

LEmMMA 2.6. Suppose that R is a reduced ring and k, = 1. If we denote
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d=1[1,2 -, k|1L,2 -kl and p =IO, 2, ---, k|1, 2, ---,n), then the
ideals (d) and p are radical ideals.

Moreoverif m =2,k > 1and if we denotew = [1,2, - - -, k,|1,2, - - -, kpln
then w is a non zero divisor on B/p and B|(d), where

B = BR(nO’ ny, - nm) R
kla ) km
Proof. Recall that a subset I of H is called a poset ideal if Isa > b
€ H implies bel. In our case {d} and the system of generators

{[1,2, "'akllil’ "‘,ik1]111 §i1 <i2< e < iklé n1}

of p are in fact poset ideals of H. (Notice that d is a minimal element
in H) Thus by Proposition 1.2 of [5] we have that both B/(d) and B/p
are also Hodge algebras over R. In particular they are reduced.

Next assume that w(; a,x;) € p (resp. €(d)) where each x, is a stand-
ard monomial and a; € R. By the straightening law we can write wx, =
> by (v, is a standard monomial and b,; € R). In this expression each
monomial y,, contains w, for w is minimal in the order on H. Since
Dby, €p (resp. €(d)) and since this expression is unique, each y,;
also containsone of [1, 2, - - -, Ry |1y, -+, 0, A S0, < - - <y, £ ny) (resp. d).

Thus we have w(3] a,x;) € wp. (resp. € (wd)). Because w is a non zero
divisor on B, we conclude that >}, a,x;, € (resp. €(d)). Hence w is a non
zero divisor on B/p (resp. B/(d)).

Now we shall prove the main proposition of this section.

ProposiTiON 2.7. Assume that R is an integral domain and k, = 1.
If we put p=1"1,2,---,k]1,2,---,n) as in Lemma 2.6, then p is a
prime ideal and

1 (k, < ny)
ht(p) B {nx —k —k+1 (k=n).

Proof. We prove the proposition by the induction on m. If m =1,

then this algebra B:= Bk(n"k n‘) is the determinantal variety and so the

1
result has been known by [6; Theorem 1].
So assume that m > 2. If we denote w = (1,2, ---,k,|1,2, - -+, knla,
then by Lemma 2.6 we have only to prove that pB,, is prime and its height
is given as in the proposition.
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On the other hand B, is isomorphic to B:= Bg(n"’ h Ié R k"‘)

19 " "y fvm-y

with a certain integral domain R and by this isomorphism pB,, corresponds
to the ideal p which is defined in B as in the same way as p. (See
Corollary 2.4.)

By the induction hypothesis P is in fact a prime ideal and

1 (R < ny)
ht(p) = {n, —k — b+ 1 (ky = ny, m = 3)
(ny— k) —ki+1 (hy=ny,m=2).

This 1s what we wanted.

Remark 2.8. I:=1"(,2,---,n,|1,2, ---, k) may not be a prime ideal.
In fact if we consider

B:= BR(1’12’12> = Rlu, v, x, y, z, wl/(ux + vz, uy + vw, xw — y2),

then I = (u), » = (4, v) and so
B/I ~ R[v, x, v, z, w]/(vz, vw, xw — yz)
which is not an integral domain, while
Bjy ~ Rlx,y, z, wl/(xw — yz)
is an integral domain whenever R is a domain.

§3. Proof of Theorem 1.1.

In order to prove Theorem 1.1 we need some lemmas on the decom-
position of a certain principal ideal, which will be stated in (3.2).

In the following we always denote B:= Bﬁ(n"l’en" T n’”).

19 "y fvm

LEMMA 3.1. Assume that R is an integral domain and 1 <k, < n,.
If we denote p»=1I1IM1,2,---,k]|1,2, ---,n)
d=1[1,2,---,k1|1,2 - -, k]
and e=1[1,2---,k1|1,2, -,k — 1,k + 1],
then we have (d) = p N (dB, N B).

Proof. It is enough to see that for an element x of p, ex € (d) implies
x e (d).
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Let us describe x as a linear combination of standard monomials as
follows;

X =2, a.x (a;€ R)

where each standard monomial x; contains one of [1,2, ---, & |i;, -+, ]
a1, < - <i,, £ny, since xep.

