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ON LACUNARY SERIES

TAKAFUMI MURAI

§ 1. Introduction

We are concerned with the behaviour of Fourier series in an interval
[0, 2π) and, in particular, interested in that of so-called lacunary series.
The spectrum of a Taylor series F(t) ~ ΣXo F(ή)eint is defined by Spec (F)
= {ne Z+ F(n) Φ 0}, where Z+ denotes the semi-group of positive integers.

Lacunary series are Taylor series whose spectra are sparse in 2T+.
Let us define more precisely lacunary series. Let h(x) be a positive in-
creasing function in an interval [1, + oo). We say that a Taylor series
F(t) is /ι-lacunary if there exists a number q > 1 such that, for n, me
Spec (F) (n > m), h(ri) > qh(m). We say that F(t) is L-lacunary if it is
(log x)-lacunary. We say that F(t) is Hadamard lacunary if it is x-lacunary.

According to J. P. Kahane [6], the history of lacunary series goes back
to Weierstrass's example, which is a continuous and nowhere differentia-
ble function: J]Γ=i ξn cos λnx (, where λ is an odd integer > 3 and ξ a
positive number such that (1 + 2>πj2)lλ < ξ <1) ([6]). The conception of
"Hadamard lacunary" comes from the following classical theorem: A
Taylor series X^=1 akz

nk satisfying limsup^co \ah\
1/7lk = 1 has {z; \z\ = 1} as

a natural boundary if there exists a number q > 1 such that, for any
k > 1, nk + 1 > qnk ([6]). Hadamard lacunary series are studied by many
authors and many interesting properties are known. Various series having
sparse spectra are also discussed by many authors but, as far as the
author knows, L-lacunary series are first introduced in this paper.

There are many interesting properties of lacunary series which are
reflection of properties of Steinhaus series ([14], p. 541) and so it is im-
portant to deal with lacunary series as series of almost independent random
variables. From this point of view, the theory of lacunary series may be
one of theories of sums of almost independent random variables.

The aim of this paper is to study the behaviour of Fourier series
having sufficiently sparse spectra since it seems that such series have
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various interesting and important properties as stated above. We may
expect that the behaviour of such series resembles that of Steinhaus series,
which we shall confirm later. On the other hand, we shall also see
some properties (of such series) which lose the meaning in Steinhaus
series. However we know that some interesting properties of Hadamard
lacunary series come from the fact that spectra of such series are
sparse, many technical difficulties and mathematically essential something
prevent us from doing parallel discussions with the probability theory and
from discovering new interesting probabilitistic properties. So we introduce
L-lacunary series. The conception of "L-lacunary" is nothing but a con-
crete representation of a vague and abstract conception of "sufficiently
sparse" and a statement of "an L-lacunary series satisfies (P)" only signifies
"a Fourier series having a sufficiently sparse spectrum satisfies (P)". How-
ever it is an interesting subject to study suitable conditions on spectra,
we shall not discuss this subject in this paper.

Now we explain the content of this paper. § 2 is a chapter prepared
for later applications. To avoid repeating the same discussion in the
course of the proof, main lemmas are gathered in § 3.

§ 4: As stated above, the theory of lacunary series is in deep con-
nection with the probability theory and so it is important to try to reorgan-
ize this theory from the point of view of the probability theory. We shall
begin with the discussion on the 0-1 law. We shall also try to give some
mathematical answer to the question why L-lacunary series behave like
sums of independent random variables. To do this, we shall introduce
the conception of "pseudo-independent", which is usual in the probability
theory, and show that L-lacunary series are pseudo-independent. We shall
see that Hadamard lacunary series are not generally pseudo-independent,
(which attracts us) and which suggests that more deep investigations are
necessary. This chapter is, in fact, incomplete and the author hopes to
return to this subject at some time ([6], [16]).

§ 5: This is a main chapter. We shall study the behaviour of partial
sums of L-lacunary series and shall show that simple conditions on coef-
ficients determine the transience and the recurrence of L-lacunary series
as seen in the probability theory. In 5.4, we shall show that, by our
results on L-lacunary series, we can judge whether a given Steinhaus
series is recurrent or transient. Even our results on Steinhaus series are
new. ([7], [9])
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§6: However we study, in §5, the behaviour of L-lacunary series
except sets of measure zero, the study of thin sets remains. We shall
show that the volume of sets where L-lacunary series converge is simply
determined. ([3], [9])

§7: The spectrum Spec (/) of an analytic function f(z) in the open
unit disk D is defined analogously as above. Then /ι-lacunary analytic
functions are also defined. The study of lacunary analytic functions is
classical. In this area, the following fact, which is called the Picard
property of lacunary analytic functions, is well-known: There exists a
positive number q (= about 100) such that an analytic function f(z) attains
every complex number infinitely often in D if ΣSΓ=0|/(ft)l = + 0 0 a n ^ if,
for any n, me Spec (/) (n > m), n > qm. This fact shows that the value-
distribution of lacunary analytic functions is, in a sense, uniform but this
is not sufficient to know the quantitative uniformity of the behaviour of
such functions.

There is a quantity δ, which is called the deficiency, as a quantitative
representation of the value-distribution. The deficiency δ( ) = δ( , /) is a
mapping associated with a given function f(z) from the complex plane C
to an interval [0, 1] and this plays an important role in the theory of the
value-distribution. We remark that if δ(a, f) = 0, then f(z) attains a infi-
nitely often in D.

The above fact suggests that the deficiency δ(-,f) of a lacunary
analytic function f(z) vanishes for all complex number. To check this
fact, which may be called the Nevanlinna property of lacunary analytic
functions, is to reconfirm that the value-distribution of such functions
is uniform in the sense of the deficiency. We shall show the Nevanlinna
property of L-lacunary analytic functions. ([5], [11], [18])

§8: In this section, we shall study more in detail ranges and cluster
sets of L-lacunary analytic functions. Let f(z) be an analytic function in
D and U a subset of D. The range of f(z) in U is defined by R(U f) =
{aeC; #{ze U;f(z) = a} = +oo}, where *{•} denotes the cardinal number
of {•}. It is too difficult to study ranges of L-lacunary analytic functions
in arbitrarily given subsets. We shall choose U suitably and shall show
that simple conditions on coefficients give information on R(U; •)•

However we only discuss, in § 5, the behaviour of partial sums of L-
lacunary series, it is also interesting to study the behaviour of sums of
such series by the Abel mean. This is to study the radial behaviour of
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L-lacunary analytic functions. We shall discuss radial cluster sets. ([7],

[12])

At last, the author would like to express the deep gratitude to Pro-

fessor M. Itό for his encouragements.

§ 2. Preliminaries

2.1. Fourier series

An interval [0, 2π) is identified with the unit circle T in the complex

plane C by a mapping t e [0, 2π) -> eu e T. A topology on this interval is

induced from J. The distance between two elements s, t is minfls — t\,

2π — \s — t\}. We say that a subset U of [0, 2π) is an interval if the image

eίU of U is an interval in T. We denote by "m" the 1-dimensional Lebesgue

measure.

Let Z denote the group of integers. For a sequence (cn)nez of complex

numbers, we consider a correspondence F(t): t -» (cne
ivt)neZ and say that

F(t) is a (formal) Fourier series. We write F(n) = cn (ne Z) and F(t) ~

ΣnezF(ή)eίnt. If lim^*, Σl\n\^NF(n)eίnt exists almost everywhere, we write

F(t) = Σnez F(n)eίnt. A(0, 2π) denotes the totality of Fourier series F(t)

satisfying Σnez\F(ri)\<l +oo and L2(0, 2π) denotes the totality of Fourier

series F(t) satisfying Σmez\F(n)\2 < + oo.

For a Fourier series F(f), we put:

/Spec (F) = {neZ - {0}; F(n) Φ 0}

NF = (the cardinal number of Spec (F)) ( < +oo)

" deg (F) = sup {|Λ| τι e Spec (F) U {0}} ( < + oo)

v(F) = sup {\F(ή)\; n e Spec (F)} ( < + oo) .

We say that a Fourier series F(ί) is a (formal) Taylor series, if Spec (F)

is a subset of the semi-group of positive integers Z + . For a Taylor series

F(t), we denote by no(F) = 0 and by rcfc(F) the fe-th integer in Spec (F).

We write simply nk = nk(F) (k > 0) when no ambiguity can arise. We

also write F(k) = F(nk) (k > 0) and F(t) - Σ ? = o F(k)eίnk\ For a Taylor

series F(ί) and a positive integer m, we put:

(Fm(t) =

( 2 ) Φn; F) = (Σ
\k — 1

( \l/2

ΣjF(k)ή (< +
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We say that a Fourier series F(t) is a polynomial, if NF < + oo and

that F(t) is a Taylor polynomial, if JV*. < +00 and Spec (F) (Z Z\

Let f(z) be an analytic function in the open unit disk D. Putting

f(ή) = l/2τr Γ f(eul2)2ne-intdt (n > 0), we have f(z) = Σn-of(n)zn. Using
Jo

a Taylor series `Σ^^f{n)eint, we define analogously: Spec (/), Nf, deg(/),

»(/), /**(/), f(k), fm(z\ s(m;f), w(m;f).
2.2. Lacunary series

Let h(x) be a non-negative and strictly increasing function in an

interval [1, +00). We say that a subset E oΐ Z+ is /i-lacunary if there

exists a number q > 1 such that, for any rc, me E (n`> m), h(ή) > qh(m).

For example, Z+ itself is an eMacunary set. The following four propo-

sitions evidently hold.

PROPOSITION 1. Union of an h-lacunary set and a finite set is h-

lacunary.

PROPOSITION 2. Let a be a positive number. Then a set is h-lacunary

if and only if it is ha-lacunary.

PROPOSITION 3. Suppose that h{x) is continuously differentiable and

that linL,^ h/(x)lh(x) = 0. For an h-lacunary set E and a positive number

a, there exists a positive number β such that, for any γ > β, an interval

[γ, γ + a] contains at most one element of E. On the other hand, there

exists an infinite h-lacunary set F such that E U F is h-lacunary.

PROPOSITION 4. An hrlacunary set is h2-lacunary if hj(x) (j — 1, 2) are

continuously differentiable and h'^jh^x) < h'2(x)lh2{x).

A strictly increasing sequence E in Z+ is Λ-lacunary if it is an h-

lacunary set as a subset of Z+ . A Taylor series F(t) is /ι-lacunary if

Spec (F) is /ι-lacunary. An analytic function f(z) in D is /ι-lacunary if

Spec (/) is Λ-lacunary. In this paper, we shall mainly discuss (log x)-

lacunary series. A (log x)-lacunary series is called L-lacunary. An x-

lacunary series is called Hadamard lacunary. Proposition 4 shows that

an L-lacunary series is Hadamard lacunary.

For an L-lacunary sequence E = {nk)^x (iV< +00 or N = +co) in Z+,

set

~ιγE(jn) = Σi nlλ Σ ne, γE(m) - J ] n~k

(n0 = 0) (1 < m < N if N < + 00 m > 1 if N = + 00) .
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For a Taylor polynomial Q(t), we write

( 4 ) γ(m; Q) = γSpecm(m), f(m; Q) = fSpec iQ)(m) (1 < m < NQ) .

For an (infinite) L-lacunary series E — (nk)k=:1 in Z+, set

m - l oo

( 5) r^fa) = Σ (njnmy + Σ (»»/»*)' (n0 = 0, j = 1, 2).

LEMMA 5. Let E = {n^^ be an L-lacunary series. Then there exist
two numbers q(E) > 1 and Θ(E) > 0 such that, for any m > 1,

flog nm+1 > q(E) log nn9 n^ < Θ{E) exp (-q(E)n)

(6) \γE(m) < θ(E)nϊ+mιB\ fE(m) < θ(E)n~J
[γEJ(m) < θ(E)m~2 (j - 1, 2) .

Proof. Since E is L-lacunary, there exists a number q > 1 such that
log nk+1 > q log nk (, that is, nk+ιjn% >ί)(k> 1). Then there exist two num-
bers θ1 > 0 and 0 < θ2 < 1 depending only on q such that ni1 <θx exp (—g*)
and nklnk+1 < θ2 (k> 1). We have, for m > 1,

Σ K-iK)Σ(^K-i) < Σ ^ 1 + 1 / 9 Σ

A 1 θ £ °

and

fE(m) == n~l f] njnk < n^1 Σ θi = -

Since

m - l

γE>j(m) = (nm_Jnm)3Σ (^J^m-i)j + (njnm+ί)

Jnmy + (njnm^)} < n
1 — ^

< -γ^jθla-1/eι) exp {- i(l - l/g)ςm} (j = 1, 2) ,
1 — 02

there exists a positive number ^3 depending only on q such that, for

1, r^,X^) < 3̂/n-2 (j = 1, 2). Put 9(JS) = g and
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Then (6) holds. This completes the proof.

2.3. Bessel functions

Bessel functions of order 0 and 1 in an interval [0, + oo) are defined

by

J£x) = — Γ cos (x sin t - vt)dt (v = 0, 1) .
π Jo

Then:

( i ) | Jv(x)| < 1 (v = 0, 1)

( i i ) 1 - fx2 < J0(x) < 1 - |x 2 (0 < x < 1)

(iii) \J0(x)\< Jlλ
y π x

(iv) Jx{x)lx > i (0 < x < 1)

( v ) Γ J0(xr)rdr - J,(x)/x
Jo

(vi) Jo(ξ)Jo(y) = — f* JoWξ2 + yf - ~2ξη cos t)dt (f, η > 0)
2π Jo

(vii) Γ J0(ξr)e-*'"rdr = J-e~ξ2/^ (£, 9 > 0) .
Jo 2η

Elementary calculus gives (i), (ii) and (iv). The formulas (v), (vi) and

(vii) are well-known and seen in [15]. The inequality (iii) is not evident.

For the proof, we use HankeΓs formula ([15], p. 74):

π x

where

Jo

2

dr

and H(

Q

2)(x) = H^(x). We have

and hence (iii) holds.

For a finite sequence Ξ = (ck)%=1 of complex numbers, we define
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( 7 ) J(z; Ξ) = Π Jo(\c«z\) •
Jc = l

2.4. Fourier transform

For a Borel measure μ in C having finite total mass, the Fourier

transform of μ is defined by μ(z) = e~ίBezwdμ(w), where "Rezw" denotes
J c

the real part of zw. (We shall denote by Im X the imaginary part of X.)

Let χ(z) denote the indicator function of D, that is, χ(z) = 1 (z e D)

and χ(z) = 0 (* e />c) Put J = χ*χ*χ, χ,(z) = χ ( ^ ) and λv(z) = ^ / 7 ) (57 > 0),

where "*" denotes the convolution in C. Then we have:

(viii) 0 < ^ ( z ) < τ r 2

( ix ) τr2/64 χv/4(z) < λv(z) < π2χSv(z)

( x ) β(*)|^*Y
( x i ) i,(e)

(xii) ^ )

Elementary calculus gives (viii) and (ix).

( x ) : Since λ(z) — χ(z)3 and χ(0) = π, we have

(xi): Since

χ(z) - 2^ Γ J0(\z\r)r dr -
Jo

we have

(xii): By (iv), we have, for \z\ < I/37,

λv{z) = χ(ηzYyf > (2ττ)34-^2 > (2ττ)310-2^2 .

LEMMA 6. For a polynomial Q(t) and a Borel set U in [0, 2π), set

( 8) Φ[U; Q](z) - f exp {-ί Re zQ(t)}dt.
J U

Then we have

( 9 ) ί λη(Q{t))dt = (2^)-2 ί ^(z)Φ[t/; Q](«)(fa(^) ,
J C7 J C

where da denotes the 2-dimensional Lebesgue measure.

Proof. Without loss of generality, we may assume that η — 1. For
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a function g(z) in C, we write g(z) = g(—2). Now let us define a Borel

measure μUtQ in C by: for every Borel set A in C, set

= m({teU;Q(t)eA}).

Note that fiu>Q(z) = Φ[t/; Q](z). We easily see that χ^χi is square dσ-

integrable. Since the support of μϋiQ is compact, χ^μu>q is also square

dσ-integrable. By ParsevaΓs formula, we have

Hence

f
J u

f
J c

2.5. Hausdorff dimensions

To discuss thin sets in [0, 2τr), we introduce Hausdorff dimensions. Let

0 < α: < 1, η > 0 and U a Borel set in [0, 2π). We consider all coverings

of U with a countable number of open intervals (av, βv) satisfying 0 < av

< βv < 2π and βv - av < η\ and define Λl(U) = inf Σ (βv - av)
a for all such

coverings. Since Λv

a( U) is increasing when η [ 0, the limit Λa{ U) = lim^_0 Λ
η

a{ U)

( < +00) exists and it is the ^-dimensional Hausdorff measure. The Haus-

dorff dimension of U is defined by dim (U) = sup {a; 0 < a < 1, Λa(U) > 0}.

We see that the 1-dimensional Hausdorff measure is the 1-dimensional

Lebesgue measure and that the Haudorff dimension of a countable set is

0. We also note that, for a Borel set U satisfying 0 < dim (£7) < 1, Λa(U)

= +00 and Aβ(U) = 0 as long a s α < dim(C7) < 0. (See [3].)

LEMMA 7. Lei k0 be a positive integer, E — ( f̂c)Γ=i an L-lacunary

series, (λk)%=1 a decreasing sequence of positive numbers satisfying λγ < 1

and l im^^ (log l/ΛA)/log nk = 0 αzxcί let (Uk)κ=ko be a sequence of closed sets

in [0, 2π) satisfying the following four conditions:

(10) Ut ZD Uk+ι
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(11) Uk is a finite union of closed intervals. (Let us write Uk = (J?-*ί Γ*,j>

where γktj's are mutually disjoint closed intervals.)

(12) m(γkJ) = ^ n ί 1 (j = 1,

(13) ί b r eueo' l<j<p(k), YH,I — Uk+1 is a union of open intervals of

length (2π — λk+ί)nκli and at most two semi-open intervals of length

< 2πnklλ.

Then, with U= ΠΓ-*0 Ut9 dim(U) = 1.

Proof. For a given 0 < a < 1, we shall show that ΛJJJ) = +co. Put

δ = 1/(1 - α) and

(14) 0α = max {32;r, (8ττ)1/(1-β)(l - 2'1+α)-1/(1"α)} .

By (6) and limfe_oo log l/Λjlog nk = 0, there exists an integer Λβ > k0 such

that, for fe > ftβ,

(15)

/lί1 > 8ττ

Set g(Λ,i) = *{r* + i,»; r* + i,v ^ r/c,^ ^ = I, -,P(k + I)} (/^> Aβ), w h e r e #{ }

d e n o t e s t h e c a r d i n a l n u m b e r of {•}. T h e n

λhn~k

ι = m(γk>j) < q(kj)λk+1ritli + (q(k,j) - ΐ)(2π - 4 n K " ί i

and hence, from (15),

(16) q(kj) > (2π)-1λknk+1nk

1 - 2 > {Aπ)~ιλknκ^ni1 .

We have also

P(k-i)

P(k) = Σ Q(k- 1, j) > (4*)-%-inkniilP(k - 1)
. 7 = 1

(17) > > (4π)- f c + f c ^_ r .^βΛfc<p(feΛ)

>(4π)-kλk.- λ1nkn£ (k>ka).

