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ON LACUNARY SERIES
TAKAFUMI MURAI

§1. Introduction

We are concerned with the behaviour of Fourier series in an interval
[0, 27) and, in particular, interested in that of so-called lacunary series.
The spectrum of a Taylor series F(f) ~ D> 7., F(n)e™ is defined by Spec (F)
={neZ*; ﬁ'(n) #+ 0}, where Z* denotes the semi-group of positive integers.

Lacunary series are Taylor series whose spectra are sparse in Z*.
Let us define more precisely lacunary series. Let A(x) be a positive in-
creasing function in an interval [1, +o0). We say that a Taylor series
F(t) is h-lacunary if there exists a number ¢ > 1 such that, for n, me
Spec (F) (n > m), h(n) > qh(m). We say that F(¢) is L-lacunary if it is
(log x)-lacunary. We say that F(f) is Hadamard lacunary if it is x-lacunary.

According to J. P. Kahane [6], the history of lacunary series goes back
to Weierstrass’s example, which is a continuous and nowhere differentia-
ble function: > v, &"cos A"x (, where 1 is an odd integer >3 and £ a
positive number such that (1 4+ 37/2)/2 < € <1) ([6]). The conception of
“Hadamard lacunary” comes from the following classical theorem: A
Taylor series > ,i., @,2™ satisfying limsup,_.. |a;[/™ =1 has {z;|2| = 1} as
a natural boundary if there exists a number ¢ > 1 such that, for any
k>1, n.,>qn, ([6]). Hadamard lacunary series are studied by many
authors and many interesting properties are known. Various series having
sparse spectra are also discussed by many authors but, as far as the
author knows, L-lacunary series are first introduced in this paper.

There are many interesting properties of lacunary series which are
reflection of properties of Steinhaus series ([14], p. 541) and so it is im-
portant to deal with lacunary series as series of almost independent random
variables. From this point of view, the theory of lacunary series may be
one of theories of sums of almost independent random variables.

The aim of this paper is to study the behaviour of Fourier series
having sufficiently sparse spectra since it seems that such series have
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various interesting and important properties as stated above. We may
expect that the behaviour of such series resembles that of Steinhaus series,
which we shall confirm later. On the other hand, we shall also see
some properties (of such series) which lose the meaning in Steinhaus
series. However we know that some interesting properties of Hadamard
lacunary series come from the fact that spectra of such series are
sparse, many technical difficulties and mathematically essential something
prevent us from doing parallel discussions with the probability theory and
from discovering new interesting probabilitistic properties. So we introduce
L-lacunary series. The conception of “L-lacunary” is nothing but a con-
crete representation of a vague and abstract conception of “sufficiently
sparse” and a statement of “an L-lacunary series satisfies (P)” only signifies
“a Fourier series having a sufficiently sparse spectrum satisfies (P)”’. How-
ever it i1s an interesting subject to study suitable conditions on spectra,
we shall not discuss this subject in this paper.

Now we explain the content of this paper. §2 is a chapter prepared
for later applications. To avoid repeating the same discussion in the
course of the proof, main lemmas are gathered in § 3.

§4: As stated above, the theory of lacunary series is in deep con-
nection with the probability theory and so it is important to try to reorgan-
ize this theory from the point of view of the probability theory. We shall
begin with the discussion on the 0-1 law. We shall also try to give some
mathematical answer to the question why L-lacunary series behave like
sums of independent random variables. To do this, we shall introduce
the conception of “pseudo-independent”, which is usual in the probability
theory, and show that L-lacunary series are pseudo-independent. We shall
see that Hadamard lacunary series are not generally pseudo-independent,
(which attracts us) and which suggests that more deep investigations are
necessary. This chapter is, in fact, incomplete and the author hopes to
return to this subject at some time ([6], [16]).

§5: This is a main chapter. We shall study the behaviour of partial
sums of L-lacunary series and shall show that simple conditions on coef-
ficients determine the transience and the recurrence of L-lacunary series
as seen in the probability theory. In 5.4, we shall show that, by our
results on L-lacunary series, we can judge whether a given Steinhaus
series is recurrent or transient. Even our results on Steinhaus series are

new. ([7], [9)
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§6: However we study, in §5, the behaviour of L-lacunary series
except sets of measure zero, the study of thin sets remains. We shall
show that the volume of sets where L-lacunary series converge is simply
determined. ([3], [9])

§7: The spectrum Spec (f) of an analytic function f(z) in the open
unit disk D is defined analogously as above. Then h-lacunary analytic
functions are also defined. The study of lacunary analytic functions is
classical. In this area, the following fact, which is called the Picard
property of lacunary analytic functions, is well-known: There exists a
positive number g (= about 100) such that an analytic function f(z) attains
every complex number infinitely often in D if 37z, |f(n)| = +oo and if,
for any n, me Spec (f) (n > m), n > qgm. This fact shows that the value-
distribution of lacunary analytic functions is, in a sense, uniform but this
is not sufficient to know the quantitative uniformity of the behaviour of
such functions.

There is a quantity d, which is called the deficiency, as a quantitative
representation of the value-distribution. The deficiency 6(-) = d(-,f) is a
mapping associated with a given function f(z) from the complex plane C
to an interval [0, 1] and this plays an important role in the theory of the
value-distribution. We remark that if §(a,f) = 0, then f(2) attains a infi-
nitely often in D.

The above fact suggests that the deficiency 4(-,f) of a lacunary

analytic function f(2) vanishes for all complex number. To check this
fact, which may be called the Nevanlinna property of lacunary analytic

functions, is to reconfirm that the value-distribution of such functions
is uniform in the sense of the deficiency. We shall show the Nevanlinna
property of L-lacunary analytic functions. ([5], [11], [18])

§8: In this section, we shall study more in detail ranges and cluster
sets of L-lacunary analytic functions. Let f(2) be an analytic function in
D and U a subset of D. The range of f(z) in U is defined by R(U;f) =
{aeC;Hze U; f(2) = a} = + oo}, where *{-} denotes the cardinal number
of {-}. It is too difficult to study ranges of L-lacunary analytic functions
in arbitrarily given subsets. We shall choose U suitably and shall show
that simple conditions on coefficients give information on R(U; -).

However we only discuss, in § 5, the behaviour of partial sums of L-
lacunary series, it is also interesting to study the behaviour of sums of
such series by the Abel mean. This is to study the radial behaviour of
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L-lacunary analytic functions. We shall discuss radial cluster sets. ([7],
[12])

At last, the author would like to express the deep gratitude to Pro-
fessor M. It6 for his encouragements.