Assume that x, does not contain d. Then by the definition of stand-
ardness we can easily check that ex; is also a standard monomial. Since
exe(d) and since d is a minimal element of H, the straightening law
shows that the monomial ex; contains d. It also means that x; contains
d, which is a contradiction. Thus d is included in each monomial x,, so

x € (d).

ProprosiTioN 3.2. Assume that R is an integral domain, k, > 0 and
d:: [17 2’ . "kllly 27 o "kl]l-

(1) If k, < min{n, n} or k, = n, = n, — k, < n, then we have
d=pnNq

where p =11, 2, -, k11,2, -+, n,), which is a prime ideal of height one
as shown in Proposition 2.7 and q denotes another prime ideal of height

one.
(2) If k, =n, or k, = ny, < n, — k, then the ideal (d) is prime itself.

Proof. If k, = n,, then (d) = p, so it is prime by Proposition 2.7.
Assume that £, < n,. In this case let us denote

e = [1:2, "'yklllyzy ""kl - 1’ kl + 1]1
as in Lemma 3.1. First we claim that dB, is a proper prime ideal.

In fact we have already known that B, ~ B,}(n‘ —kk b T k " n’”) with

IR AT
R=R[x)|i=1,2 - korj=12 - k—1 k + 1}, 1/e] and by this

isomorphism d corresponds to the element d := det [x®],_,,...,, of R. It
J=1,2,00,k1

is well known that d is a prime element of R. (See [6; Theorem 1].)
Hence B,/dB, ~ B,—e,m(n‘ _kk” Tz, k » n’") which is in fact an integral do-

0y * 0t

main, and so we conclude that dB, is prime as we wanted.
Thus if we denote q = dB, N B, then by Lemma 3.1 we get the de-
composition of (d) into prime ideals;
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@=pNqg (x

(Remark that clearly p & q.)

In the first case of proposition, the height of p is one as shown in
Proposition 2.7. So (x) gives the irredundant decomposition of (d).

On the other hand if k, = n, < n, — k,, then ht(p) = 2 by Proposition
2.7, hence q must be contained in p since (d) is a radical ideal. Q.E.D.

Proof of Theorem 1.1. Assume that R is a normal domain as in the
assumption of Theorem 1.1.
To prove the theorem it will be sufficient to see the following claim;

@33 (Bk(ml’e:".’ - 'l;m"m)) ~7:®Cl (Bﬁ(nl —ki“. e "m))
where
_ {1 Gf 0 <k <min{n, n} or 0< k =n,=n, — k,<ny),
0 (otherwise),
where R is a certain normal domain which is a faithfully flat R-algebra
and has the same divisor class group as R.

If the claim (3.3) is verified, then we can prove Theorem 1.1 by the
induction on m. In fact if m = 1, then by the claim we have

cl <BR<n°]; ")) ~ 7@ CL(R)
1
where

_ 1 if0<kek, <min{no, nl}’
0 otherwise,

that is nothing but Theorem 1.1 in case m = 1.
If m > 1 and if we put

h(no, n, nm) = {0 < ky < ny, t,_; > 0}
kl’ R} km

+HE0<k<n,t_, =t = 0}
(recall that ¢, = n, — k, — k,,,), then by (3.3) and by the induction hypo-
thesis we get

B no:nlr"'9nm): n
01( R( A ) 7' ® C1(R)
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where h = e + h(n‘ -—kk,,~7.z,‘:, k » n’”) Here it is not so difficult to see

2

thatiz::h(m%n“""n”>

19 " "y om

Now we proceed to the proof of (3.3).

Our proof will be divided into the following three cases;

(1) k1 = 0,

(@ ki =n ork =n<n —k,

B 0<k <min{n, n} or 0 <k =n,=n, —k, <n,.
(Observe that they exhaust all the possible cases.)

3 : Moy Mgy == 23 N\ __ Ny Mgy = -y Ny
In case (1) it is clear that By(™™ " y7") = By(™y 1 ),

Thus there is nothing to prove.