For the proof of Λa(U) = +oo, we need the estimation of Aη

a

k(Uκ) from

below, where ka < k < K and % = ΛTIJΓ1. For the estimation, we fix for

a while three integers k, j and K (ka < k < K, 1 < j < p(k)).
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For every γμtV (k < μ < K, 1 < v <p{μ)), we denote by fμiV the smallest

closed interval which contains U {γκ,t\ ϊκ,t c: γμiV9 £ = 1, -,p(K)}. Put

Vμ = U {fμ,v; γμ,v c γkJ, v — 1, ?Jp(μ)}. We shall inductively show that

(18) Λl\Vμ) = m(γkfjy (ft < μ < K) .

Since Vfc = ffc)J , (18) holds for μ -= k. Suppose that, for k < μ < K,

(18) holds. Since Vμ+1 is a finite union of closed intervals, there exists a

finite covering {Λ}f=i of Vμ+1 by closed intervals of length < ηk such that

(19) ΛHVμ+1) = Σm(AY •

Then zL Π Δτ, = 0 (τ φ τ') and

( x ) > min{m(f,,+!,„); y = 1, ,p(μ + 1)}
(20)

> λμ^n-μ\1 - Aπ Σi n t > 2-1λμ+1n;1

+1 ,

according to (15). For the proof of (18), it is sufficient to show that {Λjw

is a covering of Vμ, since

m(γkj" > Λ™(Vμ+i) = Σ m{ΔtY > Λl*(Vμ) = m{γt<1Y .

The following three cases are possible:

(a) {JJfLi is a covering of Vμ.

(b) There exist J r, fμiVX and γμ^ such that Δτ Π fμ,Vi φ 0 (̂  = 1, 2) and

(c) There exist a subset {4Jm'=i of {^Jf=i and γμ^ such that U {fμ+i,vl

Suppose that (b) exists and let Δτ the interval in (b). Since λμ < 1,

m(Δτ) > (2π — λμ)nμ

λ > πn'1. Let Δτ, be an adjacent interval. Then, de-

noting by Y the open interval which connects Δτ and Δτ,, we have, from

(15),

m(γ') < (2π - V i K ί i + 47Γ Σ nj1 < Aπn l, .

Note that ξa + (1 - ξ - ε)a > 1 as long as 0 < ξ < 1/2, 0 < ε < 1/4 and f̂ "1

> (1 — 2~1 + α)~1. Replacing zίΓ by Δτ. if necessary, we may assume that

m{Δτ) < m(Δτ). Putting ξ = m{Δτ,)m{Δτ U / U ̂ .O"1 and ε - m(γ')m(Δτ U r' U

J,/)"1, we have, from (15),

ε < m{γr)m{Δτ)~1 < 4πn;l1π~1nμ = 4 ^ 1 ^ < 1/4
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a n d

ξ'e'1 = m(Δτ U / U Δτ,)
ι-am(Δτ,ym{γ')-1

> m(Δτγ-«m(Δτ,ym{γ')-` > π`'`n `^-λ ^n tiiπy`n^
= 2->-°π-aλ;+1n

1

μ-
ain;1+a > (1 - 2 " 1 - ) " 1 ,

and hence

{m(Δτ,y + m(ΔτY}m(Δτ U f U ΔJ- = ξa + (1 - ξ - ε)« > 1 ,

that is, m(Δτ,y + m(ΔT)
a > m(Δτ U / U Δτ)\ which contradicts (19).

Suppose that (c) exists and let {iΓm}Γ=i be the set in (c). Then, for

all J r m, *{fμ+ltV; γμ+hv C ΔJ < ΘJ;δ

+1 (δ = 1/(1 - a)). If this does not hold,

there exists Δτm, such that *{γμ+1y, fμ+ιyV c Δτm) > ^ α ^ίi . Let Jrm/, be an ad-

jacent interval and y" the open interval which connects Δτm, and JΓm,,.

Then m(γ") < 4πn;lx. Put ξ = tcm(Δτm, U r7/ U J J " 1 and ε = m(r")m(JTm, U

/ / ; U 4 J " 1 , where Λ: = min {/n(Jrm,), /n(Jrm//)}. By (14), we have

ε < Aπn l^λ Un^θ:1!8^ < Zπθ:1 < 1/4

and

rε " 1 > m(Δτmy-a/cam(γ")-1

and hence m{ΔTm)a + m(Δτm,)a > m(Jrm, U ̂ 7/ U Δτm,)% which contradicts (19).

Hence, for all Δτm, *{fμ+1y, γμ+hv c J r J < <9J;+i. Let U {?μ+i,v; ?μ+i,v c f ^ J

c: Um-i^rm. Then we have N'ΘJ^ > q(μ,v3) > (4π:)"UAln/l+17i;1 and hence

AT7 > (4τr)-1β;1^:iιι#,+17i;1. By (15), we have

™\Άτj > iV z Λ ^ + X ^ + I > z 7Γ c/α z^+i nμ+1nμΣ
m-l

which contradicts (19). This shows that (18) holds for μ + 1. Consequently,

(18) holds for μ = k, , K.

In particular, Λη

a

k(Vκ) = m(fktj)
a. Hence we have, from (17),

Σ
P ( )

Σ m(hJa > P(k) min {m(fkιJ)r;j = 1, , p(k)}

> (4π)-% •\nkniiX'l%nl{= 2-"n£A.(k), say) .

Since the last term is independent of K, we have Af(U) = limίΓ^w Λl"(Uκ)
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> 2~an^Aa(k) (k > ka). Hence, to prove Λa(U) = +00, it is sufficient to

show that linifc^ log Aa(k) = +00.

First we note that

Jc

log Aa(k) = (1 — a) log nk — a log l/λk — Σ log Vh — k log 4π

> (1 - a)log nk-2Σ log 1/^ - 10A (Jfe > ka) .

Let us remember the notation q(E) in Lemma 5. We have lognfc + 1

> q(E)lognk (k > 1). Set εa>E = ((1 - a)l4){q(E) - ϊ)/q(E). Since

limfĉ e, log llλjtllog nk = 0, there exists a positive number #4 such that

log l/λk < εafE log nk + 04 (A > 1). We have, for any A > έβ,

2 Σ log l/^; < 2εα,^ Σ log 71, + 2 ^

Jc ^

< 2εα E Σ q(E)~k + j log 72̂  + 2ΘJι < log nk + 2ΘJι ,
y=i 2

and hence

log Aσ(Λ) > - ί ^ - log ^fc - 2(04 + 5)A .

Since limfĉ oo log nk\k = +oo ? we have l im,^ log Aa(k) = +00. This com-

pletes the proof.

§3. Main lemmas

In this chapter, we prepare some lemmas in which Lemma 18, 20 and

Corollary 22 will play important roles throughout this paper.

LEMMA 8. ([19], p. 216 Lemma (8.26)) Let (Ω, SS, &) he a probability

space and X(ω) a non-negative Borel function in Ω. Then, for any 0 < η

ei3;I(α))>Jl(^(α))])
(21) u J ] )

COROLLARY 9. Let X(t) be a non-negative Borel function in [0, 2π) and

U a Borel set in [0, 2π). Then

(22) m({t e U; X(t) > 0}) > (J^ X(t)dt J^ X(tfdt
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LEMMA 10. Let Q(t) be a non-constant Taylor polynomial. Then, for

any p > 0, a set {te [0, 2π); \Q(i)\ < p} is a finite union of at most deg (Q)

open intervals.

Proof Set iV=deg(Q). It is evident that a set U= {t e [0,2π);

\Q(t)\<p} = {t e [0, 2π); \Q(t)\2 < p2} is a finite union of open intervals. Let

us write U = \Jμ=1 (aμ, βμ) and Uc = \Jμ=1 [a'μ, β'μ], where (aμ, βμ), [aμ9 β'μ]

(1 < μ < v) are mutually disjoint intervals. There exist tμ e (aμ, βμ)9 tμ e

[<, β'μ] (l<μ<v) such that dldt \Q(tμ)\2 = <Hdt-\Q{Qf = 0. Since \Q(t)f is

a real-valued polynomial of degree < N, we have #{ί e [0, 2π); d/dt'\Q(t)\2 =

0} < 2N ([2], p. 192) and hence 2v < 2N, that is, v < N.

LEMMA 11. Let n be a positive integer, y > 0 and let P(t) an infinitely

differentiate real-valued function in a neighborhood of a closed interval

[a, β]. Suppose that, for any t e [a, β], \P(n)(t)\ > y. Then

(23) m({t e [a, β] \P(t)\ < p}) < 4y/»y-v» (p > 0 ) .

Proof We show inductively (23). For a fixed p > 0, set M(a\ βf) =

m({t e W, βf] \P(t)\ < p}). Since P™(t) Φθ(te [a, β]), M(γ, γ) = 0 (γ e [a, β\).

In the case of n = 1, we have {te [a, β]; \P(t)\ < p] c [?Ό - /̂y, Γo + ply],

where |P( r o ) | = min^^^ \P(t)\, and hence M(α:, /3) < 2p\y < 4py~\

Suppose that, for n — 1, (23) holds. We show that, for n, (23) holds.

Without loss of generality, we may assume that P(n)(t) > y (te [a, β]). Then

P (w~υ(ί) is increasing. Let γ0 (a < γ0 < β) be a number satisfying |P ( w"υ(^0)i

= m i n ^ ^ |P ( 7 l~υ(ί)|. We choose two numbers γ1 and γ2 so that γx < γ0 <

r 2 and that 4Λ-y'<»-V 1 / ( n-Ίro - nl"1/(w~1) = Iro - ni (J = 1. 2). Set r ί =

max {a:, γx) and ^ = min{/3, ^2}. In the case of a < ^ί, we have P{n~l)(t) <

—y(ϊo — ΐί) o n k ? rί] By the assumption,

M(a,γί) < 4»-y/(»-i)y-V(n-i)(ro _ r/)-i/(»-D β

In the case of a = γ[, this inequality evidently holds since M(a, γ{) = 0.

On the other hand, M(γ[, γ0) <γ0 — γ[<γQ — γx. Since γ0 — yx —

M(a, To) = M(a, γ[) + M(γ[, γQ) < 2.#"

Analogously, M(γ0, β) < 2 4(n-1)2/npί/ny-ί/n. Hence

M{a, β) = M(a, γ0) + M(Γo, β) < 4n

Elementary calculus gives the following
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LEMMA 12. Let φ(t) and ψ(t) be two continuously differentiate func-

tions in [0, 2π). Then, for any positive integer n and any interval I in [0, 2π),

— ί φ(t)ψ(nt)dt - — [ φ(t)dt— V ψ(t)dt
2π Ji 2π ii 2π U

(24)
sup \φ'(t)\ sup \ψ(t)\ + — sup |jί(*)| sup \ψ'(t)\ .

n ίe[o,2ff) teio,2π) n ίe[o,2ff) £e[o,2τr)

LEMMA 13. Let Ξ = {uk)*=1 be a decreasing sequence of positive numbers

such that K > 64 and ut < 1/4.||5Ί| = (l/4)(Σf=i cl)1/2. Then

(25) v(V; Ξ) = f \J(z; Ξ)\dσ{z) < 106^-2||^i|-4 (η > 0)
J V<\Z\

and

(26) v(Ξ) = ί \J(z; Ξ)\dσ(z) < IO7\\Ξ\\-2 .
Jc

Proof. We first show (25). Putting dk = ^H^ίl" 1 (1 < k < K) and Ξf

= (c?fe)f=1, we have υ(η; Ξ) = H^H" 2 ^!!^! ! ; 5Ό and hence it is sufficient to

show that

(27) (2π)-`v(v'; Ξ') = Γ | J(r; Ξ')\r dr < 10Y"2 (7/ > 0) .

Let us note that Σf=i rf* = 1 and Σ L i ̂ 2 < 8dx

2 < 8ul\\Ξ||~2 < 1/2. Set

j = min{^;Σ^= 9d^ > 1/4}. First suppose that djι < η\ Since Ξ' is de-

creasing, we have, for 1 < k < 8,

j _ 8 <=9 j — 8 \«=9 / 2(j — 8) 2 ;

and hence

(2π)-`υ{η';Ξ') < Γ fl l^o(^r)|r dr < (A)'" fl d,τ1/2 Γ r'^d

ή1) '" ή <:•'-,'-"- < ̂ r i - ^ ) " Π * « ¥ -^ ( ) ή <:, < ̂ r i ) Π
j — 4 \ 7Γ / *=i 7 — 4 \ 7Γ / Λ=I

\ Γ / /7 — 4

1

log τr/2
which shows that (27) holds in the case of dj1 < η'. Next suppose that
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dj1 > ηf. Since

K 7-1 q i

Σ dl = l - Σ di > i - 4 = 4-'
λ; = j Λ = l 4 4

we have

ΓΊ/dj K (`l/dj K

U \J0(dkr)\r dr < \ γ\\J0(dkr)\r dr
J η' k = l J η' k = j

s ΓA ί1 - }d|r')'- * s Γ e x p (- Ϊ s d ί r !) r *
* -16 exp ( - -k

By the same method as above, we have

Γ fl \Jo(dtr)\r dr<Γ f\ \J0(dkr)\rdr < 104(l/d,)-2 .
Jl/dj fc = l Jl/dj fc = l

Hence

fl/dj f`°°

(2π)"1 virf B'`) = 1 + I < 10γ~2 + 104(l/c?J )~
2 < 10Y~2 ,

J ?' J l/dy

which shows that (27) holds in the case of dj1 > ?/. Consequently, we

have (25).

Inequality (26) is an immediate result of (25) since

υ(Ξ) = 2π \J(r; Ξ)\rdr
Jo
/ΊI5ΊI- 1

< 2τr r d r + 106||5Ί|-2 < 107

Jo
LEMMA 14. For a sequence Ξ = (uk)f=1 (K> 5) of positive numbers, we

define

u2(i) = (u\ + u\ - 2u2u, cos t)1/2 (t e [0, 2π))

and

uk(tl9 -, ίΛ-i) = (u\ + uk^{tu , tk_2)
2 - 2ukuk_1(t1, , tk_2) cos 4_!)1/2

(ί, e [0, 2/r) (1 <ί j < k - 1), 3 < k < K) .

(28) m^.^ίft, , tκ_:) e [0, 2*)*"1; M f̂t, , ^ . , ) 2 > |||^||2}) >

where mκ_λ denotes the (K — ϊ)-dimensίonal Lebesgue measure.
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Proof, We shall use Lemma 8 for Ω = (0, 2π)κ~\ X(ω) = uκ(tu , ί ^ )

(ω = (t19 , ί*^)) and η = 1/2. We have

(2πYκ^ Γ . . . Γi^fo, . ., k . O 2 ^ dtκ_λ
Jo Jo

= u\ + (2τr)-^2 Γ Γ u ^ f e , , tκ^dk • • dtκ_2 = . . . = IÎ H2 .
Jo Jo

Since

U κ ( t l 9 •-, t κ _ y = { ^ + W j Γ - i f o , , ^ - 2 ) 2 - 2 u κ U κ _ 1 { t ι , '•-, t κ _ 2 ) C O S ^ _ , } 2

+ 2u\uκ_x{t^ ` ' , t κ _ 2 ) 2 - ±u*κuκ_x(tly >,tκ_2) cos ^ ^

- luκuκ_x(tu - - >,tκ-2y cos tκ_λ ,

we have

Γ2JΓ

(2π)-κ+` • •
Jo

= z4 + (2τr)-*+2 Γ Γux-M, • • , ^ . ^ d ί , rf^_2
Jo Jo

K + 2 ΓK (2π

Jo Jo

K-l Γ>2π Γ2π

== u4

K + 4u2

KJ] u\ + (2π)~κ+2 uκ_x(tu - , tz^Yd^
k=i Jo Jo

*: ir it

= y z/4 + 4 y u2 J~` u2- <C 2\\Ξ\\4

Hence

j * •> ̂ - i ) ^ [0> 2τr)A"1; z/^ft, , tκ_ΐf > —-||iff

X |(2ττ)-^+1 ^ J ^ M Λ , , ^-i)4^i rf^-i} > -ί

LEMMA 15. Let Ξ = (wfe)f=1 6e ί/ie sequence in Lemma 13.

(29) vQ(Ξ) = ί J(2;; 5 ) d φ ) > lO"1!^!!"2 .
Jc

Proof. For a positive number 37 > 0, set υη(Ξ) = ί J(^;
Jc

By (vi) and (vii), we have
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v,(Ξ) = (2π)-*+2 Γ ... Γrfί, dtκ_, Γ J0(uκ(tu • • , tκ.x)r)e-``r`rdr
Jo Jo Jo

( = (2π)'κ+2 Γ • Γ ifexp ( - ifu^ •' **-*)*> • • • d t « - ) •

Since J(z; Ξ) is dσ-integrable,

vo(Ξ) = l i m vη(Ξ) > 2(2π)-κ+1 Γ ••• Γ u κ ( t u •••, t κ _ x y * d t , • • • d t κ ^ .
?->0 Jo Jo

Putt ing Ω' - {(tl9 - -9tκ^) e [0, 2τr)^-1; M^ft, . . . , tκ_,)2 > 1/2- | |5Ί|-2}, we have,

from Lemma 14, vo(Ξ) > (2π)-κ+ί\\Ξ\\-2mκ_ί(Ω/) > l/δ ll^ll"2 > 10"1 il^H"2.

LEMMA 16. Let Q(i) be a Taylor polynomial such that NQ > 64 and

< w(l; Q) and let J a positive integer such that J < NQ — 63 and

< w(J; Q). Then, for any η > 0, M > 0 and any interval I in [0, 2π),

j
( 3 0 ) < 10*{m(I)v>w(J; Q)"2 + (m(7)r(J; Q) + γ(J;

Proof. We write simply N = JVg, n t = nk(Q), Φk(z) = Φ[I; Qk](z) (0 <

k < N) and Φ(z) — ΦN{z). Using Lemma 6, we write L = j Λ,(Q(ί)) cίί in

the following form:

L = (2π)"2 f λ,(z)Φ(z)dσ{z)
J C

= (2π)-U\ + f ) = (2 )̂-2{L, + LJ .

Since \Φ(z)\ < m(I) and \λ,(z)\ < (2π)γι \z\~z ((xi)), we have

141 < /n(Z)(2^- 1 f |2|-3ciσ(2)
J ϋf2<|«|

< (2π)im(I)η-1M-2 <
Put 3 = (Q(k))ξ=j. By Lemma 12, we have, for J - 1 < A < N - 1,

_ L |^+ I(«) - Φk(z)J0(\Q(k + ϊ)z\)\

= — ί exp {- i Re zQk(i)} exp {- i Re ΞQ(A + l)eί?ZA+lί}ώ
2π J i

—[ exp {- ί Re 0Qfc(ί)}dί— Γ* exp {- ΐ Re ^Q(^ + ϊ)eu}dt
2π Ji 2π Jo
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< 2m{I)ni\1 sup
ίe[0,2;r) dt

exv{-iRezQk(t)}

^lλ sup |exp{— £
« e [ o 2 )

< { 2m(I)n-kl1 £\Q(j)\n,

and hence

sup |exp {- ί Re zQ{k + l)e"}|

sup

^ \Q(k

z\ ,

< \Φx(z) -

+ Σ \Φ Π
/

Π

i)z\)\

< 2πW{m(I)γ(J; Q) + f(J; Q)}v(Q) \z\

< 10s{m(I)γ(J; Q) + f(J; Q)}v(Q) \z\ .