§2. Preliminaries

2.1. Fourier series

An interval [0, 2r) is identified with the unit circle T in the complex
plane C by a mapping £¢ [0, 2z) > e e T. A topology on this interval is
induced from 7. The distance between two elements s, ¢ is min {|s — |,
2r — |s — t|}. We say that a subset U of [0, 2r) is an interval if the image
e’V of U is an interval in T. We denote by “m” the 1-dimensional Lebesgue
measure.

Let Z denote the group of integers. For a sequence (c,),cz of complex
numbers, we consider a correspondence F(f): t — (c,e'""),cz and say that
F(?) is a (formal) Fourier series. We write ﬁ'(n) =c¢, (neZ) and F() ~
> nez F(n)e™. If lim,.... D imi<n F (n)e'™ exists almost everywhere, we write
F(@) = 2 ez ﬁ(n)e“”. A(0, 2z) denotes the totality of Fourier series F(f)
satisfying Znezlﬁ"(n)|< +co and L*0, 2x) denotes the totality of Fourier
series F(t) satisfying Z‘nez|ﬁ'(n)|2 < + oo,

For a Fourier series F(f), we put:
Spec (F) = {ne Z — {0}; F(n) = 0}
N, = (the cardinal number of Spec (F)) (£ +o0)
deg (F) = sup {|n|; neSpec (F) U {0}} (< +o0)
v(F) = sup {[ﬁ‘(n)l; n € Spec (F)} (L + ).
We say that a Fourier series F(¢) is a (formal) Taylor series, if Spec (F)

(1)

is a subset of the semi-group of positive integers Z*. For a Taylor series
F(t), we denote by nyF) = 0 and by n (F) the k-th integer in Spec (F).
We write simply n, = n,(F) (k> 0) when no ambiguity can arise. We
also write F(k) = F(n,) (k> 0) and F(t) ~ 37, F(k)e'. For a Taylor
series F(t) and a positive integer m, we put:

SFm(t) — }’f F(R)eim

(2) s(m; F) = (35 (Faor) "

wm; F) = (3 1F@)" (< + o).
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We say that a Fourier series F(f) is a polynomial, if N, < + o and
that F(¢) is a Taylor polynomial, if N, < + oo and Spec (F) C Z*.

Let f(2) be an analytic function in the open unit disk D. Putting
Fn) = 1/2x j fe*/2)27e-"dt (n > 0), we have f(z) = 312, f(n)z". Using
a Taylor serges = f(n)et, we define analogously: Spec (f), N,, deg (f),
w(f), mf), F(R), Ful2), s(m; f), wm; f).

2.2. Lacunary series

Let h(x) be a non-negative and strictly increasing function in an
interval [1, +c0). We say that a subset £ of Z* is h-lacunary if there
exists a number g > 1 such that, for any n, me E (n > m), h(n) > qh(m).
For example, Z* itself is an e®-lacunary set. The following four propo-
sitions evidently hold.

ProrositioN 1. Union of an h-lacunary set and a finite set is h-
lacunary.

ProrosiTiON 2. Let « be a positive number. Then a set is h-lacunary
if and only if it is h*-lacunary.

ProposiTioN 3. Suppose that h(x) is continuously differentiable and
that lim,_. W' (x)/h(x) = 0. For an h-lacunary set E and a positive number
a, there exists a positive number f such that, for any y > B, an interval
[r, 7 + al contains at most one element of E. On the other hand, there
exists an infinite h-lacunary set F such that E U F is h-lacunary.

ProprosiTioN 4. An h,-lacunary set is hy,-lacunary if h(x) (j = 1, 2) are
continuously differentiable and h;(x)/h,(x) < hy(x)/h,(x).

A strictly increasing sequence E in Z* is h-lacunary if it is an A-
lacunary set as a subset of Z*. A Taylor series F(¢) is h-lacunary if
Spec (F) is h-lacunary. An analytic function f(z) in D is A-lacunary if
Spec (f) is h-lacunary. In this paper, we shall mainly discuss (log x)-
lacunary series. A (log x)-lacunary series is called L-lacunary. An x-
lacunary series is called Hadamard lacunary. Proposition 4 shows that
an L-lacunary series is Hadamard lacunary.

For an L-lacunary sequence E = (n,))., (N< +co0 or N = +o0) in Z*,
set

N k-1 N
(3) re(m) = 25 ng' 25 ny, 7x(m) = 3 ngt
k=m £=0 k=m
=0 A<m<NIfN< +oo;m>1if N= +00).
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For a Taylor polynomial Q(t), we write

(4) T(m; Q) = TSpec (Q)(m), ?(m; Q) = ?SpEC (Q)(m) (1 g m g NQ) .

For an (infinite) L-lacunary series E = (n,);., in Z*, set
m=—1 3
(5) reim) =2 (ufnn) + 2 (afn)! (y=0,j =1,2).

LEMMA 5. Let E = (n,);., be an L-lacunary series. Then there exist
two numbers q(E) > 1 and 6(E) > 0 such that, for any m > 1,

log n,..s > q(E) log 1, 1! < 6(E) exp (—q(E)™)
(6) 75(m) < O(E)n; 1B, 7 (m) < O(E)n;}
T5(m) < OE)Ym*  (j=1,2).

Proof. Since E is L-lacunary, there exists a number g > 1 such that
log n,., > qlog n, (, that is, n,,,/n¢ > 1) (k> 1). Then there exist two num-
bers 6, > 0 and 0 < §, < 1 depending only on g such that n;* < 4, exp (—qg*)
and n/n,,, <60, (k >1). We have, for m > 1,

0 k-1 ©0 k-1
TE(m) :kg}n (nk-llnk);:;; (n/ns_y) Skz n;“""éﬁé

1 _ i 1 o
< mnml+l/q n./n 1-1/q < n;1+1/q 61(1-1/4)
__1_02 k=Zm( /k) __1_02 £§)2
= 1 n‘l"‘l/q
e — o
and
Pe(m) = nil 3 malm <m0 = L _pg
k=0 =0 1-6,
Since

o) = (sl 35l ) + (rufraY 3 (ol

< 305 (o[ 10) A+ (nfT )} < — 2 pIO
= 1—0

< 2o ae e (= U~ e} (=19,

— Vg

there exists a positive number 6, depending only on g such that, for m >
1, rz,(m) < 0m™* (j=1,2). Put g(E) = q and
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1
UE) = {0, b, _}
(B) = max 0 0o =550 — a7
Then (6) holds. This completes the proof.