In case (2) the element d = [1,2, ---, k1,2, ---, k], is a prime ele-
ment by Proposition 3.2. Therefore the divisor class group does not
change after localizing by d. On the other hand there is an isomorphism

B (no, Ny, -0y nm)[l] ~ B_(nl - kl, Mgy » v, nm)
“ kly"'>km d # kz,"';km
as we have shown in Lemma 2.1. Since
R =R{li|hI1<i<k, 1<) <k}, 1/d]

and since d is a prime element of R[{[i|jL,|1 =i <k, 1 <)< R} (see
[6; Theorem 1]), we have an isomorphism Cl(R) ~ Cl(R). Hence we get
the claim in this case.

In case (8) the ideal (d) is decomposed into the intersection of two
prime ideals;

@=pnq

as shown in Proposition 3.2. If D(A) denotes the free abelian group
generated by height-one prime ideals in a normal domain A, and F(A) the
subgroup of D(A) consisting of principal divisors, then we have the fol-
lowing commutative diagram induced by the natural map B — B,, where

Ny Ny ==+ Ny,
.B= BR( k‘,"”km ).
F(B) —>» F(B,)
J
D(B) —» D(B,)

¢ {
Cl1(B) —» CI(B,)
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Immediately it can be known that

Ker (y) = Zdiv (p) + Zdiv (q)
Ker (¢) = Zdiv(d)

where “div” expresses the class in D(B). (Notice that F(B) =~ Q(B) —
{0}/ U(B) where @(B) is the quotient field of B and U(B) the group of
units in B. See [1; Chapter 7].) Furthermore by the above decomposition
of (d) it is clear that div(d) = div(p) + div(q) in D(B). Hence we con-
clude that the kernel of { is generated by cl(p) and it is Z-free. Anyway
we get the following exact sequence of abelian groups;

() 0—>Z—>CL(B) —— Cl(B) —> 0
1——>cl(p)

where B:= B, ~ B;,(n‘ _kzk“ Ty k ” n"‘) as in Lemma 2.1.

It remains only to prove that this sequence (x) is split. We shall
prove this by the induction on m.

Since we may assume that B also satisfies our claim (3.3), C1(B) can
be expressed by the direct sum of Cl(R) and Z* for some A >0, as we
have shown above. On the other hand by the diagram of algebras;

we get the following commutative diagram of abelian groups;

Cl(B) —> C1(B)

CL(R) 2> CL(B)

where B is an isomorphism as in the proof of case (2).

If m =1, & is also an isomorphism and so £ has the right inverse
af~'a' as wanted.

Assume that m > 1. Then by the induction hypothesis @ has the
left inverse 6 and the cokernel of & is isomorphic to Z* So there exists
a map 7: Z* — C1(B) such that z{r gives the identity map on Z* where
7 denotes the natural projection from Cl(B) to Coker (@ =~ Z*. Thus we
can conclude that a6 @7 is the right inverse of .
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This completes the proof of (3.3) and so Theorem 1.1.

Remark 3.4. There exists an automorphism of B :=B3(n"}’en" ]; n’")

19 ° "ty o
which permutes some columns of the matrix X® and leaves the ideal p
stable. From this fact we see that even if d denotes [1, 2, - - -, &/|i,, - - -, i, ]ls

for arbitrary i, < -.-- <i,, < n, instead of [1,2, ---,k|1,2, ---, k], then
the natural map from Cl(B) to Cl(B,) is an isomorphism in case (2) and
the sequence (x) is also split exact in case (3).

Carefully pursuing the proof of the theorem, we shall have the fol-
lowing corollary which will be used in Sections 4 and 5 to prove Theorem

1.2.

By e kB

domain R and x:= [1|1], for some s. If one of the following conditions
holds;

(1) k=2,

(ii) s=1, k,=k,=n,=1 and n, > 2,

Gii)) s=m, k,=kn.,=n,=1and n,_, > 2,
then the group homomorphism Cl(B) — Cl(B,) induced by the natural map
of B to B, is an isomorphism.

COROLLARY 3.5. Let us denote B:= BR(n"’ M vy n"‘) with a normal

Proof. In case (ii) or (iii) the element x is prime by Proposition 3.2
and so the result will be obtained by [1; Chapter 7 § 1 Proposition 17].