Since [Φj^iz)} < m{I) and \λn(z)\ < π'rf < 10y ((x)), we have, from (32),

\λη(z)Φ{z)\dσ(z)

< lO2,?2 f {{Φj-XzWίz; Ξ)\ + lO%m(I)γ(J; Q) + γ(J; Q))v(Q) \z\}do{z)
J \Z\<M2

< 102m(I)η2 [ \J(z;Ξ)\ dσ(z)

; Q) + f(J; Q)}rfu(Q) f \z\ dσ{z)

\
Z\<M2

; Q) + f(J; Q)}v

2v(Q)M« .

Since N - J + 1 > 64 and 4^(Q) < w(J; Q), we have, from (23), v(Ξ)<

lO7!!^!!"2 = 107w(J; QY\ and hence

(33)
< lΰ»m(I)v

2w(J;

< W{m(I)v

2w(J;

2πl3Λ0%m(I)r(J; Q) + γ(J;

; Q) + γ(J; Q))η2v(Q)M*} .

Since L = (2π)~2{L1 + L2} < IO-^LJI + |L2|}, the required inequality (30)

follows from (31) and (33).

LEMMA 17. Let Q(t) be a non-constant Taylor polynomial. Let us write
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simply N = NQ. Then, for any 0 < η < |Q(JV)|/3, M > 0 and any interval

I in [0, 2π),

f UQ(t))dt
(34) J '

< W{m(I)v\Q(N)\-` + (m(I)r(N; Q) + f(N;

Proof. First we remark the following inequality:

1/2JΓ

where 0 < rj < p' and aeC. We use the notation L, Lt and L2 in the

preceding lemma. We have

(35) \L2\ < (2π)im(I)η-1M-2 < 1/2-

Set p = \Q(N)\, R(t) = Q(t) - Q(N)eίNt and Xt(s) = peu + R(t). We have

U = \ λη(z)Φ[I; R](z)J0(\pz\)dσ(z)
J C

= [ λη(z)dσ{z) [ dt— f27Γexp{- iRez(peίs + R(t))}ds
J c Ji 2π Jo

\(2π)Φl(0, 2π); Xt](z)dt

= 2π £ dt Jc;;(z)Φ[(O, ar); XJ^dσ^)

= (2^)3 f dt Γλv(Xt(s))ds = (2πγ ί dt-±- Pλ,(pέ» + R(t))ds

Ji Jo J/ 2π` Jo

< (2ττ)V ί dt±- Γχ3,(peu + -R(0)ds
Ji 2π Jo

< (2πy3π2rn(I)ηlp < 10«m(I)ηlp .

By (32), we have

|Φ[ί; Q](2) - Φ[I; R](z)Jo(\pz\)\ < 10%m(I)r(N; Q) + f(N; Q)}v(Q) \z\ .

Taking care of \Φ[I; R](z)\ < m(I) and \λ,(z)\ < l θ y , we have

| L , | < f ^(2)Φ[I;i?](2)Jo(|^|)dσ(0)

W{m(I)r(N; Q) + f(N; Q)}v(Q) ί \λ,(z)z\ dσ(z)
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<Ls+[ \Uz)Φ[I; R](z)J0(\pz\)\ dσ(z)

+ 2πlΆ-W{m(I)r(N; Q) + f(N; Q)}v

2v(Q)M«

< Wm{I)ηjp + ll2-Wm(I)η-ιM-2

+ 2πl3-W{m(I)γ(N; Q) + f(N; QMv(Q)M°

< W{m(I)vlp+ 1/2-milfr`M-* + [m(I)r(N; Q)+ f(N; Q)]γv(Q)M6} .

Since L< lO-'flL,! + \L2\}, the required inequality (34) follows from (35)

and (36).

LEMMA 18. Let Q(t) and R(ί) be two Taylor polynomials such that NQ

> 64, Ns > 64, 4v(Q) < w(l; Q) and 4v(R) < w(l; R) and let J, J' be two

positive integers such that J < NQ — 63, J' < NB — 63, 4v(Q) < w(J; Q) and

4ι>(R) < w(J'; R). Then, for any η, η', M, M' > 0 and any interval I in

[0, 2π),

( 3 7 ) < lV-°{m(I)v*w(J; QY* + (m(I) + ί)v\(Q)f(J; Q)M° +

X {η'2w(Jf; R)-2 + η%(R)r(J'; R)M'S + η'-`M''2}

+ 10`Yv(R)f(J'; R)M'6 deg (Q).

Proof. Set deg (Q) = W. Since λ, < π2χ3,, we have

L = ^UQmΛmW < π2 ̂ χ3n(Q(t))λr(R(t))dt = π2L' .

Since a set U = {t e [0, 2π); \Q(i)\ < 3̂ } is a finite union of at most W open

intervals, we can write U Π I = U]Ui Iμ (v <W + 1), where 7 '̂s are mutually

disjoint intervals. For a fixed 1 < μ < v, we estimate L'μ = λη>(R(t))dt.
J Iμ

Since J; < NR — 63 and 4y(i?) < w(J'; R), we have, from Lemma 16,

'; R)~2 + τ/2v(R)r(J';

+ lO8η/2v(R)f(J/;R)M'6 .

Let us remark that f(J; Q) < γ(J; Q). Since J < NQ - 63 and 4v(Q) <

w(J; Q), we have, from Lemma 16,

u[λ12η(Q{t))dt

; Q) + f(J; Q)](12vYv(Q)MQ
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< 1012{m(I)η2w(J; Q)'2 + (m(I) + l)η2v(Q)γ(J;

Note that τr2χ3, < 64/i12,. We have

L < π2L' = π2ΣLμ

< K2W±^m{I,){i2w{J'; R)'2 + η'\{R)γ{J' R)M'« + η'-`M"2}

Γ;R)M'e

+ 2π210*ηl2v(R)f(J' R)M'e deg (Q)

< 64-108 ί λn,(Q(t))dt{ηnw(J' R)-2 + η'2ι>{R)γ{J>'; R)M'6 + η'-`M'-

Γ;R)M'«deg(Q)

Q)"2 + (m(7)

X{η'2w(J'; i?)-2 + ηnv(R)γ(J'; R)M'

+ 10'Yv(R)f(J'; R)M" deg (Q) .

The following lemma is proved analogously as in the preceding lemma.

(Use Lemma 16 and 17.)

LEMMA 19. Let Q(t) be a Taylor polynomial such that NQ > 64 and

4v(Q) < w(l Q) and J a positive integer such that J < NQ — 63 and Av(Q)

< w(J; Q) and let R(t) be a non-constant Taylor polynomial. Then, for any

η, M, M' > 0, 0 < η' < \R(NΛ)\I3 and any interval I in [0, 2π),

( 3 g ) < 10"{m(I)rfw(J; Q)2 + (m(I) + l)η2v{Q)γ{J;

X {V'\R(NR)r + v'HR)r(Nn, R)M"

VΛ, R)M'° deg (Q) .

LEMMA 20. Let Q(t) be a Taylor polynomial such that NQ > 64, v(Q)

> 1 and 4v(Q) < ιv(l Q) and let J a positive integer such that J < NQ —

63 and 4v(Q) < w(J; Q). Then, for any 0 < η < v(Q), M>0 and any

interval I in [0, 2π),

^λv(Q(t))dt > lO-'

- 1 0 W J ) ^ l ; Q)-2{v(Q)w(l;

(39) + m(I)τf\Q(O)\w(l; Q)-2w(l; Q)-
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) ^ ( 1 ; QM1; QY2{u(Q)w(l; QYψ*

+ m(I)τfw(l; QY\v{Q)w{l; Q)*w{J; Q ) " l o p

+ (m(I) + ΐ)vXQ)r(J; Q)M° + m(I)η-`M-*] .

Proof. Set Φ(z) = Φ[I; Q](z) and ξ = v{QY`"w(l; Q)-*'\ Using Lemma

6, we express L = λη{Q{t))dt in the following form:
J I

L = (2π)-2 f l(z)Φ(z)dσ(z)
Jc '

= (2πy4[ + f + f ) = (2π)-2{L1 + R + L3} .

We have

(40) \L3\ < ί \l,(z)Φ(z)\ dσ(z) < WmWη-`M-* .

Writing Ξ = (Q(k))ΐSj, we have, from (32),

IΦ(*)| < m(I)J(z; Ξ) + W{m(I)r(J; Q) + γ(J;Q)}v{Q)\z\

< m(I)J(z; Ξ) + 103(m(7) + ΐ)v(Q)γ(J; Q)\z\ .

Since v(ξ,Ξ) < 106f"2 |i5Ί|-4 = 10sv(QY/5w(l; Qf"w{J; QY\ we have

\L2\ < \ \λη{z)\{m(I)\J{z; Ξ)\ + 103(m(7) + ΐ)v(Q)γ(J; Q) \z\}dσ(z)

<102m(/>?2 ί \J(z;Ξ)\dσ(z)
J ξ<\z\<M*

+ l)η\{Q)γ(J; Q) \ \z\ dσ(z)

; B) + 2τr/3 105(7n(I) + ΐ)rfv(Q)γ(l; Q)M6

; Q)M*\ .

Putting Ξ' = (Q(k))ξSu we have, from (32),

Φ(z) > m(I) exp {- i Re zQ(0)}J(z; Ξ') - 10>{m(I)r(l; Q) + f(l; Q)}P(Q) \Z\

> m(I)J(z; Ξ') - m(I) \Q(0)z\ - 10%m(I) + lMQ) r ( l ; Q)\z\.

Note that J(z; Ξ') > 0 (\z\ < 1MQ)) and rf < λη(z) < l θ γ (|z| < 1/η) ((x),

(xii)). Since ξ < l/v(Q) < l/rj, these inequalities hold in \z\ < ξ. We have

U > ί λ,(z){m(I)J{z; Ξ') - m(I) \Q(0)z\
J \z\<ξ

(42) - 103(m(7) + l)v(Q)r(l; Q) \z\}da(z)
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> m(I)rf [ J(z; Ξ')dσ(z)
J \z\<,ξ

- l O y { m t O IQ(0)I + lθ\m{l) + l)v(Q)γ{l;Q)}\ \z\ dσ(z)

> τn(I)yf{va(S') - v(ξ; Ξ')}

-2π/3 10Vr{m(J)|Q(0)| + 103(m(J) + l)v{Q)γ{l; Q)}

; Q)" 2 - 10s[m(I)rj2w(l

<1; QY2w{l; Q ) - "

Since L = (2π )-2{L, + L2 + L3} > l O " 2 ^ - |L2 | - |L3|}, the required inequality

(39) follows from (40), (41) and (42).

LEMMA 21. Lei F(i) be a Taylor series and W a positive integer such

that

(43) Y( W,F) = Σ W W + nV W>) | F(n) \ > | F( W) |/4 .

Then

(44) M ^ ) = m({ί 6 [0, 2π); \F(t)\ < p}) < lVpF,wP

1/I (0 < p < 1) ,

u /iere p F y W =

Proo/. Set P(i) = Re ί"(ί) and U={te [0, 2π); |sin Wt\ > 1/V2}. With-

out loss of generality, we may assume that F(W) > 0. We have

\P'(i)\ > F(W)W\sinWt\ - Σn\F(n)\ > F(W)W\sinWt\ - T(W, F)W
nφW

> F ( ^ ) ^ { | s i n Wt\ - 1/4} > {ί`(W)W.

Since U is a union of 2W intervals, let us write U = U ^ i Iμ> where Iμ

9s

are mutually disjoint intervals. For every 1 < μ < 2W, we have, from

Lemma 11,

m({t € /„; |P(ί)| < p}) < A{\F{W)WY`P <

and hence

m({te U; \P(t)\ < p}) < 2W16pFtWW~1p1/2 =

Note that Uc = {t e [0, 2π); |cos Wί| > 1/VT}. We have, for t e Uc,
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\P"(i)\ > F(W)Wί\cos Wt\ - Σ rtl^(»)l > F(W)W2|cos Wt\ - T(W, F)W2

nφW

> F(W)W2{\cosWt\ - 1/4} > \F(W)W2 .

Let us write Uc = UJτ=i K`> where Iμs are mutually disjoint intervals. For

every 1 < μ < 2W, we have, from Lemma 11,

m({teΓμ; \P(t)\ < p}) <

and hence

m({t e Uc; \P(t)\ < p}) < 2WS2pF>wW~1p1/2 = 64pFfWp1/2 .

Consequently,

MF(p) < m({t 6 [0, 2π); \P(t)\ < p})

= m({t e U; \P(t)\ < p}) + m({t e U°; \P(t)\ < p})

< 96pF,wp'/2 < 102pF,wP

1/2 .

COROLLARY 22. Let Q(i) be a Taylor polynomial such that

Then Mq{P) < WpQp`β (0 < p < 1), where pQ = pQtNq.

Proof. We write simply N = NQ and nk = nk(Q) (k > 0). We have

N, Q) = Σ(njnv + nl

< |Q(iV)/4 = |Q(

By Lemma 21, we have the required inequality.

§4. Subsequences of (eίnt)nGZ

An interval [0, 2π) is a probability space having a probability measure

m/2π. Then (eίnt)neZ is a sequence of random variables having mean 0 and

variance 1. In this chapter, we shall study three probabilistic properties

of subsequences of (eίnt)nez: the 0 — 1 law, pseudo-independence (mixing),

the law of large numbers. However we shall not show, in this paper,

direct applications of our results, they play important role in the theory

of lacunary series. We shall also note well-known results about the

central limit theorem and the law of iterated logarithm of subsequences

of (eίnt)neZ. The recurrence property of L-lacunary series will be studied

in detail in Chapter 5.
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Our results are elementary and incomplete. But it is no doubt that

various problems in this area are interesting.

4.1. The 0 - 1 law

A countable product CM of C is a measurable space, where Borel sets

are induced from cylinder sets. Let X = (Xk(t))k=1 be a sequence of Borel

measurable functions in [0, 2π). We say that a Borel set U in [0, 2π) is a

tail set defined by X, if, for every positive integer k, there exists a Borel

set Bk in C such that U = {t e [0, 2π); (Xk(t), Xk+1(t), •) e Bk). We say

that X satisfies the 0 — 1 law, if, for any tail set U defined by X, m(U) =0

or 2π. We shall show the following

PROPOSITION 23. Let E — (nk)k=:1 be a strictly increasing sequence of

positive integers.

(45) //, for every k > 1, nk+ί is a multiple of nk, then (eίnt)neE satisfies the

0 — 1 law.

(46) // there exist two strictly increasing sequences (kj)^ and (k'j)j=1 of

positive integers such that sup^ (nkp nk^ < +oo, then (eίnt)neE does not

satisfy the 0—1 law, where < , > denotes the greatest common divisor.

COROLLARY 24. Let E be a strictly increasing sequence of positive

integers such that (eίnt)neE satisfies the 0 — 1 law. Then E is Hadamard

lacunary.

For the proof, we prepare the following

LEMMA 25. Let I and U be an open interval and a Borel set in [0, 2τr),

respectively. Writing U(ri) = {t e [0, 2π); nte U (mod2ττ)}, we have

(47) \m(I Π U(ή)) - (2πyim(I)m(U)\ < 8π/n .

Proof. Without loss of generality, we may assume that U is open and

that m(I) > 4π/n. Set Uo = U(ή) Π [0, 2π/ή) and U, = Uo + 2πj/n (j =

1, , n - 1). Then m(Uj) = m(U)/n and U(ή) = Uy=J Uj. Let N be the

cardinal number of a set {L ;̂ Uj, a I,j = 0, , n — 1} of Borel sets. Then

we have \m(I Π U(n)) - Nm(U)/n\ < 4π/n and \m(I) - 2πN/n\ < 4π/n. Hence

\m(I Π U(ή)) - (2π)-1m(I)m(U)\

< \m(I Π U(ήj) - Nm(U)ln\ + (2π)-1m(U) \m(I) - 2πN/n\ < 8π/n .

This completes the proof.
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Proof of Proposition 23. (45): Let E — (nk)k==1 be the sequence in this

proposition and let U be a tail set in [0, 2π) defined by (eίnt)neE such that

m(U) > 0. It is sufficient to show that m(U) = 2π. For a given positive

number ε, there exists a finite union of open intervals J such that m((U— J)

(j (J — U)) < ε. Let us write J = Uf=i -^ where I/s are open intervals.

For a given positive integer k, there exists a Borel set JBfc in C*, such that

[7 - {t e [0, 2τr); ( e w , e<n*+ιt, •) e £fc}. Set

V = {ί e [0, 2π); (eu, e

ί{7lk+φlk)t, eί(72fe+2/Ώfc)ί, •) e Bk}. Since, for

any j > k, Πj is a multiple of nk9 we have U = V(nk) and m([7) = m(V)»

By Lemma 25, we have, for j = 1, , M,

, Π C7) - (2^)-1m(7

- 1/71(7, Π V(nk)) - (2π)-1m(Ij)m(V)\ < 8π/nk ,

and hence \m(J D U) - (2π)-1m(J)m(U)\ < 8πM/nk. Since m((U - J) U

(J — U)) < ε, we have

- (2π)-ίm(U)2\ < \m(U) - m(J f] U)\

\m(J Π U) - (2π)-1m(J)m(U)\

(2π)-ίm(U) \m(J) - m(U)\ < 2ε

Letting k—> CXD, |1 — (2π) `m{U)\ < 2εm(U) \ Since e is arbitrary, we have

m(U) = 2π.

(46): Let {k3)°J=1 and (fey)7=i ^ e "^wo sequences in (46). Choosing sub-

sequences if necessary, we may assume that there exists a positive integer p

such that, for all j , (nkp nk/) =p. We show that a set Up = U?=i (2(j — lV/p,

(2./ — ί)π/p) having measure π is a tail set defined by X = (eίnt)neE.

Set Sj = {(exp inkjt, exp ink/t); t e Up} (j > 1). Since <τzAi, /ιfĉ ) = p, we

have C7P = {t e [0, 2τr); (exp inkjt, exp mft/ί) e S ; }. For every integer k, we

arbitrarily choose an integer j such that k < kj9 k < k) and set B'k =

{fee, cΛ+1, •); "cfc = C if A ^ ^ , ft'/', (ckJ, ck.) e B;}. Then we have, for all k,

Up = {te [0, 2ττ); (eίKfcί, ein*+lt, ---)eB'k} and hence it is a tail set defined by

X having measure π. This shows that X does not satisfy the 0—1 law.