2.3. Bessel functions

93

Bessel functions of order 0 and 1 in an interval [0, 4+ c0) are defined

by
J(x) = 1 r cos (x sin ¢t — vi)dt v=0,1).
T Jo

Then:
(i) 4@ <1 (=01
(i) 1 - < I <L - (0<x<]

i) < 21
(iv) Jm)/x>10<x<]
(v)f%@%h:imm

(Vi) (@) = - [ IWE 7 = 2peos hdt (67> 0)

i) [ Jeretrdr = e (65> 0).
0 7

Elementary calculus gives (i), (ii) and (iv). The formulas (v), (vi) and
(vii) are well-known and seen in [15]. The inequality (iii) is not evident.

For the proof, we use Hankel’s formula ([15], p. 74):

o1 go @
M@:J%%Eﬂﬂ%ﬂuﬂ,

where

Ha)(x) — /l _gitr=a/ Jw e'.*r‘1/2<1 + i‘r>—1/2dr
! I'(1/2) 0 2x
and H®(x) = H"(x). We have

) 1 iy . .
mﬂwéﬁﬁﬂf'/m_l =12

and hence (iii) holds.

For a finite sequence & = (c.)X., of complex numbers, we define
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K
(7) J(z; &) = ]L[lJo(ICkZI) .
2.4. Fourier transform
For a Borel measure gz in C having finite total mass, the Fourier
transform of 4 is defined by fi(2) =I e t*dy(w), where “Re Zw” denotes
c

the real part of zw. (We shall denote by Im X the imaginary part of X.)
Let y(2) denote the indicator function of D, that is, y(z) = 1 (ze D)
and 1(2) = 0 (ze D). Put 2= yryey, 1,(2) = 1(fy) and 4,(2) = Azly) (> 0),

te 9

where “x” denotes the convolution in C. Then we have:
(viii)) 0<2,(») <
(ix) 2°[64-y,.(2) < 2,(2) < 7°y5,(2)
(x) 14L,@| <y
(xi) 4,2 = @)y Jdi(n2)’| 2|
(xii) 1,(2) > (201’107 (2| < 1/p).
Elementary calculus gives (viii) and (ix).
(x): Since i(2) = #(2)* and 7(0) = =, we have

14,(2)] < 4,0) = A0)7 = 20y = = .
(xi): Since

#@) = 2 [ Izl dr = 2mT (2]

we have
(2) = Wg2)y = G2y = @r)y I i(nzl)| 2] .

(xii): By (iv), we have, for |z| < 1/y,

(2 = 32y 'y > @r)4- > (22)'107%7 .
Lemma 6. For a polynomial Q(t) and a Borel set U in [0, 2x), set

(8) OLU; Q)(a) = | exp {—iRe 2Q(0)}dt

Then we have
(9) |, 1@wdt = @ | 1,E@01U; Q)o@

where do denotes the 2-dimensional Lebesgue measure.

Proof. Without loss of generality, we may assume that 5 = 1. For
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a function g(2) in C, we write g(z) = g(—2). Now let us define a Borel
measure yu,, in C by: for every Borel set A in C, set

to,o(A) = m({te U; Q) € A}) .

Note that g, ,(2) = O[U; Q1(z). We easily see that y,xy, is square do-
integrable. Since the support of p;, is compact, y*uy,, is also square
do-integrable. By Parseval’s formula, we have

et ) = @) ) <(rierin)0)

Hence
[, 2@t = Toxpus, o0) = 2ix110,40)

— e Cretio, )0) = (o)<t )(O)

N
S

S P N7
= (27) 7 () *x (i 0,)(0) = (2m)~*(72)% (71 iy, o)(0)

— @) [ 1@ o@)da@) = @) [ 1@0LU; QUEdo(2)

2.5. Hausdorff dimensions

To discuss thin sets in [0, 27), we introduce Hausdorff dimensions. Let
0<a<1 >0 and U a Borel set in [0,2r). We consider all coverings
of U with a countable number of open intervals («,, 5,) satisfying 0 < «,
< B, < 2r and B, — a, < 7; and define AY(U) = inf > (8, — «,)* for all such
coverings. Since A2(U) is increasing when 5 | 0, the limit 4,(U)=1im,_, A2(U)
(£ + o0) exists and it is the a-dimensional Hausdorff measure. The Haus-
dorff dimension of U is defined by dim (U) = sup {«; 0 < a < 1, 4,(U) > 0%
We see that the 1-dimensional Hausdorff measure is the 1-dimensional
Lebesgue measure and that the Haudorff dimension of a countable set is
0. We also note that, for a Borel set U satisfying 0 < dim (U) < 1, 4.(U)
= +o0 and A,U) =0 as long as « < dim (U) < 5. (See [3].)

LemmA 7. Let k, be a positive integer, E = (n,);., an L-lacunary
series, (A)y_, a decreasing sequence of positive numbers satisfying 2, <1
and lim,_., (log 1/2,)/log n, = 0 and let (U);-,, be a sequence of closed sets
in [0, 27) satisfying the following four conditions:

(10) Uk 2 Uk+1
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(11) U, is a finite union of closed intervals. (Let us write U, = \J*® 1)
where 7,,;’s are mutually disjoint closed intervals.)

(12) m(y,;) = Ang’ (G=1,---,pk)

(18) For every 1 <j<pk), 1v.; — Ui is a union of open intervals of
length (2n — A,,)n;l, and at most two semi-open intervals of length
< 27n;i.

Then, with U = M-y, U;, dim (U) = 1.

Proof. For a given 0 < a < 1, we shall show that 4(U) = 4. Put
0=1/1 — «) and

(14) 0. = max {32z, (87)"/0- (1 — 271+ 1=}

By (6) and lim,_. log 1/2./log n, = 0, there exists an integer k, > k, such
that, for & > k&,

oo

An;'>8r > n;t

=k+1
Ramigng e > 2 en(L — 271 )

22:11+an}::clrn;1+a Z 22+2an,l+a0a .

(15)

Set q(ky j) = *{Tk+1,v; 7’k+1,u C Tk,j’ V= 1’ ) p(k + 1)} (k 2 ka)’ Where 3{'}
denotes the cardinal number of {-}. Then

Angt = m()’k,j) < q(k,j)2k+1nk_-}—l + (&, )) — D@r — 2., )ngt + 4dzngi,
< 2rq(k, Iniiy + 4zngi,

and hence, from (15),
(16) q(k, j) > @r) ' An, .. n;t — 2> (Ar) ' A, 00t .