In case (i) we prove this by the induction on m. It is also divided
into the following three cases as in the proof of (3.3):

(1) k1 = 0,

@ k=n>00r0<k =n,<n, —k,

3 0<k <min{n, n}or 0 <k =n,=n —k, <n,.

In case (1) this obviously reduces to the case with less m since

B~ BE(”‘,;Z’,“.’ s ‘,;fm).

In case (2) let us denote

d={[1’27"'91311172:""kl]l 1f3¢29
1,2 ---,kn —k +1,---,n], ifs=2,

and
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[1,2y""k1—1|1’2’""kl"'l]; ifS:]_,
d=1[1,2 - kln,—k, -0 —1 if s=2,
[1’2, "'7klll’2’ 9k1]; 1f323-

Then by Lemma 2.3 we know that d corresponds to d under the natural
map from B to B,. (Notice that in case s =2, n, — k, = k, = 2.) Apply-
ing Remark 3.4 to B and B,, we get the commutative diagram;

CL(B,) —> CL((B.)y) = C1((B,).)
« :
Cl(B) —> CI(B,)

where the horizontal arrows are isomorphisms. On the other hand the
induction hypothesis shows that g is also an isomorphism. Thus « is an
isomorphism as we wanted.

In case (3) let d and d be as above and let p denote the ideal;

f(l)(l,z,"',kl_lll’2,""nl_l) ifS'————l,
f(l)(l,z’"’9k1]112"")n1_1) if8=‘-2,
or Io@,2, - - k1,2, ---,n) if s = 3.

Then d (resp. p) corresponds to d (resp. p) as we have shown in Lemma
2.3 and Corollary 2.4. Thus we obtain the following commutative diagram
with exact rows.

0—> Zcl(p) —> C1(B,) —> CI(B,,) —> 0
e P T
0—> Zcl(p) —> C1(B) —> CI(By) —>0
(Notice that « is an isomorphism.) On the other hand by the hypothesis

of induction we can easily see that 7 is an isomorphism. So it is con-
cluded that g is also an isomorphism. Q.E.D.

§4. Reduction

In this section we shall show that it is sufficient to prove the follow-
ing proposition in order to get Theorem 1.2.

ProrositioN 4.1. Assume that R is a field. Then BR(n°’ 1n v ’ln”‘)

is Gorenstein if and only if one of the following four conditions holds:
D n+l=n=n=- - =n,,=n,+1,
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(2) n():]-:n1:n2="'=nm—-l=nm+1’
(3) nm=19n0+1:n1=n2="'an—b
@ m=n,=Ln=n=- - =n,,

The proof of this proposition will be done in the next section, and
for a while we assume that this holds actually.

For the purpose of reducing Theorem 1.2 to this proposition we need
some lemmas, the following one of which is rather well known.

LeEMMA 4.2. (1) Bﬁ<n"];:‘j , A :’"> is Gorenstein if and only if R and
Bk(,,)<n°l;:“’ ’ A : ”) are Gorenstein for any prime ideal 9 of R where k(p)
= R,/pR,.

(2) Let R— S be a faithfully flat extention of Noetherian rings with
Gorenstein fibres. Then Bﬂ(n‘)}’ef‘.’ ,1’2:’”> is Gorenstein if and only if
Bs(n"ja:“" , I,e:m> is Gorenstein.

Proof. (1) Since the natural map R — B,i,(n"l’e:l‘_’ , ,’e:’"> is faithful-

ly flat, the result is obtained from [10; Theorem 1].
(2) By the assumption we see that the natural map from

B3<n0, Ny, -+, nm) to Bs<n07 Mgy + 00y nm)
kly "’,km kl;"',km

is faithfully flat. Thus if BS(”‘% Ty oy ”m) is Gorenstein, then by [10;
19 Tty Ivp

Theorem 1] we see that B R(nol’z el I’e n’”) is also Gorenstein. Conversely
19 ° s fvm

Ny, Nyy 0y Ny
kl, R} km

so is S. (Use (1) and [10; Theorem 1].) Hence the Gorensteinness of

B <n'0, Ny, -+, nm) ~ B (n(» Ny + 00y nm>® S.
N kl’ ,km " kl’ 1km *

follows from [10; Theorem 2].

assume that BR< ) is Gorenstein. Then R is Gorenstein and

LEmMMA 4.3. Let us denote B = B3<n°]; n‘j ]’en”‘> and x = [1|1], for
19 " Ty vy

some s. If one of the following conditions holds;
(1) k=2
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(ii) s=1, k =k, =n,=1and n, > 2,
(i) s=m, kp,=kp_,=n,=1and n,_, > 2,
then B is Gorenstein if and only if B, is Gorenstein.