Proof of Corollary 24. Let E = {nk)k=zl be a strictly increasing sequence

of positive integers and suppose that it is not Hadamard lacunary. Then

there exists a sequence (/n7)j=1 tending to infinity such that 1 < nmj+jnmf

< 2. Put kj = mJ+1 and k'j = mj (j > 1). Then (nkp nkfi = 1 for all j . By

(46), (eint)neE does not satisfy the 0 - 1 law.
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4.2. Pseudo-independence (Mixing)

We say that a sequence (Xk(t))k=1 of Borel functions in [0, 2π) is identi-

cally distributed if, for any Borel set A in C,

m({t e [0, 2π); Xk(t) e A}) = m({t e [0, 2π); X&) e A}) (k > 1).

We say that a sequence (XΛ(£))Λ=I of identically distributed functions is

pseudo-independent (or we say that it satisfies the property of mixing), if,

for any positive integer M and Borel sets {Aj}f=1 in C,

limυcu...,kM)m({t e [0, 2π); Xk.{t) e Aό (j = 1, . , Λf)})

= (2π)~M+1 Π rrφ e [0, 2π); X:(t) e A,}) ,
. 7 = 1

where lim(fclt...|fcJlf) denotes the limit when k/s diverge satisfying kό Φ ky

(j Φj') It is evident that any subsequence of a pseudo-independent sequence

is pseudo-independent. We remark also that, for any strictly increasing

sequence E of positive integers, (eίnt)neE is identically distributed. We shall

show the following

PROPOSITION 26. Let E — (nk)%=1 be a strictly increasing sequence of

positive integers such that the limit lim^^^ nk+1/nk = σ(< +oo) exists. Ifσ =

+ oo or it is a transcendental number, then (eίnt)neE is pseudo-independent

In the case where σ is an algebraic number, it seems difficult to discuss

the pseudo-independence of {eίnt)neE. The following example shows that

there are non-pseudo-independent Hadamard lacunary series.

EXAMPLE 27. An algebraic integer σ > 1 is called a Pisot number if

it is a (rational) integer or all its conjugates (not σ itself) have moduli

strictly less than 1 ([13]). Let a be a Pisot number. Then (eί<σk>t)k=1 is not

pseudo-independent, where <x> denotes the nearest integer to x.

COROLLARY 28. Let E be an L-lacunary series. Then (eίnt)neE is pseudo-

independent There exists an Hadamard lacunary series E such that (eίnt)neE

is not pseudo-independent

For the proof, we prepare two lemmas. Throughout the proof of this

proposition, E = {nk)^ι is a strictly increasing sequence of positive integers.

LEMMA 29. (eint)neE is pseudo-independent if and only if:

(48) for any positive integer M and functions {φj(t)}f=1 in A(0, 2ττ),

lim(fcl,..,fc * Γ Π φj(nkjt)dt = fl
2π Jo i-i i-i



ON LACUNARY SERIES 115

Proof. We say that a Borel function φ(t) in [0, 2π) is an indicator

function if φ(t) = 0 or 1. From the definition, the following property

evidently holds: (eίnt)neE is pseudo-independent if and only if, for any posi-

tive integer M and indicator functions {φj(t)}f=1,

lim(fcl,...,fc * Γ fί Φj(nkt)dt = Π &(0) .
2π Jo j=i y=i

For any φ e A(0, 2π) and e > 0, there exists "a finite sum of indicator func-

tions" ψ such that sup£6[oj2π) \φ(i) — ψ(t)\ < ε. This shows that the above

property holds if and only if (48).

LEMMA 30. (eint)neE is pseudo-independent if and only if:

(49) for any positive integer M and integers {/fy}f=i (all rrij is not 0),

there exists a positive integer K such that, for M integers {kj}f=1 satisfying

kj^:K(j = l, -'9M) and k5 ψ ky (j Φ / ) , Σf-i mjn^ Φ 0.

Proof. First we prove the "if" part. Suppose that (49) holds. Let

M be a positive integer and let {φj(t)}f^ be functions in A(0, 2τr). Then

we have

lim(]fcl>...>Λjf)—- Π Φi(nkjt)dt
2π Jo j=i

= lim(fcl>...^v)--— Π Σ φj(m) exp (ίmnkt)dt
ΔK JO J = l rneZ

™>ύ ' *' φjn(mM)—- Π e χ P (imjnk.t)dt
ZTZ JO j=i

1 c2π M

M(™>M) lim( fc l f... ϊΛj f ) — - Π e x P (im5nkt)dt .
2π Jo ;=i

Σ

— y

By the hypothesis, the last part in the equalities is Πf=i0/(O) a n ^ hence

(48) holds. By Lemma 29, (e'wi)ne£ is pseudo-independent.

Next we prove the "only if" part. Suppose that (eίnt)neE is pseudo-

independent. Then (48) holds. Let M be a positive integer and let {# }̂f=1

be integers such that all τnj is not 0. By (48), we have

lim ( f c l,.,w - 1 - Γ Π expiimjΊhβdt = (2π)'M+1 fl Γ exp (imfidt = 0 .
2π Jo j=i j=i Jo

Hence Σf=i m j ^ i ^ 0 for all sufficiently large mutually distinct M positive

integers {kj}f=1. This signifies (49).
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Proof of Proposition 26. We use (49). For mutually distinct M positive

integers {kj}f=l9 set K(k19 , kM) = max{^; j = 1, , M}. First suppose

that σ = +oo. Let {τn,, }f=1 be integers such that all m3 is not 0. Then

we have

M

Σ
1

υcu...ikM) — nK(ku...,kM)_1 Σl\mj\\ = + ° °

By (49), (eιnt)neE is pseudo-independent.

Next suppose that a is a transcendental number and let {m3)f=1 be the

same as above. Since σ is a transcendental number with > 1, we have

η = inf |Σf = i Tftjtf̂ l > 0, where "inf" signifies the infimum over all M non-

negative integers {^ }f=i satisfying nfj Φ n'jf (jφj') and min^j ̂  rc' = 0.

Hence

•» i m ( f c i , ,fc3f) Z J mjnkj

M

.7=1 +

By (49), (eί7U)«G£ is pseudo-independent.

Now we give the proof of the statement in Example 27: If a is a Pisot

number, then X = (e'<σfc>ί)^=1 is not pseudo-independent.

Set nu = (σkS) (k > 1). If σ is an integer, then σnk — nk + 1 = 0 for all

k. By Lemma 30, X is not pseudo-independent. Suppose that σ is not an

integer. Let ωl9 •• ,ω i f_1 denote all its conjugates. Since σ is an alge-

braic integer, σk + ωk + + (»M-I is an integer and hence σk — <σfe) <

(M- 1) max,>, |fc (Jfe > 1) ([13]). Since max,- \ωj\< 1, we have lim fc_ (σk-(σk))

= 0. Let Σf=o ^i'2^ = 0 be the algebraic equation whose roots are σ,

ωi> , <*>M-i. T h e n

lim
k+j - l i m f] = 0

Since Σ f = o m ; τzfc+J is an integer for all k, this shows that Σ f = o ^ Λ + j = 0

for all sufficiently large k. By Lemma 30, X is not pseudo-independent.

Corollary 28 is an immediate result of Proposition 26 and Example 27.

f ) T h r o u g h o u t th i s p a p e r , we use the symbols O(g(x)) and o(g(x)). See [19] ,

p . 14.
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4.3. The law of large numbers

In the theory of uniform distribution, H. Weyl proved the following

theorem: Let E = (nk)k=1 be a sequence of positive integers. Then

m({t e [0, 2/r) l i m ^ 1Σf=i eίnkt \/K = 0}) = 0. This theorem corresponds to the

strong law of large numbers in the probability theory. On the other hand,

R. Salem estimated the exceptional set{te [0, 27r);limsupJ^00 |Σί=i einkt\jK>0]

in the case where nk = O(kv) (p: a given positive integer) ([14], p. 494).

We shall estimate the exceptional set in the case where E is L-

lacunary.

Let C = C U {oo} denote the one-point compactification of C. For a

strictly increasing sequence E — (nk)k=1 of positive integers, B(t; E) denotes

the totality of cluster points of a sequence (Σf=i eίUkt/K)κ=1 in the space

C. For a compact set A in C, set B\A; E) = {te[O, 2π); B(t; E) = A}.

We shall show the following

PROPOSITION 29. Let E be an L-lacunary series. Then, for any compact

set A in D, dim (B~\A\ E)) = 1.

Proof. Let E = (nk)k=1 be an L-lacunary series and let A a compact

set in D. There exists a sequence (cfc)^=1 of complex numbers such that

\ck\ < 1 (k > 1) and A = {c e C; l i m i n f ^ |Σf= 1 CΛ/UL — c| = 0}. There exists

a sequence (0fc)£=i in [0, 2̂ :) such that exp(i^2fc_!) + exp (ίφ2k) = 2cfc (fe > 1).

Then A = {ceC; liminf^^^ |Σf=i e*11*/-̂  - c| = 0}. Set λk = /r2 (Jfe > 1). Let

k0 be a positive integer such that, for k > kQ, λknk

τ > 2πnk

τ

+1. Set γ'kJ =

[(2πj + φ k - 2 ~ % ) l n k , (2πj + φk + 2 - 1 ί f c ) / n J t ] 0 ' = l , ' . ' , n k , k > k0). a n d C/^

= U?=i Γ*,y (* ^ *o) Then m(γkJ) = ^nί" 1, the distance between ^. jy and

Pfcj + i is (2ττ — /lfc)/τ2fc and ^ > y contains at least one interval in {γi+i^iY.

Define inductively (Uk)^ko by [7,0 = Uk0 and C7fc+1 - U {r'k+ijir'k+u c Λ̂»

j = 1, , nk + 1} (k > kQ). Then (λk)k=1 and (Uk)k=ko satisfy the conditions in

Lemma 7. Hence, with U= ΠΓ=fc0 K> dim([/) = 1. For every ί0 e U, we

have

= Σ λk)/K =
1 /

and hence β(ί0; E) = A. Since ^- !(A; E) =) [/, dim (B'^A; E)) = 1. This

completes the proof.

4.4. Known theorems

There are various interesting theorems in this area. Let us dote the
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following three theorems: Let E = (nk)k=1 be a strictly increasing sequence

of positive integers.

(50) If e > 0, then

m({t e [0, 2π); l i m ^ |Σf= 1 cos nkt\IK1/2 + ε = 0}) - 2ττ (The strong law of large

numbers, [4]).

(51) If ε > 0 and nkjnk > 1 + k~i/2~e (k > 1), then, for 0 < ξ < η,

limK^m({te[0, 2π); ξ < |Σί-i cos nkt/VK\ < η}) = 2π(-λ^[ e~x*dx\ (The
Wπ Jξ I

central limit theorem, [6]).

(52) If E satisfies the condition in (51), then

m({t 6 [0, 2π); l i m s u p ^ |Σί=i cos nkt\/VK log log K = 1}) = 2π (The law of

iterated logarithm, [16]).

§ 5. The behaviour of partial sums of L-lacunary series

5.1. If E is L-lacunary, (eint)neE is pseudo-independent. Hence it seems

that (eίnt)neE behaves like an independent sequence. In this paper, we shall

study the behaviour of partial sums of L-lacunary series from the point

of view of the recurrence and the transience.

Let C = C U {oo} and 2? = i?U{°o}be the one-point compactifications

of C and R, respectively. Let F(t) be a Taylor series. C(t; F) denotes the

totality of cluster points of a sequence (Fm(t))Z=ι in C. C(t;ReF) (re-

spectively, C(ί ImF)) denotes the totality of cluster points of a sequence

(Re Fm(t))Z=i (resp. (Im Fm(t))Z=i) in R. For a compact set A in C, set

C-\A; F) = {t e [0, 2ττ); C(t; F) = A}. For a compact set B in R, set

C-\B; Re F) = {te [0, 2/r); C(t; Re F) = B}. C^(JB; Im F) is analogously

defined. We say that:

F(t) is recurrent in C if m(C-\C\ F)) = 2π.

F(t) is transient in C if miC'^oo}; F)) = 2τr.

is recurrent in i? if m(C-\R\ Re F) Π C ^ ^ ImF)) = 2 .̂

is transient in R if mCC t̂foo}; Re F) Π C'^oo}; ImF)) = 2π.

We shall show the following

THEOREM 30. Let F(t) be an L-lacunary series such that (|F(^)|)^=1 is

increasing.

(A) If 2] s(m; F)~2 < +oo, then F(t) is transient in C.
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(B) Iff] s(m;F)-2 = +00, then F(t) is recurrent in C.

(C) Iff] sim F)-1 < + 00, then F(t) is transient in R.]

(D) Iff] s(m F)" 1 = +°o, then F(t) is recurrent in R.

THEOREM 31. Let F(t) be an L-lacunary series such that F έ L2(0, 2π)
and v(F) < +00. Then F(t) is recurrent in C.

COROLLARY 32. Let a be a real number and let Fa(t) be an LΊacunary
series such that \Fa(k)\ = ka (k > 1).

(53) If a > 0, then Fa(t) is transient in C.

(54) If - 1/2 < a < 0, then Fa(t) is recurrent in C.

(55) If a > 1/2, then Fa(t) is transient in R.

(56) // - 1/2 < a < 1/2, then Fa(t) is recurrent in R.

5.2. Proof of (A) and (B)
We prepare some notation and lemmas. Let F(t) be an L-lacunary

series such that (\F(k)\)k=1 is increasing. Set:

rτ(k) = (the integral part of k/2)

nk = nk(F), ak = \F(k)\

sm = s(m; F)9 w(m, M) =

M

(57)

1/2

TM = `, (To = 0)

Jlf M

— V Q-2//7 o-iW5 V — Y 1 Q - 2 Q - 2 / 5

— 2-J S m VαmSm ^ > VM ~ Z_ι S m S m
l l

, Jlf) =Σ "I1 Σ
0

»i, r("») = ΐ(m> F) = ϋmr(n», M)
ilf

f(m, M) = Σ TI,-1, f(m) = f(m; ί1) = lim f(m, M)

> 128, 4α - 63, m), αm < 2m}, ί̂c = Z + - il,

where k is a non-negative integer and m, M are positive integers satisfying

m<M.

For η > 0, two positive integers K, M (K < M) and a Borel set £7 in

[0, 2τr), we put
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(58)
h(K, M;U,η)=\ Σ UFA

J U K<m<M,meΛ

H(K, M; U, η) = f { Σ λ,(Fm(t))Xdt.

LEMMA 33. d = Σm=i 2vιm6γ(τ(m)) < +00,

Proof Let us remember the notation g( ) and #(•) in Lemma 5. Set

q = g(Spec (F)) and θ = #(Spec (F)). By Lemma 5, we have

Gj fC ^ /̂ , 2??ι7?2 727(m) `^ θ ^_j 27n772 β x p {— <2'τ^m^(l — 1/^)} <d -}-co
m = 1 ?ίi = 1

and

< ^2 Σ . Σ 2 2 J ; 6 exp{- gf^ + ̂ (l - 1/g)} < +00 .

LEMMA 34. Σme^«m1/2 < +° ° , C3 = 2m6i«sm2 < + ° ° .

Proof. Since C3 < Σwe^ αm2 < ^Γ3/2 Σme^ αm1/2

? it is sufficient to show

the first inequality. Set A[ = {1, 2, , 127}, Λ'2 = {meΛc - Λ[; am > 2m},

ΆJίμ) = {me Λc — Λ[ — Λ'2; 64:\(m — μ)} (I < μ < 64). The required inequality

follows from 64 inequalities "Σme^oo α^1/2 ̂  4αj (1 < // < 64)" since

1/2Σ a~r-=(Σ + Σ + Σ Σ W

< 127αf1/2 + Σ 2~m/2 + 256αr1/2 < +00 .
m = l

Hence we show that these 64 inequalities hold. Suppose that there exists

an integer 1 < μ < 64 such that the cardinal number of Λ^μ) is less than

2 and let μ be one of such integers. Then we have evidently Σme>w amί/2

< 4αf1/2. Suppose that there exists an integer 1 < μ < 64 such that the

cardinal number of Λ^{μ) is larger than 1 and let μ be one of such integers.

Then, for two integers m, j e Λ!z(μ) (m < j), we have Aaά > w(j — 63, j) >

(64α5 _63)
1/2 > Sam, and hence 2am < α,. This shows that Σme^μ) a;n

1/2 <

LEMMA 35. // lim 3 /_ TM - + 00, ίΛβ̂ i l im^^ ^ / Γ i f = l i i n ^ V^/ΪV = 0.

Proof. Since l i m ^ ^ sOT = +oo, we have evidently lim^^^ VMjTM = 0.
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For a fixed number 0 < ε < 1, we put Nε = {ne Z+; ni > 2}, Γε =

{meZ+;ams^>ε}, Γc

t = Z+ - Γε and Γt(μ) = {m e Γε Nε\(m - μ)} (1 < μ

< Ne). For a fixed integer 1 < μ < Ne, we shall show that Wε,μ =

Σmerε(μ) Um2 < 2αr2. If Γε(μ) = 0, then this inequality evidently holds. If

the cardinal number of Γε(μ) is 1, we have, from α2 < am (m> 1), Wε,μ <

aϊ2 < 2αr2. If the cardinal number of Γε(μ) is larger than 1, we have for

two integers m, j e Γe(μ) (m < j),

a)- > ε2s2j > ε2w(j - Nε + 1J)2 > N£ε
2a)_lΎε+1 > NεεWm > 2arm ,

and hence W.,μ < a[2^=o2~k - 2αf2. We have

and hence

Σ a-2 = Σ W.tμ < 2iVεαr2 ,
Γ l

5 Σ s;n

2+ Σ
l<m<M,meΓc

ε l<m<M,meΓε

< 2/5ΛΓ' I \ ' ._, — 2 ^y' 2/5'T`' ι OΛΓ Λ - 2

Therefore, limsup^^ UM/TM < ε2/5. Letting ε -> 0, we obtain l im^^ ΌM\TM

= 0.

Now we give the proof of (A). Suppose that Σm=i sm2 < +° ° . Since

Spec (F) is L-lacunary, there exists a positive integer m[ such that, for

m > m[, Smnm_1 < amnm. Note that NFm = am and v{Fm) = am. We have,

from Corollary 22,

m, = Σ mίit e [0, &); |Fm(ί)l < -f)) = Σ + Σ

< 2π(mι - 1) + 1024-1/2 Σ P^m

< 2πmx + 102 max {aϊ1/2, 1} Σ «m1/2 < + °°

Let me A. We shall use Lemma 16 for Q(i) = Fm{t\ J = τ(m), ^ = 1, Λf

= m and I = [0, 2π). First we note t h a t w(τ(m)9 m)~2 < 2s^2 and γ(τ(m), m)

< γ(τ(m)). Since NFm = m > 64, J == r(m) < m - 63 = NFm and 4^(Fm) =

4αm < zι;(m — 63, m) < w(τ(m), m) = w(τ(m); Fm), we have, from Lemma 16,

C2π

λγ{Fm{t))dt < lθs[w(τ(m), m)~2 + {2πγ(τ(m), m) + f(τ(m), m)}amm6 + 2πm~2]
Jo

< 108{2s"2 + (2π + ΐ)2mm6γ(τ(m)) + 2πm~2}
< 109(s"2 + 2mm6

r(τ(m)) + m~2) .
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Hence

m2 = lim h(l, M; [0, 2ττ), 1) = Γ Σ
Λf—oo JO m 6 ^

< io9f Σ s-j + Σ 2-m rMm)) +

Consequently, (using χ1/4 < 64τr2Λ1,)

(59) ΣΣ
l

= Σ + Σ <mί

Choosing a countable dense set I7 in C, set [7= Uaer *Λ, where Ua =

{t e [0, 2π); liminf^^ \Fm(t) - a\ < 1/4}. By (59), we have

m(U0) < lim Σ m({ί e [0, 2π); \Fm(t)\ < 1/4}) = 0 .