We have also

plk=1) .
p(k) = Z:l qk — 1, J) > (n) 2, _snen;t i pk — 1
5=
(17) > e > (47r)_k+ka2k-1' . °2k¢nkn;:p(ka)
> (dr) "2 - - ) (k> k).
For the proof of 4,(U) = + oo, we need the estimation of A(Uy) from

below, where k, < k < K and 7, = A,n;'. For the estimation, we fix for
a while three integers &, j and K (k, < k < K, 1 < j < p(k)).
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For every 7,, (k< p < K,1<v<p(y), we denote by 7,, the smallest
closed interval which contains U {rx,; 75 C 7ps £ = 1, - - -, p(K)}. Put
V,=U{7 70 Creny=1---,p()}. We shall inductively show that

(18) AXV,) = m(e ) (k<p<K).

Since V, = 7, (18) holds for p = k. Suppose that, for k < y < K,
(18) holds. Since V,,, is a finite union of closed intervals, there exists a
finite covering {4.}%, of V,,, by closed intervals of length < 7, such that

(19) A(V,,) = 3 m(dy .

=1

Then 4. N 4., =@ (r + 7/) and

m(Az) 2 min {m(?p+l,u); Yy = 19 o yp(/" -+ 1)}
K
> Ao — 4 2 ngt > 27'2,,n00,

{=p+2

(20)

according to (15). For the proof of (18), it is sufficient to show that {4},

is a covering of V,, since

m(f}c,j)a > /12"(V,m) = ; m(d.)* > /1?’."(V,,) = m(?k,j)a .

The following three cases are possible:

(a) {4.}., is a covering of V,.

(b) There exist 4,, #,,, and 7,,, such that 4. N 7,,, # 0 (¢=1,2) and
4. < Foer

(¢) There exist a subset {4, }3_, of {4}Y, and 7,,., such that U {7,.,,;
Toetw C Tuned © Unzi 4oy

Suppose that (b) exists and let 4, the interval in (b). Since 2, < 1,
m(d,) > @2z — 2,)n;' > zn;'. Let 4. be an adjacent interval. Then, de-
noting by 7’ the open interval which connects 4, and 4., we have, from
(15),

K
m(y) < @r — 2. 0n0 + 4n 2 nit <dangl, .

(=z+2
Note that ¢4+ (1 — & —¢)*>1laslongas0<£<1/2,0<e<1/4and &’
> (1 — 2°'*%)"!, Replacing 4, by 4. if necessary, we may assume that
m(4,) < m(d4.). Putting & = m(4.)m(4. Uy U 4.,)™" and e = m(y)m(4. U " U
4.)7, we have, from (15),

e < m(y)m(4,) ! < dan i 'n, = 4n;iin, < 1/4
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and
ge = m(d, U 1 U A.)-*m(d,)m(y)
> m(d) m(d.)y m(y) ™ > 7t en 2 s  n (4r) i,
— 2—2—an.—n22'+1n1‘—;l;n;l+a 2 (1 _ 2—1+a)—1 s
and hence

M) +mld)tmd, Uy Ud)y =& +10—-&—¢e)>1,
that is, m(4,)* + m(4)* > m(4. U y U 4.)*, which contradicts (19).
Suppose that (c) exists and let {4, }¥_, be the set in (c). Then, for
all 4., 7,015 Tusrw C 4.} < 0,272, (0=1/1 — a)). If this does not hold,
there exists 4,,, such that ¥7,..,; 7,11, C© 4.} > 60,275, Let 4., be an ad-
jacent interval and 7” the open interval which connects 4., and 4,,.
Then m(y”) < 4an;l,.. Put & =m(d,, Uy U4,)" and e = m(y")m(4.,, U
r” U 4,,.)", where £ = min {m(4.,), m(d.,.)}. By (14), we have
e < dan; 22, hn, (07 8, < 8207 < 1/4
and
Eae—l > m(Arm/)l—alfam(T”)_l
= 01:—“2;1:(11%)2_1+a'q}:in;}-;az_a22+1n;:1(47f)_1np+1
= (8r) M0 > (1 — 2°1+9)1 |
and hence m(4, ) + m(d., ) >m(.,, Uy’ Ud4d.,), which contradicts (19).
Hence, for all 4., 47,115 Tusre C© 4o} <O Lt U {7uins Turrw C Tl
c US..4.,. Then we have N'0,4;% > q(g, vs) > (4z)"'2,n,.,n;* and hence
N' > (dr)'0;' 2% n, . n;'. By (15), we have

N/
2 md) = N2 B ang sy 2 27 w0 0 s
=
= {27 P g A s n 2 ) > eng )t > maFL L),

which contradicts (19). This shows that (18) holds for 2 + 1. Consequently,
(18) holds for p =4k, ---, K.

In particular, 474(V,) = m(7,,,)*. Hence we have, from (17),
k) . 5 .
AXUx) = 23 m(fe,)* = p(k) min {m(p, )5 j = 1, - - -, p(R)}
=
> (An) %2, - - - Ann 27 s (= 27n; A (R), say) .

Since the last term is independent of K, we have A(U) = limg_,,, A(Uyg)
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> 2n;lA(k) (k> k,). Hence, to prove A,(U) = +co, it is sufficient to
show that lim,_ . log A, (k) = + co.
First we note that

log A(k) = (1 — a)logn, —alogl/i, — Zk] log 1/2; — klog 4z
=1
> (1 —alogn, — 23 log /s, — 10k (k> F).

Let us remember the notation ¢(F) in Lemma 5. We have logn,,,
> q(E)logn, (R=1). Set e.5= (1— a)8(qE) — 1)/q(E). Since
lim,_. log 1/2,/log n, = 0, there exists a positive number 6, such that
log1/2, < e, zlogn, + 6, (kR >1). We have, for any &k > k,,

k k
22 log1/2; < 2,,, > logn; + 20,k
j=1 =1

l—«a

k
< 2,5 Z q(E) " logn, + 20,k < log n, + 20,k ,
=1

and hence

log A (k) > L = ® og n, — 20, + 5k .

Since lim,_., log n,/k = -+ oo, we have lim,_.. log A(k) = + . This com-
pletes the proof.

§3. Main lemmas

In this chapter, we prepare some lemmas in which Lemma 18, 20 and
Corollary 22 will play important roles throughout this paper.

LemMA 8. ([19], p. 216 Lemma (8.26)) Let (2, %#, %) be a probability
space and X(w) a non-negative Borel function in £. Then, for any 0 <>y
<1,

9’({(0 € 0; X()> 7 J X(co)dgf’(w)})
(21) i ,
> (1= ([ Xz ([ xwrdow)

CorOLLARY 9. Let X(t) be a non-negative Borel function in [0, 2r) and
U a Borel set in [0, 2z). Then

(22) m({te U; X(t) > 0)) > (L X(t)dt)qu X(t)Zdt)" .
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LemmA 10. Let Q(t) be a non-constant Taylor polynomial. Then, for

any p > 0, a set {te[0,27); |Q()| < p} is a finite union of at most deg (Q)
open intervals.