Proof. By the above lemma we may assume that R is a field, and so
we can consider the canonical module K, of the graded ring B. (For the
definition of K, see [7; Chapter 2].) Remark that K, is isomorphic to a
certain divisorial ideal of B since B is a Cohen-Macaulay normal domain.
(Cf. [8; Korollar 6.7]) Therefore K, defines the divisor class cl(Kj) in
Cl1(B) and thus B is Gorenstein if and only if cl(Kg) = 0. (See [8; Satz
5.91)

If we denote B = BR(n"’kn" v e = 1m — 1 k " n'") and R =

1y tet 3 s T Ly
R[{[i|jl,li =1 or j =1}, 1/x], then B, ~ B ®,R as we have shown in
Lemma 2.1, and so we have the natural maps among the divisor class
groups;

C1(B) —L> C1(B,) ~ CL(B' ®, B) <5 C1(B)

which are all isomorphisms by Theorem 1.1. and Corollary 3.5. Here it
can be easily checked that f(cl(Kj,) and g(cl(K,)) give the same element
in CI(B,). (Use [7; Proposition (2.2.9)].)

Thus cl(K;,;) = 0 if and only if cl(X,;) =0 and this establishes the
lemma.

Now let 2, >0 (G =1,2,---,m) be as in the assumption of Theorem
1.2. (Recall that we always assume that n, >k, + k,,, with & = &, .,
=0.)

Then the Gorensteinness of Bﬂ(n"l; ot A n"‘) is equivalent to the
1y ) m

Gorensteinness of R and R"“’)(nol’a n‘j T A n ’”) for all p e Spec(R). Lemma
19

Tty o

4.3 and Lemma 2.1 show that if 2, > 1 then it is also equivalent to the

Gorensteinness of R and B,;(p,( 0 o et > e o "‘) for any
1 "y Ry T Ly 0ty oy

p e Spec(R) where k(p):=k(M[{i|jl;|i =1 or j =1}, 1/[1]1],] Then by
Lemma 4.2 (2) we see that it holds if and only if R and

na"';"’s—-_l)ns“l,"',nm
B"“"(° By oo b — 1, | )
1 "t vy T Ly Ao

are both Gorenstein. If we continue this process using Lemma 4.3 until
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each integer of the lower row of the parenthesis becomes 1, then it will
be concluded that it is equivalent to the Gorensteinness of R and

B t0+17t1+2,t2+2ytm—1+2)tm+1
k() .11 .--.1

for all peSpec(R). (Recall that t, =n, — k, — k;,..)

Thus if we assume the validity of Proposition 4.1, then we shall get
Theorem 1.2.

§5. Final step of the proof

Now we shall prove Proposition 4.1. Our main tool is the Poincaré
series of graded rings which is defined as follows; If A = @®,,, 4, is an
N-graded ring with Artinian A, and A, of finite length over A,, then the
Poincaré series P,(2) of A is the formal power series in 1 given by

>, length, (A,)A".
n=0

(We remark that this is always a rational function in 1 if A is Noetherian.)
The reason why we are going to consider the Poincaré series is the
following lemma due to R.P. Stanley.

LemmA 5.1 [11: Theorem 4.4]. Suppose that A is a Cohen-Macaulay
domain with A, a field and d = dim A. Then A is Gorenstein if and only
if the equality;

P,(1/2) = (—=1)*2°P (2
holds for some a € Z.

First of all we shall compute the Poincaré series of BR(r’l 3) where 1, s

> 1. (In the rest of this paper we assume that R is a field.) If we denote
it by F,,(2) then it is given by

6.2) F0) =3 (n +r— 1>(n + s — 1)2,,

720 r—1 s—1

where (8) =1 for any u = 0.