Considering F(ί) — a, we have m(Ua) = 0 and hence m(C7) < ^aeΣ m(Ua)

= 0, that is, m(Uc) = 2π.

Let toe Uc. For every 6 e C , there exists aeΣ such that \b — a\<

1/8. Then

liminf |F m (O - 6| > liminf \Fm(t0) — α| — 1/8 > 1/8 .

Since 6 e C is arbitrary, we have l im^^ \Fm(t0)\ = +oo. This completes

the proof of (A).

For the proof of (B), we prepare some more lemmas.

LEMMA 36. Let η > 0, K a positive integer, U a finite union of inter-

vals in [0, 2π) and C2 = Σm=i 2mm6γ(τ(m)). Then there exists a positive

number Ax(η, U, Ct) depending only on η, U and CΊ such that h(K, M; U, η)

< 1010rn(U)η2TM as long as TM > Afy, U, Q .

Proof. Without loss of generality, we may assume that m(U) Φ 0.

Let us write U = Uί«=i -̂ > where I/s are mutually disjoint intervals. Set

Ku = 1 + max {m^)"1 m(Iμ) Φ 0,1 < μ < vn}.

Let m e Λ. We shall use Lemma 16 for Q(t) = Fm(t), J = τ(m), M=m

and I = Iμ. Since NFm = m> 64, J = τ(m) < m - 63 = NFm - 63 and Av(Fm)

= 4αm < w(m — 63, m) < w(τ(m), m) = w(τ(m); Fm), we have, for 1 < μ < vυ

satisfying m(Iu) Φ 0,
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f λ,(Fm{t))dt
J I μ

< W{m(Iμ)ηzw(τ{m), m)- l)η'amγ(τ(m), m)nf

Hence

h(K, M;U,τj)= Σ ί Σ UFm(t))dt
m(Iμ)φQ J In K<,m<,M,meΛ

K<,m<,M,meΛ

Putting A^η, U, d) = %Ci + 2η~3, we obtain the required inequality.

LEMMA 37. Let η, K, U, CΊ be the same as in Lemma 36 and let C2

— Σm=i nm Σ7=m+2 2jj6f(τ(m + j)). Then there exists a positive number
A2(η, U, Cj, C2) depending only on η, U, Cu C2 such that H(K, M; U, η) <

rfTϊf as long as TM > A2(η, U, Cu C2).

Proof. We use the same notation vUf Iμ (1 < μ < vL) and κv as in
Lemma 36. Putting

Λ(£) = {meΛ;128\(m-

He(K, M; Iμ, η)=[ f
J Iμ {K<m

H'e(K,M;Iμ,η)= ί
J In K<,m<>

Σ
Mj

<£< 128, l< μ<

we have

H(K, M; U, rj) < 1282 Σ Σ He(K, M; Iμ,v)
ί = \ m(Iμ)φ0

( (` 128

(60) = 1282 Σ UFΛOfdt + 2Σ Σ H'e(K, M; Iμ, η)
U U K<1m<ίM,mQA £ = 1 m(Iμ)φ0

= lO^hiK, M;U,η)+Σ Σ H'e(K, M; Iμ, η)\ .

Now we estimate HβK, M; Iμ, η) for fixed ί (1 < ί < 128) and μ (1 < μ
< vϋ9 m(Iμ) Φ 0). Let m and j be two integers in Λ(£) such that m < jf.
We use Lemma 18 for Q(ί) = FTO(ί), R(t) = F/ί), J = τ(m), J 7 = τ(m + j)
η = η\ M= m, Mf = j and I - I,. Note that
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w(τ(m), πif > s2j2, w(τ(m + j), mf > w(m,]f\2 > s)_m+1l2

` am S= Δ , aj <^ Δ

j(τ(m), m) < γ(τ(m)), γ(τ(m), m) < f(τ(m)) .

Since

jNFm = m > 64, NF. = j > 64

J = τ(m) < m - 63 - A^m - 63,

m -L 7 91 197
=• Γ̂ 772 — J) S^ S; ^ J — β«J = = -tVjr. — Oo

= 4αm < w(m — 63, m) < w(τ(m), m) = w(τ(m); Fm)

= 4α, < M;(J - 63, jf) < α;(r(m + i),;) = w;(τ(τn + ); F7)

we have, from Lemma 18,

,(λ,(Fm(t))λ,(F,(t))dt

< Iθ ">{m(lμ)η2w(τ(m), m)"2 + (m(Iμ) + l)^αm r(r(m), m)m6 + m

X {,y2«;(r(?n +;),7)- 2 + f 'm" 2} + 10'Vo,f(τ(m + ),y)j6nm

< 1021/n(/>4(s-2 + Ar̂ ^mVCrCm)) + ^-3m-2)(sjfm+1 + V'ψ
2)

+ 101°5?

22^6f(τ(m + j))nm ,

and hence

fίί(ίΓ, M; Iμ, η)

<10 2 1m(7> 4 Σ Σ (s-2 + %2m/nV(r(m)) +
K<m<M,πιeΛ(£) m<j<M,jeΛ(e)

X («A+i + ^-3r2) + 10'V Σ Σ 2^f(r
K<^MGΛ(£) m<j<M,jGΛ(£)

x Σ (β;^+i

By (60), we have

H(K, M; U, yj) < Wπ2h(K, M; U, vj)

Taking account of this inequality, choose a positive number A2(ηf U, Cu C2)

sufficiently large. Then the required inequality follows from Lemma 36.

LEMMA 38. Let K, U, CΊ be the same as in Lemma 36. Let 0 < η < ax
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and C3 = Σms.ic s~2. Then there exists a positive constant A3 = A3(Tκ_l9

η, U, a09 Cl9 C3, γ(ΐ)) such that h(K, M; U, rj) > 10~ Am(U)η2TM as long as

min{TM, TχlUχ, TM/VM} > A3.

Proof. We use the same notation vU9 Iμ (1 < μ < vσ)9 κv as in Lemma

36. Let me A. We use Lemma 20 for Q(t) = Fm(t)9 J= τ(m)9 M= m and

I = J .̂ We have, for 1 < μ < vv satisfying m(Iμ) Φ 0,

ί λv(Fm(t))dt > 10-*m(Iμ)η2ιυ(l, m)-2

Jlμ

(1, m)-2{amw{l, m)" 1 } 2 7 5 -

1)^Y(1, m)w(l, m)-2{amw(ί

(1, m)~2{amw(l, myw(τ(m),

ί)η2amγ(τ(m), m)m6 +

and hence

UK, M;U,η)= Σ f Σ ^ , ( ^
m(Iμ)Φ0 J Iμ K<m<M,meΛ

- Tκ.x - Q

Taking account of this inequality, choose a positive constant A3 suf-

ficiently large. Then we obtain the required inequality.

Now we give the proof of (B). For 0 < η < α,, aeC and two positive

integers μ, K (μ < K), we put U(μ, K, a, η) = US-/. {«e [0, 2ττ); |Fm(i) - a\

< }̂ and t/(/ί, a, η) = {Jκ=μ U(μ, K, a, rj). Note that U(μ, K, a, η)c is a finite

union of intervals. By Lemma 37 and 38, there exists a positive integer

M (K < M) such that h(K + 1, M; U(μ, K, 0, τj)c, η/S) > 10-4m(U(μ, K, 0,

ηYXηβYTx, H(K + 1, M; U(μ, K, 0, VY, ηlS) < 10»m(U(μ, K, 0,

Then we have, from Corollary 9,

m(U(μ, K, o, vy n u(κ + 1, M, O, η))

= m({teU(μ,K,0,vy; Σ χ,(Fra(0)>

>m(\teU(μ,K,0,ηy; Σ ^,/ί(Fm(ί))

> h(K + 1, M; C/Cu, UΓ, 0, V)\ ηl3fH(K + 1, M; U(μ, K, 0,5y)c,

> 10-™m(U(μ, K, 0, η)') ,
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and hence

m(U(μ, M, 0, VY) = m(U(μ, K, 0, ηY) - m(U(μ, K9 0, ηY Π U(K + 1, M, 0, ,))

< (1 - 10-38)m([/(^ JΓ, 0,η)c) .

Repeating this discussion, we have m(U(μ,0yηY) = 0, that is, m(U(μ, 0, r/))

= 2ττ. Considering F(ί) — α, we have m(U(μ, a, η)) = 2π. Choosing a counta-

ble dense set Σ in C, we put U = Παe* ΠΓ-i ΠΓ-i ̂ C"» α ' αi/^) T h e n ^ ^

— 2τr. Hence it is sufficient to show that, for any t e U, C(t; F) — C. Let

toeU. We have, for every aeΣ, liminf^^ \Fm(t0) — a\ = 0 and hence

C(t0; F) =) Σ. Since C(t0; F) is closed, C(ί0; F) = C. This completes the

proof of (A).

5.3. Proof of Theorem 31

Let F{t) be an L-lacunary series such that F g L2(0, 2ττ) and v{F) < + oo.

Set:

(61)

, ak = \F(k)\ (k>0)
I X \ l / 2

(m, M) = Σ a\) 0-<m<M)
\k = m }

γ(m) = γ(m; F), γ(m) = f(m; F) (m > 1) .

Without loss of generality, we may assume that am < 1 (m > 1). We define

inductively a sequence (Γ(m))Z=o of non-negative integers by Γ(0) = 0 and

by Γ(m) = min {keZ+; w(Γ(m - 1) + 1, k) > 8}. Let us note that Γ(m) -

Γ(m - 1) > 64 (m > 1). For η > 0, two positive integers K, M (K < M)

and a Borel set U in [0, 2ττ), we put

\h(K,M;U,η)= f Σ λv(FΓ(m)(Wt

Ju

LEMMA 39. Putting f(m) = Γ(τ(m)) (m > 1), we have, for k>l, M>

k+1,

Σ w(f(m + k), Γ{m))-` < log (Af - k) + 1

M

Σ > 10"2logM.

Proof. We have 64 < w(Γ(m) + 1, Γ(m + I))2 < 65 (m > 1). Inequali-

ties (63) follows from these inequalities.
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The following Lemmas 40, 41, 42 and 43 play the analogous role as

Lemmas 33 36, 37 and 38, respectively.

LEMMA 40. C, = Σ : = 1 m
6γ(f(m) + 1 ) < +oo,

C2 = Σm=i nΓim) Σ7=m+i J'ΐ(Γ(m + ) `4- 1 ) < +oo.

Proof. Use Lemma 5.

LEMMA 41. Lei ^ > 0, K a positive integer and let U be a finite union

of intervals in [0, 2π). Then there exists a positive number Afy, U, Cx) de-

pending only on η, U, C1 such that h(K, M; U, η) < 109m(U)τf log M as long

as log M> 1,(7], U,C1).

Proof. Without loss of generality, we may assume that U is an inter-

val satisfying m(U) Φ 0. Set κπ = 1 + m(Uy\ The estimation of Lm =

λJFΓ(m)(t))dt (m > 1) is essential, for which we use Lemma 16. Put Q(t)
J u
— Fr(m)(f)i J — Γ(m) + 1, M = m and I—U. Then we have, from Lemma

16,

)-2Lm < 108m(U)η2{w(f(m) + 1, Γ(m))-

Hence, by (63), we have, for K < M,

h(K, M; U, rj) <

Put A2(rj, U, Cι) = 1 + κvCι + 2rj~\ Then we obtain the required inequality.

LEMMA 42. Let η9 K, U be the same as in Lemma 41. Then there

exists a positive number A2(rj, U, Cu C2) depending only on η, U, Cu C2 such

that H(K, M; U, η) < 1021m([7)^4(log Mf as long as log M > Ά2(η, U, Cl9 C2).

Proof. We may assume that U is an interval satisfying m(U) Φ 0.

Set % = 1 + m{U)-\ The estimation of Lm>3 = f λv(FΓim)(t))λη(Fr(j)(t))dt
J u

(1 < m < j) is essential, for which we use Lemma 18. Put Q(t) = FΓim)(t),

R(t) = FΓU)(t), J = f(m) + 1, J ' = f(m + y) + l, 7 = ^, Af = m, M' =

and I = U. Then we have, from Lemma 18,

LmJ < 1020rn(U)V*{w(Γ(m) + 1, Γ(m)Y

X {^(/(in + j) + 1

Hence we have, from (63),

H(K9 M; U, η) < π2h(K, M; U, η) + 2 t Σ Lm
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< π2h(K, M; U, rj) + 2-1020

X (log M + 1 + 2ψ*) + 101(yC2 .

Taking account of the last term and Lemma 41, choose a positive number

Ά2(Ύ], U, Cl9 C2) sufficiently large. Then we obtain the required inequality.

LEMMA 43. Let K and U be the same as in Lemma 41 and let 0 <Cη

< ax. Then there exists a positive constant Az = AS(K, rj, U, a0, C19 γ(ϊ)) such

that h(K, M; U, rj) > lQ-«m(U)η2 log M as long as log M > A3.

Proof. We may assume that U is an interval satisfying m(U) Φ 0.

The estimation of Lm = λη(FΓ(m)(t))dt (m > 1) is essential, for which we

use Lemma 20. Put Q(i) = FΓ(m)(t), J = Γ(m) + 1, M= m, I = U. Then,

we have, from Lemma 20, h(K, M; U, η) > 10-*m(U)η2w(l, Γ(m)Y2 - Bm9

where Bm is determined by (39). Note that Σm=i Bm = o(log M). We have,

from (61),

h(K, M; U9 η) > 10-"m{U)η2 log M + o(log M)

Taking account of this inequality, choose a positive constant Az sufficiently

large. Then we obtain the required inequality.

Now we give the proof of Theorem 31. For 0 < η < au aeC and

two positive integers μ, K(μ < K), we put U(μ, K, a, rj) = Um=Λ {£ β [0, 2π);

\FΓ{m)(t) - a\ < 7]} and U(μ, a, rj) = Uκ=μ U(μ, K, a, rj). By Lemma 42 and

43 there exists a positive integer M (K < M) such that h(K + 1, M; U\ η/S)
> 10-'m(U')(ηlSFlogM and H(K + 1, M; U',rjl3) < I02ίm(ΰ')(ηl3y(log M)2,

where U = U(μ, K, 0, rj)c. Then we have, from Corollary 9, m(U(μ, M, 0, vj)c)

< (l — 10~3Z)m(U(μ, K, 0, η)c). Repeating this discussion, we have m(U(μ, 0, rj)c)

— 0, that is, m(U(μ, 0, rj)) = 2π. Considering F(t) — α, we have m(U(μ, a, rj)) =

2π. Choosing a countable dense set Σ in C, set U— f^\aei ΠΓ=i ΠΓ=i U(μ, α,

aj£). Then m(U) = 2π and, for any te 0, C(t; F) = C. This completes

the proof.

5.4. Proof of (C) and (D)

The method of the proof of (C) and (D) is analogous as in (A) and (B).

Hence we only give the sketch of the proof. Let F(t) be an L-lacunary

series such that (ak)^=1 is increasing, where αfc = \F(k)\ (k > 1). Set sm =

(Σ?-i aD1/2 a n d ^m = Σ?-i s^ Qn > 1). It is sufficient to show our asser-

tion with respect to cluster sets of P(t) = Re F(i). Using Corollary 22,

we choose suitably a set A in Z + so that ΣmeA*s^ < + °° a n ( i that, for
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any p > 0, Σmel* rn({t e [0, 2ττ); |PTO(ί)l < p})< + °°, where > - Z+ - A. For

0 < η < al9 m, j e A (m < j) and a finite union of intervals U satisfying

m(U) Φ 0, set

(64)

ltn(U, η) = ί χv(Pm(t))dt (Pm(t) = Re FTO(ί))

i » , ί ( ^ 9) = f χ,(PΛt))χ,(PAt))dt
J u

π JO Γ k = l

Then we have, for sufficiently large m and j satisfying m, j e A, m + 128

ι < L(U, η) <
L(U,v) - L(U,V)\< o{ΐ)ls
LmJ(U, η)\ < θ

(65)

where 05, ^6 and <97 are positive constants which are independent of η and

U. This shows that ̀ Σ]Z=i Lm(U, η) converges if and only if J ]~ = 1 s"1 con-

verges. The property (C) follows from this fact.

To prove (D), suppose that ΣZ=i smλ = + ° ° For 0 < η < aγ two posi-

tive integers K, M (K < M) and a finite union of intervals C7, set

(66)

Note that

h(K,M; U,v)=\ Σ .χη(Pn(t))dt
J U K<m<M,meΛ

H(K, M;U,η)=\ { Σ . χ,(P™(ί)))2rfί.
J U \,K<m<M,meΛ J

, M; U, v) < Ί2ffh(K, M; U, η) + 2 1282

where Σm]j denotes the summation over all m, j e A satisfying K < m < j <

M, m = £ (mod 128) and j - m= 0 (mod 128). Using (65), we see that, for

given η, K and U (m(U) Φ 0), there exists a positive integer M (K<M) such

that h(K, M; U, rj) > 2-%m(U)ηtM and H(K, M; U, η) < 4-12S%m(U)η2flί.

Using these two inequalities, we have m(U(μ, 0, η)) = 2π, where U(μ, 0, η) —

[JZ=μ {t£ [0, 2ττ); |P m (0 | < η}) Choosing a countable dense set Σ in R, set

U(μ, ξ, η) = UZ=μ {te [0, 2τr); \Pn(t) - ξ|< 7}) (f e Σ) and {7 - f\eiΠΓ=i ΠΓ=i

, f, aj£) .
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Considering P(t) — ξ, we have m(U(μ, ξ, η)) = 2π and hence m(f7) = 2π. For

any te ύ9 C(t; P) = tf. This shows that (D) holds.

We note that if F(t) is recurrent in C, then it is recurrent in R.

Hence Corollary 32 is an immediate consequence of Theorem 30 and 31.

5.5. Application to the theory of cluster sets of Steinhaus series

Let Ω be a countable product of an interval [0, 1). Element of Ω is

denoted by a small letter ω or a sequence (φ19 φ29 •)> where φ5 e [0, 1). A

probability measure in Ω (, which is denoted by "Pr",) is defined by a

countable product of the 1-dimensional Lebesgue measure.

For a sequence (ck)k=1 of complex numbers, a (formal) complex Stein-

haus series is defined by Ψ(ω) ~ Σk=i ck exp (2πίφk) (ω = (φί9 φ2, •••))• We

write #•(£) = cfc and s(k; Ψ) = (ΣU |c,|2)1/2 (A > 1). C(ω; Ψ) denotes the to-

tality of cluster points of a sequence (¥m(ω))Z=ι i n C, where Ψm(ω) =

2]Γ=i cΛ exp (2πίφk) (ω = (φl9 φ2, •••))• F ° r a compact set A in C, set C~!(A; Ψ)

= {ωeΩ;C(ω;Ψ) = A}.
For a sequence (ξk)^ι of real numbers, a (formal) real Steinhaus series

is defined by ψ(ω) — Σ£=i ffc c ^ s 2ττ̂ fc (ω = (01? ^2> •••))• We define analo-

gously as above: ψ(k)9 s(k; ψ), C( ψ), C-^ ψ).