Proof. Set N =deg(Q). It is evident that a set U= {te[0, 2);
|QW®)|<p} = {te]0, 2n); |Q@) < ¢’} is a finite union of open intervals. Let
us write U= Ui (@, 8) and U = Ui, [, f], where (x,,6,), [}, 6]
(1 < ¢ <v) are mutually disjoint intervals. There exist ¢,¢(, §,), t, €
[}, 8] 1 < g <) such that d/d¢-|Q(t)]" = d[dt-|Q(,)] = 0. Since |Q(O)f is
a real-valued polynomial of degree < N, we have *{t ¢ [0, 2); d/dt-| QD> =
0} < 2N (J2], p. 192) and hence 2v < 2N, that is, v < N.

Lemma 11. Let n be a positive integer, y > 0 and let P(t) an infinitely
differentiable real-valued function in a neighborhood of a closed interval
[a, Bl. Suppose that, for any te la, pl, |P™(@#)| > y. Then

(23) m({t e [a, B]; [P())| < p}) < 47"y (0> 0).

Proof. We show inductively (23). For a fixed p > 0, set M(«/, f) =
m({te o, §']; |P@®)| < p}). Since P™(¢) = 0 (t e [a, B, M(r,7) =0 (v € [o, fD.
In the case of n =1, we have {te [, 8];|P®)| < p} C [r0 — 0/, 70 + o/¥],
where | P(r,)| = min, .-, |P(¢)], and hence M(x, §) < 2oly < 4oy

Suppose that, for n — 1, (23) holds. We show that, for n, (23) holds.
Without loss of generality, we may assume that P™ () >y (€ [o, f]). Then
P™b(f) is increasing. Let y, (@ <y, < ) be a number satisfying | P "(y,)]
= min,., . |P""()|. We choose two numbers 7, and 7, so that y, <7, <
7, and that 4-gVe=Dy YomD]p g e g ) (= 1,2), Set 7 =
max {a, 7,} and y; = min {8, 7,}. In the case of « < i, we have P (f) <
—¥(yo — 1) on [a, 7). By the assumption,

M, 7)) < 410Dy 000, — ) on

In the case of @ = 77, this inequality evidently holds since M(a, 77) = 0.
On the other hand, MG, 70 <7o— 71 < 70— 7. Since 7, — 7y =
4("ﬁ1)2/np1/ny‘1/"’ we have

M(a’ TO) o M(a’ T;) + M(r{’ TO) é 2.4(%—1)2/np1/uy—1/n .
Analogously, M(y,, f) < 2-4¢-¥pt/"y=1» Hence
M, B) = M(a, ro) + M(yo, ) < 4"y~ V"

Elementary calculus gives the following
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Lemma 12, Let ¢(t) and (t) be two continuously differentiable func-
tions in [0, 27). Then, for any positive integer n and any interval I in [0, 2x),

o |, srpmnar — o= [ gar [ «W)dt’

< ,2",;(1), sup |¢/()] sup v(t)] + ,n_ sup |¢(9)] sup [v/(0)] -

tefo,2z

(24)

LEmMmA 13. Let 5 = (u,)X., be a decreasing sequence of positive numbers
such that K > 64 and u, < 1/4.|5| = (/HC L, c)*. Then

@) D) = eI <1077 1F 1 (> 0)
and
(26) WE) = [ i ldo@) < 10715

Proof. We first show (25). Putting d, = v |F|"' 1 <k < K) and &’

= (d,)£,, we have v(y; 8) = ||Z|v(y||Z|; &) and hence it is sufficient to
show that

@) @) = [ e S)rdr <107 (7> 0).
Let us note that > 5, di=1 and >3, d! < 8d} < 8ul||5|*<1/2. Set

j=min{{; >\ ,di > 1/4}. First suppose that d;' <y. Since &’ is de-
creasing, we have, for 1 < k < 8,

-

do>d> 8id> I e
]___

and hence

(2r)"u(y'; &) <j []] |Jo(dr)|r dr < (2)1 ﬁ dz | gy
k=1 T

= 7’

" )
_ 2 (2 )] 11[ dlzl/z}?uj/uz < i;%/(g)’” ﬁ d;1/20/~2
] — 4 k=1 Jj—4 \=x k=1

/2
(2J)4<_7gr_ 77/—2 g 26j3<%>] 77/72

g

6 3
< 266_3( ) S 104/ -2 ,
- log /2 7 7

which shows that (27) holds in the case of d;' <y. Next suppose that
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d;' > y’. Since

-1

.

1

Sdi—1-Sdi>1-3
= K — - k<= Z_Z,

&
Il

1

we have

1/d; K 1/d; K
yllJO(dkr)lr dr<| Iﬂ |Jo(der)|r dr
= 2 =j

7’

v & 1 1/ 1 X
SI [T <1—-——dir2)r drgj exp<____Z diﬁ)rdr
7’ k=j 8 8 =

.
< r exp (—— Lﬁ) r dr = 16 exp (—— _1_%) < 10%2.
Ty 32 32

By the same method as above, we have

(1,1l dr < [ 1 19(dr)]r dr < 1017,y
1/dj k=1 1/dj k=1
Hence
@ £ = [ [ <10y 4 10Ud) < 10
.

1/dj

which shows that (27) holds in the case of d;' > 7. Consequently, we
have (25).
Inequality (26) is an immediate result of (25) since

W& =2 [ 105 Dlrdr+ w(2]7; 2
-1

< 24 rdr+ 10°) 8| < 107 &) * .

i
0

LEmma 14. For a sequence 5 = (u,)5., (K > 5) of positive numbers, we
define

u(t) = (U} + u! — 2u,u, cos )'”* (te [0, 2n))
and

uk(tl; Tty tk—l) = (u?c + u’lc-l(tl’ Tt tk—2)2 - 2ukuk—l(tl, ) tk—z) CcoSs tk—l)l/z
tel0,20) Q<j<k—1,3<k<K).

Then
(28) mK—l({(tn sy e €0, 2m)5 s ugtyy -y tx )t > %HEHZ}) > (2r)*-'8

where m,_, denotes the (K — 1)-dimensional Lebesgue measure.
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Proof. We shall use Lemma 8 for £ = (0, 2z)*"!, X(w) = uy(t, - - -, tx_ )’
(= (&, -+, tg_) and » = 1/2. We have

2z 27
(2m)~ %+ L s Io Uty -+ oy te)’dty - dig
21 2
= u%{ + (27")_1{*2‘]‘0 e jo LuK—l(th Y tK—Z)zdtl T dtK—z = = “EH2 .