In fact each standard monomial of BR("’1 s) of degree n is written as
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forsome1<ag, £, L L, Srand1<H, 5,5 ---<b, <8 (See
[6; Theorem 12.1].) Thus the number of standard monomials of degree n

n ;*—_r 1 1)("’ ;l—_s 1 1). This establishes the equality (5.2).

On the other hand F, (1) should be written as a rational function in
A. In fact we get the equality;

is given by (

I~ — frx('z) R

(0.3) Frs(z) - (1 _ 2),+s_.1
r—1\/s—1

where frs(R) = ngo( ; )( i )27 e Z[4].

Remark that (Z) =01ifv<0orv>u.

To prove this equality we have only to notice that both functions in
(5.2) and (5.3) are uniquely determined by the following condition.

_ 1
*) F) = A=
rFr+1,s(2) - SFr,sH(l) = (r - S)Fn()‘) .

In the same way we define another formal power series G, () as
follows:

If r=1 and s = 2, then
L n4+r—N\/n+s—2\.,
=3 ("I e

n=1

(5.4)

Then the same method as above shows that it is also written as a rational
function in A:

(5.5) G = ﬁ"glﬁ
where &) = ; (;)(j _ %)21 e Z[2.

It is easy to check the following facts about those functions.

deg f,(4) = min{r, s} — 1,

) deg g,(2) = min{r, s — 1}.
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(.7 (@) If r,s =1, then f,(2) is a monic polynomial if and only if either
r=sor(r—1(s—1=0.
i) f r=1 and s = 2, then g,(2) is monic if and only if either
r=s—lorr=1
If r =1, then
Frr(l/x) = —ZTFTT(X) ’
(58) F‘r +1,1(1/'2) = 21GT,T+1(2) H
Gr+1,r+1(1/l) = —'27Gr+l,r+l(l) )
G, .1/ = XF,,, (3).

Remark 5.9. If BR<r’1 S) is Gorenstein, then F, (1) satisfies the equal-
ity in Lemma 5.1. In particular the coefficient of highest degree term in
f.«(2) should be one. Thus in this case it must be r = s or (r — 1)(s — 1)

= 0. Conversely if r =s or (r — 1)(s — 1) = 0, then F,, (1) certainly sat-
isfies the condition in Lemma 5.1.

In such a way we can get the necessary and sufficient condition for

B R(r’l s) to be Gorenstein.

We shall generalize this method to prove Proposition 4.1.
Now we denote the Poincaré series of

BR<n0’1’;z“~ -‘ .".f,]_ nm) by P“Oy"l:"'nm(z) .

(Recall that ny =1, np,=land n, >2if 1 <i < m)

Lemma 5.10. (1) P, .0 = F,,..Q),
(2) Pno’nl-nnm(z) = F"Oyﬂl—l(x)Pﬂl ----- nm(z) + Gnom(z)Pﬂl-lv"2»""""»(2)
whenever m = 2.

Proof. We have already known (1). To prove (2) we must notice

that each standard monomial of Bg(n"’ 1n v ,1n,,,) is given by

s T %y

(a} [ b} | B bt | by )
R Nk
a, | by, | b, byt | bY,
al | a} af
Ll :
. a’Uﬁ avs a:)nm
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where 1<eai<af< - - Zaf,<n,, 100 < --- b, < n, for any

i=12,---,m and a}, < n,_, whenever b, = n,. (See (2.5).) Remark that

the degree of this standard monomial is v, +v,+ - - + v, Thus it

is concluded that the number of standard monomials of degree n in
Ngy Nyy =+ N\ 5

BR< "1 1 ) is

g "ot

c(n) —

— 3T (v1 + ny — 1){(01 + n, — 2)(02 +n, — 1)
romm V1+ Vot F UM =T n, — 1 n, — 2 n—1
+ <U1 + n, — 2)(”2 + n, — 2)} . _{(vm—l + Ny — 2)<Um + Ny — 1)
n—1 n —2 Rpeor — 2 Npw — 1

_|__ (vm—l + Ny — 2>(vm + Np-1 — 2)}(vm + n, — 1) .
Py — 1 Rpoy — 2 Np — 1

In particular we have that

n
5" v, +n,— N\/v,+n, —2 _
c;lzzll"'ﬂm - {( ! 0 )< ! ! ci('l-,:’n;f}?nm

v1=0 n, — 1 n, — 2
4 <01 + n, — 1)(U1 + n, — 2)0 “i]””) }.
n,— 1 n,—1 [T

Since P, ,...0,(D) = D nozo C....n A", this establishes the lemma.