We say that:

Ψ(ω) is recurrent in C if m(C'\C\ ¥)) = 2τr .

r(α>) is transient in C if m(C'1({oo}; SΓ)) = 2π .

ψ(α>) is recurrent in i? if ^^(C" 1 ^; ψ )̀) = 2π .

ψ(ω) is transient in R if /^(C'^ίoo}; ψ)) = 2π .

Then we have the following

THEOREM 44. Lei Ψ{ω) and ψ(ω) 6e α complex Steinhaus series and a

real Steinhaus series such that (\t(k)\)k==1 and (\ψ(k)\)k==1 are increasing,

respectively.

(AX If Σ s(m; Ψ)~2 < +co, ί/ιen ?Γ(ω) is transient in C.
ra = l

(By Iff] s(m; Ψ)~2 = +oo, then Ψ(ω) is recurrent in C .
771 = 1

(Cy If Σ s(τn ψ)"1 < +oo, ί/z,eτz ψ(ω) is transient in R .
ra = l

oo

(ω) is recurrent in R .
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THEOREM 45. Let W(ω) be a complex Steinhaus series such that sup*. \Ψ(K)\

< +00 and ̀ ΣLΐ=ι\Ψ(k)f = +00. Then it is recurrent in C.

Proof of Theorem 44 and 45. Let Ψ(ω) be a complex Steinhaus series

such that (\Ψ(k)\)k=1 is increasing. For every ω = (φl9 φ2, •) e Ω, we con-

sider an L-lacunary series Fω(i) ~ ΣΓ=i Ψ(k) exp (2πiφk) exp (inkt)> where nk

= 22& (& > 1) and, for every t e [0, 2π), we consider a complex Steinhaus

series Ψt(ω) = Fβ(ί). Then s(m; F J = s(ra; SQ - s(m; Ψ) (m > 1). We easily

see the following implications:

"Fω(t) is transient in C for all α> € Ω"

φ "m X Pr ({t e [0, 2 TΓ), ω e Ω; C(t; Fm) = {00}}) = 2π"

φ "Pr ({ω e β; C(ί; F J - {co}}) =- 1 for almost all t e [0, 2τr)"

n> `Ψt(ώ) is transient in C for almost all ί e [0, 2π)".

Now, to prove (A)7, suppose that 2^=i s(m; W)~2 < +00. Then Fω(t)

is transient in C for all ω e Ω and hence Ψt(ω) is transient in C for almost

all t e [0, 2π). There exists t0 e [0, 2π) such that ΨtQ{ω) is transient in C.

Since a mapping (01? ^2, •) e Ω —> (̂ x + TẐ ô Trimod 1), <̂ 2 + ^2ί0/2π (mod 1), •)

e Ω is bijective and preserves the measure "Pr", Ψ(ω) is also transient

in C.

Since the proofs of other properties are analogous as in (A)7, we omit

the proof.

§ 6. Convergence of Z-lacunary series

For a Taylor series F(i), a e C and ξ e R, we write simply

[C-\a; F) - C-\{a}; F) = {te [0, 2π); C(t; F) = {a}}
( 6 7 ) [C-\ξ; Re F) = C~\{$}; Re F) = {te [0, 2*); C(ί; Re F) = {ξ}} .

We write log+ x — max {log x, 0} (x > 0). In this chapter, we shall show

the following

THEOREM 46. Let F(t) be an L-lacunary series such that F & A(0, 2π).

(68) dim (C^oo Re F)) = dim (C'^oo F)) - 1.

(69) // limlog+ \F(k)\/log nk(F) = 0, then, for any ξ e /?, dim ( C ^ f Re F))
fc—>oo

-J

(70) If limsup log+ \F(k)\llog nk(F) > 0, then, for any ξeR,



132 TAKAFUMI MURAI

(71) // lim \F(k)\ = 0, then, for any aeC, dim {C~\a\ F)) = 1.

(72) // limsup \F(k)\ > 0, then, for any aeC, C~\a\ F) = 0.

Proof We write simply P(t) = Re F(t), Pk(t) = Re Fk(t), ak = \F(k)\,

n>k = nk{F) (k > 0). There exists a sequence (φk)k=0 in [0, 2π) such that

P(t) ~ Σ?=o &k cos (nkt + φk). For the sake of simplicity, we give the proof

in the case of φk = 0 (k > 0). (The proof in the general case is analo-

gously given.) Note that Σ/Γ=o ak = +oo.

(68): Let k'o be a positive integer such that, for k>k'o, (τr/4)^1 >

2™^. Set r^j = [(2τr/ - ττ/4)K, (2τr/ + τr/4)/τιJ (j = 1, , nk; k > kζ). We

define inductively (Uk);=κ by Uκ = \J»'=1 r'KJ (n! - nk.) and by Uk =

U {γ'kj\ ϊ'kj ci t/fc-i> i = 1, , ^} . Set f̂c = ττ/4 (^ > 1). Then we see that

(Uk)κ=h,Q and (ίfc)Γ=i satisfy the four conditions in Lemma 7. Hence, writing

U= Π?=*6 t 7^ we have dim (17) = 1. For every te U, l iminf^ Pm(t) >

l/v^` liminf̂ ^oo Σΐ=oak = +°°, and hence C~\oo; P) Z) U. Consequently,

dim (C-^oo P)) - 1. Since C~ι(oo F) Z) C~ι(oo P), dim (C-!(oo F)) - 1.

(69): Suppose that lim^^ log+ aJlog nk = 0. Considering P(ί) — f if

necessary, it is sufficient to show that dim (C'^O; P)) = 1.

There exists a decreasing sequence (λk)k=1 of positive numbers such

that λ1 < 1, lim^^ (log l/Λfe)/log nk = 0 and X^=i αfc>lfe < +oo. There exists

a sequence (sfc)^=0 in [0, 2π) such that 0 < sk < 2πjnk, ak cos n ^ > 0 (A > 0),

limfĉ ^ αfc cos nksk = 0 and Σ!Γ=i α^ c o s ^sfc = + °° Set bk = sup^>fc α̂  cos τ ι^

and η{k) = bk + J^zl aenjnk + ΣΓ=* «Λ (* > 1). Then lim^^ (̂A) - 0.

We say that an interval γ in [0, 2π) is ^-interval, if there exists a

positive integer k such that m(γ) = 4ft*:1. Then such an integer is uniquely

determined and denoted by k(γ). Set k\γ) = k(γ) + 1. We denote by tr

the middle point of γ and write ξr = J]fc=o ̂ k cos nksk. For every ^-interval

γ, we shall define a positive integer m(γ) and two finite sets A(γ), F(γ) of

^-intervals.

(Definition of m(γ), Δ(γ) and F(γ)}: Let ^ be a ^-interval and suppose

that ξr Φ 0. We define inductively a sequence (εk(γ))k=k>ω by εfc'(r)(r) =

- sign0 (ξr) and εk(γ) = - sign0 (fr + Σ ^ , ω ε,(r)α, cos n ^ ) , where sign0 x =

1 (x > 0), = 0 (x = 0) and = - 1 (x < 0). Set

= min < m Σ εfe(r)afc cos
k ' { )

(Since limm__ (ξr + ΣϊWω ε *(rK cos nksk) = 0, it is defined.) For every
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k\γ) <k< m(γ), se t Δ'h - {γkJ; γkJ C γ,j = 1, , n J , w h e r e /ft>1 - [sk +

π/4-(l - sigiWjOK1 - (l/2)λknk\ sk + π/4 (l - sign0 ε ^ R 1 + (1/2)W]

and r'kd = γ'kΛ + 2π(j - ΐ)n^ (2 < j < nk). We define inductively (Λk)ΐΆ<T)

by J fc,( r) = J£, ( r ) and J fc = { r ; r e J£, there exists γf e Δk_ι such that r c γf).

Now we put J(τ-) - J r o ( r ) and Γ(^) = { r ; r e 4 ^ k'(γ)9 , /n(^)}.

Suppose that fr = 0. Then we put m(γ) = ^ ;(^) = /̂ (̂ ) + 1 and Δ(γ) =

Hϊ) = {K(r) - ( l / 2 ) ^ m ( r ) ^ r ) , sm ( r ) + ( l / 2 ) ^ m ( r ) ^ r ) ] + 2πjn~\r);j = 1, , Λm(Γ)}.

We denote by τ -< ̂ , if τ e Δ(γ) and by r [γ, if r € F(^). Now we show

the following

LEMMA 47. Let γ and τ 6e two λ-ίnterυals.

(73) 7/ r < γ, then \ξr\ < l/2 |fr| + >?(%)) .

(74) 7/ r [ r, ίΛβn, for any t e r, \PkM(t)\ < lfrl + ̂ r ) )

Proo/. (73): Suppose that ξr Φ 0. Then |fr + ΣSΆw ^ ( r K COS n t s t |

< l/2 |fr|. Note that ^(r) = m(γ) and |ίr — tr\ < λk(r)n^r). There exists a

finite sequence (tk)™L7)

k, {1) in [0, 2TΓ) such that et(j ) cos nksk = cos /isit and

\tτ — tk\< λkn^ (k'(γ) < k < m(γ)). Hence we have

If, cos nkL

C O S

Ίc{γ)

ίr — cos

72,ίΓ — COS Πktk)

k(γ)

Σ

< l/2 |frl + Σ
fc fc'(

A (r)

Σ

OS 72fcίΓ — COS Tlktr)

aknkλkωnklr) < l/2 |fr| + η{k(γ)) .

Suppose that ξr = 0. Then k'(γ) = m(γ) = k(τ). There exists t' e [0, 2π)

such that cos nk{τ)skω = cos ^ ( r ) ^ and |ί r — t'\ < λk{τ)nk~lτ). Hence we have

\ξτ
ξr + akM cos nkίτ)t' + akM(cos nkiτ)tt — cos nk{τ)t')

(r)

Σ
0

n f ci r — cos nktr)

< bkW + akMλkM + ΣaknkλkWnklr) < η{k(γ)) = l/2 |fr| + v{k{γ)) .

(74): Using

fc(r)

ζ> Π^ Z_i sk\f/uk c υ f c ) Aίlfc' ^fcίr)
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we see analogously as in (73) the required inequality. This completes

the proof of Lemma 47.

Now we return to the proof of (69). Considering P(t) — ξ if necessary,

it is sufficient to show that dim (C`^O; P)) = 1. First we choose a sequence

{Uk)k=z}.» which satisfies the conditions in Lemma 7. Let k" be a positive

integer such that, for k > k", `λkn`ίλ > 2πnl\1. We define inductively a

s e q u e n c e (Δ(m))Z=i by Δ(ί) = {γ^ + 2πjjnk,, j = 1, , nk,Q,}9 w h e r e γ^ =

[sk,, - (Ij2)λk,n^, sk.. + (Il2)λk,,nj;i] a n d by Δ(m) = {τ;τβ Δ(τ\ γ e Δ(m - 1)}.

Then Δ(m) (m > 1) is a finite set of ̂ -intervals. Set Δ — {γ γ e Δ(m), m > 1}

and V = {r; r e F(f), ̂  e J} U ^(1). Then they are infinite sets of ^-inter-

vals. Now we define (U,)^ by Uk = U{r; ^(r) = ^^ί 1 , r^l 7} (& > ôO

Then it satisfies the four conditions in Lemma 7 and hence, putting U =

ΓΊ*=^'ΪΛ, we have dim (17) = 1.

Next we show that, for any teU, l i π v ^ Pm(t) = 0. Let t0 e U. There

exists a sequence (γ£)T=i C J such that γ£ > γ£+1 and γ£ 3 t0 {β > 1). By (73),

| f r , + 1 |< l/2. | f r j + ^ ( r , ) ) (£>1). Hence lim,_ ξu = 0. There exists a

sequence (r m )^ = ^ C F such that τm Z) rTO + 1, m(τm) = i ^ ; 1 and τm Bto(m> 1).

For every m > 1, there exists a positive integer £(m) such that rm [^(m).

By (74), \PJh)\ < \ξutm I + v(Kr<™))> H e n c e l i m — Pm(Q = 0. This com-

pletes the proof.

(70): Suppose that limsup^oo log+ αfc/log nk > 0. Let us show that

dimΐC-^O; P)) < 1. There exists a positive number a and a strictly in-

creasing sequence (kj)J=1 of positive integers such that ak. > na

kj (j > 1).

Choose a number β so that 1/(1 + α ) < β < 1. Note that C'^O; P) c

ΠΓ-i UΓ=, V,, where V, = {* e [0, 2ττ); αΛ. |cos nfcyί| < 1} (j > 1). We have,

for any j > 1, V, - U.-±i Utiή'U where n/; - τιfc., r # , = rfc. +

(τr/2) signσ)K. (̂  = 1, , nkj; σ - ±1) and rfc. - [-(πfflajn;}, (πffl

Hence

Λβ(C~\0; P)) < lim £ Aβ(Vj) < lim Σ 2n^m(rfc,)^

- 2ττ̂  lim Σ αi/ni;^ < 2̂ ^ lim f ] ni; ( 1 +^ = 0 .f]

Consequently, dim (C-\0; P)) < β < 1.

(71): Set λk = 1 (k> 1). Then ^-intervals are defined. Set sk = 0

(^ > 0). Then, for every ^-interval γ, m(γ), Δ(γ) and F(^) are defined. Then
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the analogous argument as (69) is applicable. Hence we omit the proof.
(72): Evident.

§ 7. The deficiency of Z-lacunary analytic functions

Let g(z) be an analytic function in D. The characteristic function

of g(z) is defined by T(r, g) = l/2τr Γlog+ \g(reu)\ dt (0 < r < 1), where
Jo

log+ x = max {log x, 0} (x > 0). The counting function of g(z) is defined

by N(a, r, g) = rc(α, s, g)/sds (a e C, 0 < r < 1), where n(α, s, g) denotes
Jo

the cardinal number of {z; 0 < \z\ < s, g(ε) = α}. We say that an analytic
function g(z) in D is of unbounded type if lirn,^ T(r, g) = +oo. For an
analytic function g(z) of unbounded type, the deficiency δ(a, g) (α e C)
is defined by δ(α, g) = 1 — limsup^j ΛΓ(α, r, g)/T(r, g). Note that, if 3(α, g)
= 0, then g(z) attains aeC infinitely often in D. In the theory of value-
distribution, the deficiency plays an important role and we know the fol-
lowing theorem: The deficiency of an analytic function (of unbounded
type) vanishes except a set of the logarithmic capacity zero, where the
logarithmic capacity is a potential theoretic outer measure ([3]).

On the other hand, various properties for value-distribution of lacunary
analytic functions are known. Let us note the following two theorems:

(75) There exists a positive number θ > 1 such that an analytic func-
tion g(z) in D attains every complex number infinitely often in D if
ΣΓ-o \g{k)\ = +oo and nk+ι(g)lnk(g) > θ (k > 1) ([17]).

(76) Let giz) be an analytic function in D such that limsupfc^ \g(k)\
> 0 and that Spec (g) is a finite union of Hadamard lacunary series.
Then δ(a, g) = 0 for all a e C ([10]).

These two theorems suggest that the deficiency of an analytic func-
tion g(z) of unbounded type vanishes for all complex number if Spec (g)
is sufficiently thin. We shall show the following

THEOREM 48. Let f(z) be an L-lacunary analytic function of un-
bounded type. Then δ(a,f) = 0 for all aeC.

It is natural to define d-thin sets: A subset E in Z+ is d-thin, if, for
any analytic function g(z) of unbounded type satisfying Spec (g) c E,
<5(α, g) = 0 for all aeC. Theorem 48 shows that there exist d-thin sets
and that L-lacunary sets are d-thin. But it seems difficult to determine
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d-thin sets.

For the proof of the theorem, we prepare some lemmas; in which the

first lemma is given by elementary calculus.

L E M M A 49. For any a, beC (b Φ 0),

--L Γ log+ 1/1 a + beu\ dt < min{log+ l/|α|, log+ 1/|6|} + 1 .
2π Jo

LEMMA 50. Let Q(i) be a non-constant Taylor polynomial such that

\Q(NQ)\>1. Then

(77) MQ(P) = m({te [0, 2π);\Q(t)\ < p}) < 32NQp`'»° (p > 0) .

Proof. We prove (77) by an induction for NQ. In the case of NQ — 1,

we have

<

MQ(p) < m({t e [0, 2π); |Q(1) sin n,(Q)ί| < p})

= m({t e [0, 2π); \Q(ί) sin t\ < p}) < 4m({ί 6 [o, | - ) ;

Suppose that (77) holds for all Taylor polynomial R(t) satisfying NR

= k and \R(k)\ > 1 and let Q(t) be a Taylor polynomial such that NQ =

k + 1 and \Q(k + 1)| > 1. Now let us show that MQ(p) < 2,2{k + l)p*nk+1)

(p > 0). In the case of p > 1, this inequality evidently holds. Next we

fix for a while a number 0 < p < 1. Set R(t) = Q'( ί)e- i ϊ ! l ί ^ 1 ; where n, =

ni(Q) and nk+ί = nft+1(Q). Since NR = k and |Λ(&)| = |Q(^ + 1)| > 1, we

have MR(pk^+1)) < 32k(pWk+1)Y/lc = 32kp1/(h*1). Set

P,(ί) = Re Q(t), P2(ί) = Im

ϋi = {< e [0, 2π); |Re Q'

U2 = {te[0,2π);

We have, for every ί e t/lf |Pί(ί)| = |Re Q'(ί)l > 1/V2 •nk+1p
k'(k+1> and hence,

for any interval I in Z7,,

Since U^ is a finite union of at most 2nk+1 intervals,
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Analogously,

m({teU2;\P2(t)\ < x}) <

Hence

fn1 = m({te Ux U U2; \Q(t)\ < x}) < 16/2~.^fc/(fe+1)x .

On the other hand,

M2 = m{Uϊ Π Uξ) < m({t e [0, 2π);

= MR(pk/(k+1)) < 32kpί/ik+1) .

Consequently,

MQ(x) <mx + m2< 16VT ^-&/(

Choosing x = p, we obtain MQ(p) < 32(k + ΐ)p1/(lc+1).

LEMMA 51. Let Q(t) be a non-constant Taylor polynomial such that

v(Q) > 1. Then

(78) MQ(p) < 32NQp1/Nl (p > 0) .

Proof. We prove (78) by an induction for NQ. In the case of NQ = 1,

we easily see (78) since v(Q) = \Q(NQ)\ > 1. Suppose that (78) holds for

all Taylor polynomial R(t) satisfying NR = k and v(R) > 1, and let Q(t) be

a Taylor polynomial such that NQ = k + 1 and v(Q) > 1. Now we show

MQ(p) < 32{k + iy / ( f c + 1 ) 2 (p > 0). In the case of p > 1, this inequality evi-

dently holds. For a fixed number 0 < p < 1, the following two cases are

possible:

(d) \Q(k + 1)| > pkV(k+1)2, (e) \Q(k + 1)| < pk'^k+1)2 .