Since

Ug(ty, -t )t = {ufr{ + g (b, oyt — 2uglg (8, - -, Exo,) COS tK—l}Z
= Uy + Ug oty -t )t + dufug (L, - -, b)) COST By
+ 22Ut (b o, t) — AuSug (- -, Ex,) COS B,

— dugug ot -, tg))’ cOS tx_y

we have
27 27
(2m)~ % Jo e Jo Ug(ty, -+, te_)'dty - - - diy
2x 27
= uj + (275)_K+2I ce J Ui (b, -y b )d - dty
0 0
2 27
+ 4u§((27‘7)—K+ZI te J uK——l(tb Y tK—z)zdt1 e dtK—Z
0 0
K-1 27 2
= uy + 4uk >, ui + (277)_]“2‘[ s _[ Ug (-5t o) dt, - - ditg,
%=1 0 0

k
uw o u

2 =1

I

< 20&.

M

()

ui + 4

i
M=
x
1l

1

Hence
@y =t ({6 s o) €10, 20wty - e > LIS
2 —1‘{(2”)_K+1 Jh et J% uK(tls ) tK—l)zdtl T dtK—~1}2
4 0 0
X {(2”)_K+1 j.h T jz” ug(ty, - -, be)'dt; - - dtK—l}‘l > l .
0 0 8

LEmMmA 15. Let & = (u,)X, be the sequence in Lemma 13. Then

(29) 0(8) = [ Iz H)dote) = 1072

Proof. For a positive number 7 > 0, set v,(&) = j J(z; B)e~ 717 dg(z).
[

By (vi) and (vii), we have
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27 2T o
0 (8) = @ [T [Tt et [ st o tedr)e r dr
27

2%
(Z (275)_1(+2j ce 12 exp (" —]:‘; ug(ts, -+, tK—1)Z)dt1 s dtK—l) .
0 0 27 47

Since J(z; &) is do-integrable,
v(5) = lim v,(8) > 2(27)~*** f . f Uty ) b)) Rdt, - dia .
7—0 0 0
Putting 2" = {(Z,, - - -, tx_) € [0, 27) "5 wx(dy, - - -, tx )" > 1/2-||5||7*}, we have,
from Lemma 14, v(&) > (27) %[ 5| "me_(2) > 1/8-[|F(|7* > 107" || F]|™*

LEmMA 16. Let Q(t) be a Taylor polynomial such that N, > 64 and
4(Q) < w(1; Q) and let J a positive integer such that J < N, — 63 and
4W(Q) < w(J; Q). Then, for any n >0, M > 0 and any interval I in [0, 2x),

| @t
< 10°{mD)7w(; @)7* + (m(Dy(J; Q) + 7(J; @) (Q)M*
+ m(y M
Proof. We write simply N = N,, n, = n,(Q), 9,(2) = 9[I; @.1(z) (0L
k< N) and @(z) = @,(2). Using Lemma 6, we write L = L 2,(Q(t)) dt in

the following form:

(30)

L = (20)* j i (D0(R)do(2)

- (277-')_ {J‘lzlsm + .[Mz<lzl} - (271')_ {Ll + Lz} ’
Since |0(2)| < m(I) and |i,(2)| < (27)*p* |2|* ((xi)), we have
31 Ll < mDEeyy [ |27do(@)
< @aymDy M~* < 108m(I)y~ M .
Put & = (Q(k))Y.,. By Lemma 12, we have, for J — 1< k< N — 1,

% 1D,.1(2) — O(R)I(Q(k + 1)z))|

- iﬁli [ exp{— iRe2Qu0) exp {— iRe 2Q(k + eyt

— 1 [ exp{—iRe EQk(t)}dt_l_J% exp {— i Re 2Q(k + 1)ei‘}dt
2r J1 27 Jo
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< 2m(I)nz', sup 1_5‘?. exp {— i Re 2Q.(9)}| sup |exp{— i Re 20(k + De'}]
ter02=) | dt tef0,2r)

+ 8znzl, sup |exp{— i Re 2Q.()}| sup '-.Ei_ exp{— i Re 2Q(k + 1)e'}
te[0,27) tef0,20 | dt

< {2m(Dnzt 3190 n, + 8enit QK + D} 12

7=l

k
<10 (m(Dnc, 3 m, + nit @) 12l
J=1
and hence

0(2) — ,_(2)J(z; 5)|
< |04(2) — Dy_(2)T(|Q(N)z))|

N-2

32) + 2100 11 90Q02) - 0. 1] F8()2)

N
<
k

o

3 19,0 — 0.INQ + D2

< 2r10m(Dy(J; Q) + 7(J; @)M(Q) |2]
< 10{mDr(J; Q) + 7(J; (@) |2 .

Since |@,_,(2)| < m(I) and |1,(2)| < =% < 10 ((x)), we have, from (32),
Li<|  14@06) doz)
<107 [ (10, @ 5] + 10y Q) + 15 Q) 2)do(2)
<10mly; | e )| do(2)
+ 10(m(Dyr (T Q) + 75 Qu(Q) | |2]da(z)

< 10mD7u(E) + 2a/3-10°(m(Dy(J; @) + 7(J; @)l Q)M .

Since N —J + 1> 64 and 4(Q) < w(J; @), we have, from (23), v(5)<
107 | £ = 10'w(J; @)%, and hence

@3 Hal < 10mD7w; @) + 23 10°(m(D)r (7 Q) + 7(J; @rv(Q)M°
< 10°{m(Dy'w(d; @) + (m(Dr(J; Q) + 7(J; @)nv(Q)M'} .

Since L = (2z)*{L, + L} < 107'{|L,| + |L,|}, the required ineguality (30)
follows from (31) and (33).

LEMMA 17. Let Q(t) be a non-constant Taylor polynomial. Let us write
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simply N = N,. Then, for any 0 <7 < |Q(N)l/3, M >0 and any interval
I in [0, 27),
[RECIOL

< 10%m(D)p |QN)|* + (m(Dy(N; @) + F(IV; @)/ Q) M
+ mDy M-} .