As the corollary of this lemma we can write P, (2) as a rational

on1e N

function in A

COROLLARY 5.11.

Pn Ny 2 = ,&ﬂﬁltﬂy@
oz nn(A) g

where pnanl(z) = fnom(l)’

Dogreenn ) = Frons -1 Prngee i)+ Erons(DD s 1,2,00nn(A) € Z[A] if m = 2

and
d=n0+nm+2%1ni~2m+1.
i=1
(Remark that the integer d in this lemma is the Krull dimension of
the ring Bﬂ(n"l; G I’e n’"). See [3; Lemma 2.3]. And also remark that
1 "y fvm

all the coefficients of the polynomial p,,,,....,() are non-negative integers.)
Here by using (5.6) we know inductively that
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deg fupn,-1Pryn, = Min {ny, n, — 1} + min {n,, n,} — 2,
deg fnom—lpnmg-unm = min {no, n, — 1} + mln {nh n, — 1}
m—2
+ min{n,_, — 1, n,} + >, min{n, n,.} —m+1
iz2
if m = 3,
deg DPoronyeenm = deg gnonlpnl-l,ng,---,nm

= min {n, n, — 1} + min {n,,_, — 1, n,}

m—2
4+ > min{n, n,,,;} —m+1 if m= 2.
i=1

In particular we have the following lemma.

LemmaA 5.12. deg fun-1Pn,..
holds if and only if n, < n,.

< deg gy Pri-1nge.my, NG the equality

Ny =

Now let us prove Proposition 4.1. If m = 1, then we have already
proved it in Remark 5.9. So in the following we assume that m > 2.

Suppose that B R(”’“’ 1n1,. ~,1nm> is a Gorenstein ring. Then P,,,...,.(2)

satisfies the condition in Lemma 5.1, so in particular the polynomial
Prgns...nn(A) 1s monic. Thus Lemma 5.12 gives that n, > n, and g, P15
is also monic. By (5.7) this is equivalent to say that p,,_;n,...n, 1S monic
and either ny +1=n,>n, or n, =1, n, = n,. If we continue this pro-
cess, we can easily get one of the four conditions in Proposition 4.1.

Conversely assume that n, +1=n,=--- =n,_, = n, + 1. For the
convenience let us denote r = n, = n,, and

Sm(Z) = Pr,r+1 ..... r+1,r(2)
m+1
Tm(Z) = PT.‘.],,-.H ,,,,, r+1,r(2)
S—————

with S, =F,, and T, = F,,, ,.
Then by Lemma 5.10 we see that
[Sm(l)] _ [ G, (2, F,.(2) ][Sm-x(l)]
Tm(z) Gr+l,r+1(l), Fr+l,r(2) Tm—l(z)
R — [ Gr,r-x—l('z)’ Frr(z) ]m[O]
Gr+l’r+l(2)> Fr+l,r(1) 1
Thus by (5.8) we have an equality;

[l =G S a2l 1]
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Comparing these equalities we easily conclude that

S,.(1/2) = —2""S,(2).

Hence BR<r’ r+1,.-, ri*' L r) is Gorenstein by virtue of Lemma 5.1.

Next we assume that ny =landn, =n,= - - =n,_,=n, +1(=:r).
If r = 2, this case is included in the previous one, and there is nothing
to say. So we may take r > 2. Then using Lemma 4.3 (ii), we have that

BR<1’ ;’, IRERARE 1— 1) is Gorenstein if and only if BR<r —Lre,nr— 1)

m-1

is Gorenstein. Thus by the previous case it is concluded that

BR<1’ E’ e hLT i— 1) is always Gorenstein whenever r > 2.

The other cases in Proposition 4.1 can be treated as in the same
method using Lemma 4.3, and so we omit the detail.
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