In the case of (d), we consider R(t) = p-k2/{k + 1)2Q(t). Since NB = k + 1 and

+ 1)1 > 1, we have, from Lemma 50,

MQ{p) = MR(pι-k`«k+»`) < S2(k

In the case of (e), we consider R(i) = Q(t) - Q(k + i)e*»*+i«2>'. Since NR

= k and v(R) > 1, we have, from the assumption,

MQ(p) < MR(p + p^^*) < MR(2pk2/ik+1)2) <

< 32(k+ϊ)pmk+1)2 .

For a function P(£) in [0, 2π), we denote by
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1 Γ2π 1
= ^-\ log" 1

2π Jo |P(
-dt.

LEMMA 52. Lei Q(ί) 6e a non-constant Taylor polynomial such that

^ 1 α n c ^ ^ n be a positive integer such that 4πι>(Q)NnNeίN*1)i < re,

N = NQ and nN = nNQ(Q). Then, with Ra,n(t) = Q(ί) + αe i n ί,

-J- Γ h(Q + αeis

2π Jo
6(iV

Proof. Set

U={te[0,2π);

Ld = —

(r = e-<-^'>3)

t, = 1τtv\n, Uv = {te [0, 2π); tu + tjn e Uc]

log" ^ fft ( « ; = l , . .
| i ? ( ί + ί/ra)|

Note that /ι(i?) = (1/ra) Σ?.i ^, + -̂  By Lemma 51, we have

log ^M
o p

1 M^M/i + MR(τ) log 1 - lim Ms(ε) log 1 '
o p T «-o e .

iye-
N .

We have, for any t e Uv, se [0, 2π),

\Q(tu + sin) + aeu\ > \R(tv + t/ή)\ - \Q(tv + s/ή) - Q(tv + t/n)\

Σ (fe) ^ ( Q K 1 > τ - 2πv(Q)NnNn-ί
> τ - 2π

> τ__e >τ/2,

and hence

ί/n)|

max n) - Q(K + ί/n)|
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< 2r 2τr 2 \Q(k)\ nk(Q)n~ι < 4πτv(Q)NnNn`-1 < τe~iNil)i < e~N .
Λ = l

We have, for any s e [0, 2ττ),

Lv<-±~[ l o g + 1

2 ) &

[ l o g d t + e .
2π )uv

 & \Q(tv + s/n) + aeu\

Integrating each term by ds/2π in the above inequality, we have

Lv < (2π)~2 ί dt Γ log+ — — ds + e~N

< (2ττ)-2 f2ίΓ f" log +

~ Jo Jo &

Hence

n v=ι 2π Jo

This shows that the required inequality holds.

LEMMA 53. Let F(t) be a Taylor series such that there exists a positive

integer W such that T(W, F) < |F(W)|/4. (See the notation in Lemma 21.)

Then limm__ h(FJ - h(F). If F(t) satisfies also \F(W)\ > 1, then h(F) <

102.

Proof By Lemma 21, we see that, for any 0 < p < 1, MF(p)lp and

MFm(p)lp (m > W) are less than 102pF}Wp1/2. The Lebesgue dominated con-

vergence theorem shows that the first equality holds. If |F(W)| > 1, then

PF,W < 1> a n ( i hence

h(F) = - 1 - Γ 1 MF(p)dp < -j-Λ0*pF>w [ p'`'`dp < 102 .
2π Jo p 2π Jo

LEMMA 54. Let g(z) be an analytic function of unbounded type. Then

Σ^o\g(n)\2= +oo.

Proof. Since log x is concave,

T(r, g)<~ log ( l + -A- Γ |^(re") | 2 ^) < ^ log ( l + Σ |g(n)|2) .
2 \ 2ττ Jo / 2 \ n=o /

Now we give the proof of Theorem 48. Let f(z) be the function in
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the theorem. Without loss of generality, it is sufficient to show that

δ(O,f) = 0. Writing Λ(r,/)> 1/2* j^ log + l/|/(re")| dt (0 < r < 1), we have

T(rJ) = N(0, r,f) + h(rj) + 0(1) ("the first fundamental theorem" [11]

p. 166) and hence it is sufficient to show that liminf^ h(r, /) < +oo. Set

E = (jιfc)fc=i, where nk = nk{f) (k > 1). Let us remember the notation Θ{E)

and q(E). Since E is L-lacunary, there exists an integer mf

2 > 2 such that,

for m> m'2, m> 1920(25) and 4πθ(E)2memi exp {-q(E)m(l - gCE)"1)} < 1 .

The proof in the case of limsup*.^ \f(k)\ = +oo:

For each number 0 < η < 1, set

(m(η) - max {m e Z+ |/(m)| ^ra- - max {|/(A)| ̂ nfc; keZ+}}

[W(η) = nm ( f )

We easily see that lim^i m(τj) = lim^j μ(η) = + oo and l i m ^ r(^) = 1. (See

[5].) There exists a number 0 < η0 < 1 such that, for ^0 < η < 1, m(^) >

m'2 and (̂57) > 4. For a fixed 3?0 < η < 1, we consider a Taylor series 2^(ί)

- ΣU / ( W V ^ (no - 0). Then λ(r(7), /) - h(Fη). We shall prove

< 102. For the proof, we use Lemma 21 for F(t) = Fv(i) and W =

Since

A TW > 4(1 -

and

= Σ {»/m?) + nηW(ηf} \Fv(n)\
nφW{η)

Σ {«*/»»(,> +
fc()

[m(7)- l

Σ {^klnm{η) + nlln2

m(r})}
Λ = l

+ 6 Σ {njnm{v) + nllnl^n^lnl
Jc = m(η)+1 J

< \Fη(W(V))\l4 ,

we have, from Lemma 53, h(Fv) < 102. Hence liminf^ h(r, f) < liminf^! h(Fv)

< 102.

The proof in the case of limsup^^ \f(k)\ < + c o :

Without loss of generality, we may assume that v(f) < 1. Since

Σk=o\f(k)\2 = +00, there exists a strictly increasing sequence (m{£))~=ι of
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positive integers such that m(£) > m!2 and \f{m{β))\ > m(£)~\ Set W{£) =

nm(£) and r(S) = 1 — W(£)~\ For a fixed integer ^ > 1, we consider a Taylor

series F«(ί) = Σ ^ o f(k)r(£)^ein^. Set F'TO(ί) = ΣΓ=o Kk)τ{φein« (m > 1). We

use Lemma 52 for F(t) = F^t), n = nm and a = f(m)r(£)nm. Since

1)(m - l)^ m _!e m 4 < 4πmnmγE(m)emi

<4πθ(E)2memί

we have, from Lemma 52,

h(Fm) < -1- f
2ττ Jo

and hence

h(Fm) < (2π)-m + m'> Γ Γ
Jθ J 0

< ββ 2 ^4e-fc < log+

Since

f{m)r{mY-eίs)ds

+

+ 1 + 105.

ώ w 5 dsm

(Lemma 49) .

Σ
{

{njnmi£)

(« = | F'(W{6)) |/4 ,

we have, from Lemma 53, limm^OT h(Fe

m) = h(Fe). Hence

1 + 105 .h(Fe) < log+

Consequently,

liminf h(r,f) < liminf/z(Fe) < log+
105 .

§ 8. Ranges and cluster sets of L-lacunary analytic functions

8.1. In § 7, we showed that an L-lacunary analytic function of un-

bounded type attains any complex number infinitely often in D. In this

chapter, we shall study in detail the value-distribution of L-lacunary ana-

lytic functions. Let g(z) be an analytic function in D and U a subset of

D such that U Π 3D ψ 0, where 3D is the boundary of D. The range of

g(z) in U is defined by R(U; g) = {aeC;*{ze U;g(z) = a} = +00}. We
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denote by M(U; g) the totality of cluster points of a set (g(z))zeu in C when

\z\ tends to 1. We shall study ranges and cluster sets of L-lacunary ana-

lytic functions in some set U such that U Π 3D is a singleton.

We denote by D(a, p) (aeC, p > 0) the open disk with center a and

radius p. For every t e [0, 2π), set

R(t;g) = Π R(Γε(t);g) (the non-tangential range of g(z) at t)
0<£<l/2

M(t; g) = Π M(Γ£t); g) (the non-tangential cluster set of g(z) at ί)
0<£<l/2

M_(t;g) = M({re"}0<r<1;g) (the radial cluster set of 5(2?) at ί) ,

where Γ,(ί) = Uo<r<i 2>(re", e(l - r)). We say that ί e [0, 27r) is a Borel

direction of g(z) if i?(ί; g) = C. We say that Z e [0, 2π) is a dense direction

of g(z) if M(t;g) = C. For a compact set A in C, set M-χ(A;^) =

{t e [0, 2π); M^(t;g) = A}. For a strictly increasing sequence W=(rfc)fcβl

of positive numbers tending to 1, set Mw{t\g) = M i ^ e " } ^ ; ^ , Rw(t; g) =

Πo<e<i/2 Λ(U?.i ^(^e" , β(l - rfc)). We say that:

VF is a covering sequence (by g(z)) for te [0, 2ττ), if i?TF(ί; g) — C.

W is a void sequence for ί, if Rw(t; g) = 0.

VF is of pit type at t, if, for any compact set A in C,

g(D(rke
u, (1 — rfc)) contains A for infinitely many £.

W is of recurrent type at t, if it is a covering sequence of non-pit

type at t.

We write W(g) = (rk(g))^l9 where rΛ(g) - 1 - ^(g)" 1 (fe > 1). We shall

show the following

THEOREM 55. Let f(z) be an L-lacunary analytic function in D such

that (\f(m)\)2=ι is increasing and lim^*, \f(m)\ls(m;f) = 0. Then W(f) is a

covering sequence for almost all t e [0, 2π) (a.a.t). Almost all directions are

Borel directions of f(z).

(79) If v(f) < +oo, then W(f) is of recurrent type for a.a.t.

(80) If Σi \f(m)\s(m;f)-2 < +00, then W(f) is of pit type for a.a.t
m = l

COROLLARY 56. Let fa(z) (a e R) be an L-lacunary analytic function such

that \fa(m)\ = ma (m> 1).

(81) If a = 0, then W(fa) is of recurrent type for a.a.t.

(82) If a > 0, then W(fa) is pit type for a.a.t.
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THEOREM 57. Let f(z) be the function in Theorem 55. Then almost all

directions are dense directions of f(z).

(83) If f; s(m;f)-2 = +oo, then m(Mz\C;f)) = 2π.

(84) If £ \f(m)\ s(m; f)~2 < + oo, then m(Mz\{oo}; /)) = 2π.
m = l

THEOREM 58. Lei /(z) 6e ατι L-lacunary analytic function in D such

that v(f) < +oo and Σ^i\f(k)\2 = +oo. TΛeτi m(Mz\C\f)) = 2π.

COROLLARY 59. Let fa{z) be the function in Corollary 56.

(85) // -1/2 < a < 0, ίΛeπ, m(Mz\C;fa)) - 2ττ.

(86) // a > 0, ίAen mCM^Cίcx)};/.)) - 2ττ.

THEOREM 60. Lβί fa(z) be the function in Corollary 56 and let W =

(rk

rj(f«))7=i a subsequence of W{fa).

(87) J/ Σ 1/̂ i < + 0 0 ? ί̂ eft W" is α void sequence for a.a.t.

(88) // 2 1/ ;̂ = + °° and (kj + i ~ kj)7=i ίs increasing, then W is a coυer-

ing sequence for a.a.t.

Remark 61. In Theorem 55, we cannot replace ''almost all" by "all"

since, for any L-lacunary series (nk)%=L, 0 6 [0, 2π) is not a Borel direction

of an analytic function J^=ιz
n\ The condition " l i π v ^ \f(m)\ls(m;f) = 0"

is natural in the theory of lacunary series ([14], p. 396) and it is neces-

sary in this theorem since we see that, if an L-lacunary analytic func-

tion g(z) satisfies \g(m)\ls(m; g) > VΓ— 1/m (m> 1) and Ord(^) =

limsup^oo loglogs(m; g)j\ogm < +oo, then W(g) is a void sequence for

alljί. At last we note that the statements in (87) and (88) are independent

of a.

8.2. Lemmas

The following lemma is essential in our discussion.

LEMMA 62 ([5]). Let p be a positive integer and g(z) an analytic function

in D(0, r) such that \g{v)(0)\ > yx and \g{p)(z)\ < y2 (\z\ < r). Then g(z)

attains all values w satisfying \w — g(0)\ < λ(p)rpy?+1yϊp, where λ(p) is a

positive constant depending only on p.
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LEMMA 63. Let m > 2 and let (wfc)Γ=i be a finite sequence of positive

numbers. Then, with vk = Σι*=i ue (1 < ^ < m)> w e have ΣT=2 ujvk <

log (vju,). If 2uk <vk (2 < k < m\ then ΣT=2 uk/vk > 1/2-log (yjux).

Proof. Let us define a function h{x) in [1, m) by Λ(x) = vk_ί +

wfc(x - A + 1) (A - 1 < x < A, k > 2). Then wjι;fc < h'(x)jh(x) < uk\vk_γ

(k- 1< x< k,k>2). Hence

TO /»TO

Σ w j ^ < h'(x)lh(x)dx = log (U../M,) .

fc = 2 J 1

If 2uk <vk (2< k< m\ then vk <2vk_ί (k> 2). Hence

m Λ tin 1 Γm I

Σ ujυt > -i Σ w»/ϋ.-. > -J- h'(x)lh(x)dx = i- log (!;„/«,) .
/ί -2 ^ A; = 2 ^ J l ^

Throughout 8.2, g(£) is an L-lacunary analytic function in D such

that Ord (g) = \imsupm_00loglog s(m; g)/log m< +oo. We put:
rc0 = 0, ^fc = nh(g\ rk = rk(g) = 1 - nk{g)~ι (k > 1) .
C(t; g) = the totality of cluster points of a sequence (gm(e"))m=i in

(89)
C, where gm(z) = 2 g(k)znι .

k = 0

m - 1

f,m(ί) = Σ g ( W " + e-'^my^ (m > 1) .
m - 1 oo / 1 I r \Wft-l

ί,» = Σ lί(A)|n*/n» + Σ l£(*)l (n*/Λ«)(—^-^-1 (m > 1) .

LEMMA 64. Let 0 < ε < 1/2, m a positive integer and te [0, 2π). Then:

(90) l i m A ^ = 0 .

(92) \g(rme") - g(z)\ < ε \g(m)\ + εAg,m (z e Dm(t, ε) = D(rme\ ε(l - rj) .

(93) If \g(rme«) - a\ < 2~7λ(l)ε \g(m)\ and AgtVl < \g(m)\l8, then

g{Dm{t, e)) 9 a.

Proof. (90): Since Ord (g) < +oo, there exists a positive number M

such that \g(k)\ < ekM (k > 1). Denoting by E = (nk)k=u we have

m - 1

Ag,m< Σl ekMnklnm + 2 X| ekM(nklnm) exp (— rcfc/rcm)

- 2(3! 23) Σi ekMn2Jn\
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< em"ΪE(m) + l(fγEΛ(m) sup (ek"ΪE(k)) .
k>vι + l

Hence Lemma 5 shows that limm_+oo Ag>m = 0.

(91): We have

ra-l

\g(rme«) - F?,m(t)\ < Σ \g(k)\ (1 - O + \g(m)\ (e" - r»-)
fc = 0

+ Σ \g(k)\ rnj < \g(m)\lnn + Ag,m .
k = m + l

(92): We have, for any z e DJjt, e),

\g(rme«) - g(z)\ < \rme" - z \ ± \g{k)\ nJ
2

< (1 - rm)nm(\g(m)\ + A ί fTO) < ε \g(m)\ + εAg,m .

(93): We have, for any zeDm(t,ε),

\g\rne
u)\ > \g(m)\ n^-1 - Σ \g(k)\ nkr^ > \ \g{m)\ nm - Ag}7nnm

> \g(m)\ nmfλ - AgJ\g(m)\) > 1 \g(m)\ nm

and

\g\z)\ < \g(m)\ nm + Σ \g(k)\ / i / r 1

< \g(m)\ nJX + AgJ\g(m)\) < 2 \g(m)\ nm .

Hence Lemma 62 shows that g(z) attains, in Dm(t, ε), all values w satisfy-

ing \w - g(rme")l < λ(ΐ)εn^(ll8 \g(m)\ nm)\2 \g(m)\ rcj'1 - 2"ίλ(ΐ)e \g(m)\.

LEMMA 65. There exists a strictly increasing sequence W of positive

numbers tending to 1 such that, for any te [0, 2π), Mw(t; g) = C(t;g).

Proof We have \g(k)\ < eκM (k > 1). Putting W= (rffiml (K = 1 -

e~2kMn]:1), we show that W is a required sequence. There exists a positive

integer mi such that, for m > mi, γsΏec(g)(m) < 2e~2mM. Then we have, for

m > mi and t 6 [0, 2π),

| |f(r;e") - gm(eu)\ < (1 - r^) Σ \g&)\ nk +
fc 0

e X p



146 TAKAFUMI MURAI

Lemma 5 and (90) show that the last term tends to 0 when m -> oo. Hence

Mw(t; g) = C(t; g) for any t e [0, 2π).

LEMMA 66. If liminf^^ \g(k)\ > 0, then, for any te[0,2π) and any

subsequence W of W(g), Rw(t; g) is closed.

Proof. Since l iminf^ \g(k)\ > 0, Kg = inf^ \g(k)\ > 0. Let a e C and

Σ a set in Rw(t; g) such that Σ B a. Given 0 < ε < 1/2, we put ε0 =

2"9^(l)ε. There exists b e Σ such that \b - a\< ε0Kg. Since Σ c R(Γεo>w(t), g),

there exists a strictly increasing sequence (m^J^ of positive integers such

that g(Dmj(t, ε0)) 9 6 (j > 1). By (92), \g(rmje
u) - 6| < ε0 |£(m,)| + ε0A^,m, and

hence \g(rmje
u) - a\ < ε0 |£(m,)| + ^A^,m, + ε0Z^ (j > 1). Since lim^^ Ag>mj

= 0, we have, from (93), g(Dmj(t, ε)) 9 a for all sufficiently large j . Hence

R(Γε>w(t); g) 9 a. Since 0 < ε < 1/2 is arbitrary, we have Rw(t; g) 9 α.

LEMMA 67. Let γ be a rectίfiable curve in D such that, for any 0 < r

< 1, r Π D(0, r)c is connected. Set Λv(γ;g) = f \g\z)\ λη(g(z))dsr(z) (η > 0),
Jr

where dsγ is the element of the curvilinear integral. If Aη(γ;g) < + oo for

all η > 0, then M(γ g) is a singleton in C.

Proof. Suppose that M(γ g) is not a singleton. Then M(γ g) Π C Φ 0.