(34)

Proof. First we remark the following inequality:
27
1/2;:] 1 loe + a)ds < 7lo’
0

where 0 <7’ < o’ and aeC. We use the notation L, L, and L, in the
preceding lemma. We have

(35) L,| < @aym(D)y— M~ < 1/2-10m(I)n~ M~ .
Set o = |Q(N)|, R(?) = Q(t) — Q(N)e'™* and X,(s) = pe* + R(f). We have
L, = | (201 B2 p2Ddo(2)
= j @(z)da(z)j -t j exp {— i Re 2(oe”" + R(H)}ds
c I o Jo
~ [ 4@4daa) [ 0010, 20); X1(@at
. f dt L;t,,(z)q)[(o, 21); X,](2)do(2)
— (20 L dt f) 2,(X(s)ds = (2r) L dt% I: 2,(pe** + R(@))ds
< @yw [ dt | o + R)ds
< @r)3z*m(I)yle < 10°m(I)y/p .
By (32), we have

|9[1; Q1(2) — OII; Rl(2)J(|pz))| < 10°{m(I)r(IV; @) + 7(IV; @)(@) |2] .
Taking care of |@[I; Rl(2)| < m(I) and |i,(2)| < 10%%, we have

ILI< | 4@ RI@ezDdo(2)

G 0O Q i Q@ | (1] de(@)
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<L+ | 14@0IL; RI@(0z)]| o)
+ 25/3-10°(m(Dy(N; Q) + 7(N; Q@M
< 10°m(I)ylp + 1/2-10°m(D)y ' M~*
+ 25/3-10(m(D)y(N; Q) + 7(N; @A Q M
< 10m(Dyglp + 1/2- m(Lyy M~ + [m(Dy(N; )+ 7(N; QI @)M'}

Since L < 107{|L,| + |L,|}, the required inequality (34) follows from (35)
and (36).

LEmMAa 18. Let Q(f) and R(t) be two Taylor polynomials such that N,
> 64, N, > 64, 4(Q) < w(l; Q) and 4v(R) < w(l; R) and let J, J’' be two
positive integers such that J < N, — 63, J’ < N, — 63, 4(Q) < w(J; Q) and
4u(R) < w(J’; R). Then, for any u, v/, M, M’ >0 and any interval I in
[0, 27),

[ RECIOC O

@37 < 10°{m(Dy'w(/; Q)* + (m(I) + L)pu(@)7(J; )M + m(I)y~'M?}
>< {77/2w(J/; R)-Z + 77/21‘}(13)7,(c]/; R)MIG __+_ 7/—11‘4/-2}
+ 10%(R)7(J’; RYM” deg (Q) .

Proof. Set deg(Q) = W. Since 2, < r’y,;,, we have

L = | Q)L (RM)d: < 7 | 1@ (B@)L = =L .

Since a set U = {t€[0, 27);|Q(f)| < 3y} is a finite union of at most W open
intervals, we can write UN I = );., I, (v <W + 1), where I,’s are mutually

disjoint intervals. For a fixed 1 < x <y, we estimate L, = j 2,AR()dt.
I
Since J’ < N, — 63 and 4v(R) < w(J’; R), we have, from Lemm; 16,

L; S 108171(1#){77/21,0(1-]’; R)-z + 7]/2D(R)7’(J,; R)M/s + 77/—1]‘4/—2}
+10% " (R)F(J’; RYM"” .

Let us remark that 7#(J; Q) < 7y(J; Q). Since J < N, — 63 and 4v(Q) <
w(J; @), we have, from Lemma 16,
64 [ 2.t
I

< 64-10°({m(I)(12p)w(J; Q)" + [mDy(J; Q) + #(J; @)I(127)"(Q)M°
+ m(I)(129)"' M ~*}
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< 10¥{m Dy w(d; @) + (m(I) + V(@) (5 Q)M® + m(I)y~ M~} .
Note that =%, < 642,,, We have

L <=L :ﬂziL;
pr=1

< 7*10° i}l m(I)Y7*w(J"; R)™* + 7"(R)y(J'; RYM"™ + o/ 'M’'~%}
+7°10%7 " w(R)(J'; R)M"

< #'10° L 1 (Q@D)At " w(J"; R)* + 7 w(R)y(J’; R)M"® + %/~ *M’'~*
+ 27*10%"(R)7(J’; R)M’ deg (@)

< 64- 108L A, (@)t *w(J"; R)* 4+ y"w(R)y(J'; R)YM' + o/~ M’'-%}
+ 10°"u(R)i(J"; R)M" deg (Q)

< 10mD7w(; Q) + (m(I) + Dfu(@)r(J; @)M® + m(I)y ' M~*}
>< {ﬂIZw(JI; R)—Z + YIIZU(R)T(JI; R)M/G + WI—IM/—Z}
+ 10" u(R)HJ"; R)M" deg (Q) .

The following lemma is proved analogously as in the preceding lemma.

(Use Lemma 16 and 17.)

LemMA 19. Let Q(t) be a Taylor polynomial such that N, > 64 and
(@) < w(l; @) and J a positive integer such that J < N, — 63 and 4v(Q)
< w(J; Q) and let R(t) be a non-constant Taylor polynomial. Then, for any
p, M, M’ >0, 07z < |R(N)|/3 and any interval I in [0, 27),

[ 2@ r@ar

(38) < 10"{mI)7w; @) + (m(I) + Dfu(Q)r(J; @) M® + m(I)p M-}
X {7| RN + 7"/(R)r (N, RYM" + 7/~ M~}
+ 10" w(R)H Nz, R)M" deg (Q) .
Lemma 20. Let Q(t) be a Taylor polynomial such that N, > 64, v(Q)

> 1 and 4(Q) < w(l; Q) and let J a positive integer such that J < N, —

63 and 4w(Q) < w(J; Q). Then, for any 0 <9< v(Q), M >0 and any
interval I in [0, 2x),

[ 1@yt = 10-m(Drua; @)

— 10°[mDrfw(l; @)~ {U@w(l; @)}
(39) + m(D7|QO)w(l; @)~ *w(l; @)~
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+ (m(I) + D7r(L; Qu(l; @) {M@uw(l; @)}
+ m(Dyw(1; @)U @)w(l; Q) w(J; @) "F”
+ (m(I) + Dyu(@)r(J; @)M* + m(Dy "M~ .