Since ^ is connected, M(γ g) is also connected and hence M(γ g) Π C

contains at least two points. Let a, b (a Φ b) be such two points. Set

eJ. = |α — 61/3 and 3?0 = |α| + 2εQ. Since ^ Π D(0, r)c is connected for all 0

< r < 1, we can choose inductively two sequences (Zj)J=1, (^)J=1 in γ and

a sequence (fr)JU of subcurves of y so that |^(^) — a\ < ε'Q, \g{z3) — g(zf

3)\

= 2εJ, g(2i) e D(a, 2ε'j) (z e Uy-i r.) and r , Π r r = 0 0' ^ iO Then

% = \g(z,) - g(z'j)\ < ί \g'(z)\ dsr(z) = ί |^(«)|χ ? β(g

Since Λiηo(γ;g) < +oo, the last term tends to 0 when 7-> 00. This is a

contradiction.

8.3. Proof of Theorem 55

Let f(z) be an L-lacunary analytic function in D such that (|/(m)|)^=1

is increasing and l im^^ \f(m)\ls(m;f) = 0. Without loss of generality, we

may assume that |/(1)| = 1. We use the notation F.tm(t) and A.?m in the

preceding paragraph. Set:
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In, = 0, nk = nk(f), rk = rk(f) = 1 - »»(/)-' (k > 1)

Af = sup A,,m, Fm(t) = Ffιm(t) = `ΣJikW" + e- '/We'" 1

(94) {do = |/(0)|, αm = I/(TO) I, sm = s(m;f), γ(m) = rSpec(f)(m)
/ M \l/2

w(?n, M) = ( Σ ol )

T,¥ = log s3/ (£ > 1, 1 < m < M) .

For 0 < ε < l/3β, two positive integers K, M (K < M) and a Borel set [7

in [0, 2π), we put:

(95)
h(K,M;U,ε)= ί Σ λεam(Fm(i))dt

H(ίΓ,M; C/,ε) = ί i f ] Λαm(^(ί)))2dί
J U Km = K J

The following two lemmas play an analogous role as in Theorem 30.

LEMMA 68. Let 0 < ε < l/3e, K a positive integer and let U be a finite

union of intervals in [0, 2π). Then there exists a positive integer M1 such

that, for M> M19 10-4ra(C/)ε2TV < h(K, M; U, ε) < 1010rn(U)ε2fM. (Compare

with Lemma 36 and 38.)

Proof. Without loss of generality, we may assume that U is an inter-

val satisfying m(U) Φ 0. Since lim^oo am/sm = 0, there exists a positive

integer m[ > 128 such that, for m > m'4, am < 2m/3 and Av(Fm) < w(τ(m); Fm).

For every m > m[, we use Lemma 16 and 20 for Q(t) = Fm(t), J = τ(m),

7] = εam, M = m and I — U. Then

ί lam(Fm(t))dt < lWm(Uya*mw(τ(m);
Ju

and

ί λεam(Fm{t))dt > 10-3m([/)ε2α2

m^(l; Fm)~2 - o(a2

mJ u

Note that s~2 < w(l; Fm)~2 and w(τ(m); FJ'2 < 2e2s~ Hence

10"3(l - o(l))m(C/)ε2 Σ atem < h(K, M; U, e)

< 108(2e2 + o(l))m(ϊ7)ε2 Σ a?ms;n

2 .
m = K

Since lim^^^ amjsm = 0, we can apply Lemma 63 for all sufficiently large

M. Then we easily see the required property.
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LEMMA 69. Let ε, K and U be the same as in the preceding lemma.

Then there exists a positive integer M2 such that, for M > M29 H(K, M; U, ε)

< 1031ε3m(U)f2

M. (Compare with Lemma 37.)

Proof. Without loss of generality, we may assume that U is an inter-

val satisfying m(U) ψ 0. We have

(96) H(K, M; U, ε) < 10^π2h(K, M; U, ε) + g He{K, M U, ε)} ,

where H£(K, M; U, ε) = f ΣχaJJ?m(t))λtalFj(t))dt and Σ£ is the summation
J u

over all m, j satisfying K < m < j < M, m = £ (mod 128) and j = £
(mod 128). (See (60).)

For the estimation of H£(K, M; U9ε)(l<£< 128), we estimate LmJ =

ί λεa (Fm(t))λεa.(Fj(t))dt (j — 127 > m > mi), where m[ is the integer chosen
J u
in the preceding lemma. If ^v(F3) < w(τ(m + j) Fj), we use Lemma 18 for

Q(t) = Fm(t), R(t) - Fs(t), J=τ(m), J' = τ(m + j), η = εam, ηf - eaj9 M = m,

M = i and 7 = t/. Since w(τ(m); Fm)~2 < 2e2s"2 and w(τ(m + j); F3)~2 <

2e2w(m,j)~2, we have

Lmιj < 102Qm(U){ε2alMτ(m); Fm)~2 + O(m-2)}{ε2a)w(τ(m + j); F3)~2 + O(r2)}

+ 0(m-ψ2)

If 4v(Fj) > w(τ(m + j); F,\ then a)w(m, j)~2 > 2~1e-2v(FJYw(τ(m + j); F3)~2 >

2"5e-2. In this case, we use Lemma 19 for Q(t) = Fn(t), R(t) = F^t), J =

τ(m), η = εam, rf = εaj (<|F ;0')|/3), M = m, Mf = j and I = U. We have

L m > J < lW

+ O(m-2r2)
2

mS-
2 + O(ττr2)}{e + O ( r 2 ) }

In any case, we have

LmJ < 1023rn(?7)ε3{α2

ms-2 + O(m-2)}{a)w(mjy2

By (96), we have

H(K, M; U, ε) < 10'π2h(K, M; U, ε)

+ 1028128rn(C7)ε3f Σ a%fi£ + 0(1)){ Σ a)w(mjy2 + 0(1)} + 0(1) .
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Since ΣZ=κ <4A;2 Σf-»+i a)w(m,j)-2 < 4 iy iog w(m, M) - log am) <

we obtain the required property.

For 0 < ε < l/3e, aeC and a positive integer μ, set t/(μ, α, ε) =

U ; = , {te [0, 2π); \Fm(t) - a\ < εam}. Using Lemma 68, 69 and Corollary 9,

we have m(U(μ, 0, ε)) = 2π. Considering f(z) — a, we have m(U(μ, a, ε)) =

2π. Choosing a countable dense set Σ in C, we put U — Γ)aeΣ ΠΓ=io ΠΓ=i

£/(μ, α, 1/̂ ). Then m(£7) = 2τr. Now we show that, for any t e U, Rw(f)(t; f)

= C. Let toe U, ae Σ and 0 < ε < l/3β. Choose a positive integer £0 so

that l/̂ o < 2~*λ(ϊ)ε. Since 4 6 ΠΓ=i ^0"> α? l/̂ o)> there exists a strictly in-

creasing sequence (mj)ys:1 of positive integers such that \Fmj(t0) — a\< amj£o.

Then

\f(rmje«°) - a\ < \f(rnje"') - Fmj(t0)\ + \Fmj(Q - a\

< amjnm. + Af>mj + amj£o (j > 1) .

Since l imj^ Aft7ΛJ = 0, we have, from (93), f{Dm.(tQ, ε)) 9 a for all sufficiently

large j . Hence R(ΓeiW(f)(tQ); f) 9 a. Since 0 < ε < l/3e is arbitrary,

Rwwitolf) 3 a- Since aeΣ is arbitrary and Rw(f)(t0;f) is closed, Rw(f)(t0;f)

= C. Hence VF(/) is a covering sequence for a.a.ί. As an immediate

consequence, we know that almost all directions are Borel directions of

(79): Suppose that v(f)< +oo. By (92), f(Dm(t, 1)) c D(f(rmeu),

v(/) + A/). Hence f(Dm(t, 1)) (m > 1, ί e [0, 2π )) does not contain any open

disk having radius v{f) + Af + 1.

(80): Suppose that Σ^=i αms^2 < +oo. For each 0 < ε < l/30e, we

shall define a sequence (Dm(t, ε))^=1 (ί e [0, 2ττ)) of domains in D such that

DTO(ί, ε) C ΰm(ί, ε) C Dm(t, lOε) for all m > 1 and all t e [0, 2π) and that

C(f(t,ε);f) = {co} for a.a.ί, where f(ί, ε) = 3((J«=i ΛOT(ί, e))

Then our assertion immediately follows from Rouche's theorem. In the

following lemma, we define such a sequence.

LEMMA 70. For η > 0, 0 < e < l/30e, a positive integer m and t e [0, 2τr),

set:

r-^rnfa ε) = {reu~Unm; rm - εjnm < r < rm + εjnm}

r~,Jt, ε) = {reίt+u/n™; rm - εjnm < r < rm + εjnm}

Tumi** ε> = K r - + εl^)eίt + ίs; - ejnm < s < ε/nm}

n.mfo ε> = Kr- - Φ > ί ί + '5; - ε K < s < ε/nm}
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γm{t, e) = u {nUt, e); C = ->, *-, 1,1}

i3m(ί, ε) = the interior of γm(t, ε)

r - ( ί ) = { re" ;0< r < 1}

j-(ί, ε) = f(t, ε) U r-(0

Λ,,(ί. *) = Σ f I/'<«)! W(z))d8rίUz) (ζ = - , - , ί, I)
m = l J r ζ , m ( ί , ε )

-̂,,ω= f i/'ί^iw*))*^,.,^)

Λ«.e)= f |/'(2)M,(A«))*»r(t,.)(«)-
J r ( ί , 0

Then, for any 0 < ε < l/30e, "{^^ί, ε ) < + oo for all η > 0} /or a.a.ί".

Proof. First we show that, for any 27 > 0, ΛLi5? = Λ_iV(t)dt < + 00.
Jo

Denoting by LWiT = Γ" Σ α.^r^-'f Γ ^(/(re«))ώ)dr (TO > 1, r0 = 0), we
Jrm-ik = l Uo J

have

Λ-,, < Γ Σ α ^ r - ^ ' ί Γ λη(f(reιt))dt}dr = Σ Lm,, .
JO k = l U θ J m = l

Hence it is essential to estimate Lm>η for all sufficiently large m.

Since (αm)^= 1 is increasing and lim™^ amlsm = 0, there exists a positive

integer m!h > 128 such that, for m > mi, 8am < sm_2, sm < \HΣ sm_2 and am

< 2m/10. For a fixed r satisfying rm_, < r < rm (m> m'6), we have 1/(^)1 <

\Fr>m(t)\ + Af, where Fr,n(t) = ΣT=of(k)eίnkt + / ( / n - l ^ - ^ " - 1 ^ ^ ^ ^ ^ " ^ .

Hence λη(f{reu)) < λVQ(Fr,m(t)), where 370 = 57 + 4, . Note that m - 63 > r(m),

4v(F r,J < ιι<r(m); F r , J and w(τ(m); F r,m)" 2 < 2e2s"2. We use Lemma 18 for

Q(t) = Fr>m(t), J = τ(m), M = 2m/10 and I = [0, 2ττ). Then we have

Γ\(/(re"))d*< Γ;ιβ(FrιΛ(ί))Λ
Jo Jo

< lθ*{(2π)ηlw(τ(my, F r,m)" 2 + (2ττ

< 101 0^s-2 + O(27m/ί0γ(τ(m)))

We have also, for any m > mi,

Σ a^r^-`drK Γ* ( 2 «Λ + Σ aknkr
n

m-1 00

< Σ α f̂c/^m-i + Σ α*C < A/,m-i + flm-i + «m + AftΊn < 2(am + Af) .
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Hence

Lm>v < Γ Σ aknkr^{10^ls^ + 0(2^r
J rm-l A = l

< 2 1010^(αm + Af)s~J + O(2*m/10γ(τ(m)))

Consequently,

/L,, = Σ Lm,, < 2 1010^ £ (am + Af)s^ + 0(1) < +<χ> .
7/1 = 1 771 = 772 g

/`2τr

We have analogously, for any η > 0, 0 < ε < l/30e, Λζ (ί, ε)dt < + oo
Jo

(ζ = «-, t, !) and hence Γil,(ί, ε)Λ < + CXD. Putting f/(ε) = ΠΓ-i {ί e [0, 2ττ);
Jo

Λ (ί, e)< + oo} (0 < ε < l/30e), we have m(U(ε)) = 2τr and, for any * e ί/(ε),
"yί^ί, ε) < +co for all η > 0". This completes the proof of this lemma.

Since Σ ; = 1 s ; 2 < o o , C(t;f) = {oo} for a.a.ί. Since O r d ( / ) < + o o ,

there exists a sequence W such that Mw(t;f) = C(t;f) for a.ί. Lemma 67

and 70 show that "M(f(ί, ε); /) = {oo} for a.a.Z" for any 0 < ε < l/30e. Put-

ting ί/ = nr-ioo {ί e [0, 2ττ); Rw(f)(t; f) - C, M(f(ί, ε); /) - {oo}}, we have m(U)

= 2π. Rouche's theorem shows that, for any t e U, W(f) is a pit sequence

for t. This completes the proof of (80).

8.4. Proof of Corollary 56, 59 and Theorem 57, 58

Corollary 56 is an immediate consequence of Theorem 55. We show

Theorem 57. Let f(z) be the function in this theorem. We use the nota-

tion am, sm, Λ^,η(t) in 8.3. Then almost all directions are Borel directions

of f(z) and hence almost all directions are dense directions of f(z).

(83): Suppose that Σ ; = 1 s ; 2 = +oo. Since (am)Z=i is increasing, (D)

in Theorem 30 shows that m{C'\C\f)) - 2π. Since Ord(/) < +oo, there

exists a sequence W such that Mw(t;f) = C(t;f) for a.*. Since MJf\f) =>

Mw(t;f) for a.ί, m(Mz\C;f)) = 2ττ.

(84): Suppose that Σ m = i M ; 2 < + ^ . By (C) in Theorem 30,

miC-`doo}; /)) = 2τr. There exists a sequence VΓ such that Mw(t;f) = C(t; f)

for a.t. We have also "^ , 9 ( ί ) < + °° for all η > 0" for a.a.ί. By Lemma

65, m(Mz\{^};f)) = 2π.
Theorem 58 is an immediate consequence of Theorem 31. Corollary

59 is an immediate consequence of Theorem 57 and 58.

8.5. Proof of Theorem 60

Let fa(z) be the function in this theorem. We write simply f(z) — fa(z)
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and use the notation in 7.3: am, sm, w(m, M), nm, rm, Fm(t), Af>m. Let
(mj)y=1 be a strictly increasing sequence of positive integers. Note that
am. = m« and smj = {(1 + o(l))/(2α + ϊ)}mγ1/2 (j > 1). If Σ7«i 1/m, < + oo,
then

if Σr-i

(97)

and

(98)

ljIΠj =

M

Σ

+ 00 anc

M

3=1

M
2 /-» — 2 X '

= (2α +

< (2α +

j + i ~" mj)7=i is increasing, then

-j+i mfc — mj(mjlmk)
2a

M 1

M -I M-j + 1 -1

< (2a + 1)2(1 + o(l)) Σ — Σ
J = I nij fc=2 ^nfc —

< (2a + 1)2(1 + o(l)) (?(!!»,)(£ —

where (?(nz,) is a positive constant depending only on mx.

For 0 < ε < l/3e and aeC, set y(α, ε) = {< 6 [0, 2s); " | F β / ί ) - o | < εαm/'
holds for infinitely many j}. Choosing a countable dense set Σ in C, set
Y(β) = Daes Y(a,ε), Y= Γ\?-» YQ-M and Yc = Π.βz ^ l/40)c.

(87): Suppose that Σ7=i 1/^ < +oo. First we remark the following
implication: Let ίe[0, 2τr) and aeC. Then

"limmf \Fmj(t) - a\lamj > 1/50" φ "Rwω(t;f)< 3 D(α, 1/100)" .

In fact, we have, for 2 e Dmβ, 1/80) (7 > 1),

|/( 2 ) - a\ > \Fmj(t) -a\- \f(rmje") - Fmj(t)\ - \f(z) - f(rm/')\

> \Fmj(t) -a\- (—<*», + -jβAt

and hence

liminf inf {\f(z) -a\;ze Dmβ, 1/80)}
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a\ - —am.) >
' 80 3 J ~

am.) >
80 3 J ~ 200

which shows that Rw(f)(t;f)c =) D(a, 1/100).

Using Lemma 68, we have

Σ λamj/ιQ(Fmj{t))dt - θ ( Σ « . ) < +co

and hence ί ' Σ Γ - I Xamjw(Fmβ))dt < + 00, which shows that τn(Y(0, l/50)c)

= 2π. Considering f{z) — a, we have m(Y(a, l/50)c) = 2π and hence m(Yc)

= 2π. For ί e 7 c , we have Rw(f)(t;f)c ID [JaeΣ D(a, 1/100) = C that is,

Rw(f){t\f) — 0

(88): Suppose that Σ7-i ^lmj = +°° and (m i+1 — mj)j=1 is increasing.

For 0 < ε < l/3β, two positive integers K, M (K < M) and a Borel set J7

in [0, 2π), we define

h(K, M;U,ε)=\ Σ λ,amj(FWJ(t))dt

H(K, M;U,ε)=[ {£, λtamj{Fmβ))\ dt.
(99)

Then we see analogously as in Theorem 55 that, for any ε, K and U

(m(U) Φ 0), there exists a positive integer Mγ such that, for M > Ml9

h(K, M; U, ε) > 10-Vm(U) Σf-i « and

H(K, M; U, ε) < 10^m(U) Σ < ^ 2 Σ < ^ ( ^ , ^)~ 2

3=1 k=j+l

By (97) and (98), there exists a positive integer M2 such that, for M > M29

h(K,M; U,ε)2fϊ(K,M; C7, ε)"1 > Vd-^le{m^lm{U). From this fact, we

obtain m(Y(0, ε/3)) = 2;r. Considering /(z) — a, we have m(7(α, ε/3)) = 2π

and hence τw(y(ε/3)) - 2ττ. Consequently, m(7) = 2ττ. By (92), (93) and

L e m m a 66, w e o b t a i n Rw{f)(t;f) = C (te Y).

Remark 71. We see more in detail the following proposition: Let f(z)

be an L-lacunary analytic function such that (\f(m)\)Z=i is increasing and

that (\f(m)lf(m+ ΐ)\)Z=i is decreasing and let W = (rkj(f))j=1 be a subse-

quence of W(f).

(100) If Σ \f(kj)\2s(kj;f)-2 < +00, then W is a void sequence a.a.ί.

(101) If Σ Ifikjfsikjif)-2 = +00 and (^ + 1 - ^ ) ; = 1 is increasing, then

is a covering sequence a.a.ί.
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Remark 72. It is an interesting problem to determine analytic func-
tions in D having Borel directions. In this area, the following question
is natural: For a given positive continuous function h(r) in [0,1) satis-
fying lim^j h(r) = +oo, is there exist an analytic function g(z) such that
T(r, g) < h{r) (0 < r < 1) and that almost all directions are Borel direc-
tions of g{z)Ί

We can answer, in this paper, this question by using Theorem 55. In
fact, given such a function [Λ(r), we can define an L-lacunary analytic
function fo(z) = Σ?=i zn« such that T(r, f0) < h(r) (0 < r < 1). Then Theorem
55 shows that it is a required function.
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