Proof. Set @(z) = O[I; Q1(z) and & = v(Q) *w(1; @) *°. Using Lemma
6, we express L :j 2,(Q(®)dt in the following form:
I

L= (20 f L (R0@)do(@)

—eo{[ + +[ }=eoHL+ L+ L},
[z]1<8 E<lzl< 2 M2 z|
We have

(40) LI< |, @0 do@) < 10mDy M.
Writing & = (Q(k))Y2,, we have, from (32),
12(2)| < m(I)J(z; &) + 10°{m(D)r(J; Q) + 7(J;@)M(Q) 2|
< m(D)dJ(z; &) + 10°(m(I) + Du(Q)r(J; @)lz| .
Since v(g, 5) < 10°%72 || 5|t = 10%(Q)**w(1; @)* w(J; @)~*, we have

Li<|  A@mDIIE 5] + 100 + DAQI; Q)2)do(z)

§<lz

<W0mD7 [ (e 5) o)

@ + 100m() + VAR Q) [ [2]do(@)

< 10°m(Iyfu(E; 5) + 2q/3-10°(m(I) + Dfu(@)r(1; @)M"
< 10 [mDw(l; @) @) w(1; QYw(J; Q)P
+ (m(I) + D)y (J; @M .
Putting &’ = (Q(k)))%, we have, from (32),
@(z) > m(I) exp {— i Re 2Q(0)}J(z; &) — 100m(D)yr(1; Q) + 7(1; QW) 2|
> m(D)J(z; ') — m(I)|Q(0)z] — 10°(n(I) + Du(Q)r(1; Q) 2] .

Note that J(z; 5) > 0 (2| < 1/u(@)) and 7* < 1,(2) < 1077 (2| < 1/p) (),
(xii)). Since & < 1/u(Q) < 1/, these inequalities hold in |z| < & We have

L= 5@mDIeE) - mDIQOz)
(2 — 100n() + DUQ(L; @[] do(@)
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= m)r | I £)do(z)

—1047{m(1) |QO)] + 10(n(I) + DAQ)(L; @)} | _ 121 do(2)

= mI7{vl&’) — v(&; &)}
~27/3- 10576 (m(I) |Q(0)] + 10(m(I) + Du(Q)r(1; Q)}
= mD7[107w(1; @)~* — 10°w(1; @) *{M@w(l; @)'}"]
— 10°[m(D)7 | Q(0)] w(1; @) *{u(@)* w(l; @)}
+ (m(D)+ Dy (1; Qu(l; @) *@)w(l; @)'}]
> 107'mI)7w(l; @)* — 10°[m(D)y'w(l; @) M(Q)w(l; @)}
+ m(D7 |QUO)] w(l; Q)~*w(l; @)
+ (m(I) + D'r(1; @uw(l; @) {MQ@uw(l; @)~} .
Since L = (2z)"*{L, + L, + L,} > 107} L, — | L,| — | L,]}, the required inequality
(39) follows from (40), (41) and (42).

LEmMMA 21. Let F(t) be a Taylor series and W a positive integer such
that

(43) Y(W,F) = 3 (/W + n'| W) |E(m)| = |[F(W))/4 .

Then

) My(p) = mi{te [0, 20); [FO] < oD < 10%ppwo” 0<p < 1),
where pr, = max {|F(W)|, |F(W)] ).

Proof. Set P(t) = Re F(¢) and U = {t € [0, 27); |sin W¢| > 1/4/2}. With-
out loss of generality, we may assume that F (W) > 0. We have

|P'(t)] > F(W)W|sin Wt| — nglﬁ(n)] > F(W)W |sin Wt| — V(W, F)W
> F(W)W{sin Wt| — 1/4} > LE(W)W .

Since U is a union of 2W intervals, let us write U = |J¥, I,, where I,’s

pd
are mutually disjoint intervals. For every 1< p < 2W, we have, from
Lemma 11,

m({te L; |P®)] < o) < 4GF(W)W) "o < 16p, W',
and hence

m({te U; |P@)] < p}) < 2W 16pp,yy Wp'"* = 32D, 0" .
Note that U = {t< [0, 2z); |cos W¢| > 1/+/2}. We have, for tc U,
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|P(t)| > F(W)W*|cos Wt| — N \E(n)| > F(W)W*|cos Wt| — Y(W, F)W*
> F(W)W*|cos Wt| — 1/4} > LE(W)W* .

Let us write U° = ()7, I, where I.’s are mutually disjoint intervals. For
every 1 < p < 2W, we have, from Lemma 11,

m({te I; | P()] < p}) < £GF(W)YW) 25" < 32p,,,, W0,
and hence
m({te Us; | P()] < p}) < 2W 32, w W' 0> = 64py 0" .
Consequently,
M(o) < m({te [0, 27); | P(®)| < p})

=m({te U; |P@®)| < p}) + m({te U |P@®)| < o}
< 96]71«’,111!7”2 < 102Pp,wp”2 .

COROLLARY 22. Let Q(t) be a Taylor polynomial such that

8u(@) Ny (Q) < |Q(NY| ny (@) -
Then My(p) < 10°pe'” (0 < p < 1), where py = Pg, e
Proof. We write simply N = N, and n, = n(Q) (¢ > 0). We have

T, Q) = 5 nny + min) | Q8] < 2@V, s
< QU4 = |Q(ny))/4 .

By Lemma 21, we have the required inequality.

§4. Subsequences of (e*),.,

An interval [0, 27) is a probability space having a probability measure
m/2r. Then (e'™),., is a sequence of random variables having mean 0 and
variance 1. In this chapter, we shall study three probabilistic properties
of subsequences of (e'™),.,: the 0 — 1 law, pseudo-independence (mixing),
the law of large numbers. However we shall not show, in this paper,
direct applications of our results, they play important role in the theory
of lacunary series. We shall also note well-known results about the
central limit theorem and the law of iterated logarithm of subsequences
of (e'""),.;. The recurrence property of L-lacunary series will be studied
in detail in Chapter 5.
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Our results are elementary and incomplete. But it is no doubt that
various problems in this area are interesting.

4.1. The 0 — 1 law

A countable product C.. of C is a measurable space, where Borel sets
are induced from cylinder sets. Let X = (X, (¢));_, be a sequence of Borel
measurable functions in [0, 2z). We say that a Borel set U in [0, 2r) is a
tail set defined by X, if, for every positive integer k, there exists a Borel
set B, in C. such that U= {t€ [0, 27); (X,(?), X;..(®), - - -) e B,}. We say
that X satisfies the 0 — 1 law, if, for any tail set U defined by X, m(U) =0
or 2r. We shall show the following

ProrositioN 23. Let E = (n,)., be a strictly increasing sequence of
positive integers.

(45)  If, for every k> 1, n,,, is a multiple of n,, then (e'"'),., satisfies the
0—1 law.

(46)  If there exist two strictly increasing sequences (k;)7., and (R})7., of
positive integers such that sup, {n,, n,,y < + oo, then ("), does not
satisfy the 0 — 1 law, where {-, - denotes the greatest common divisor.

CoRrROLLARY 24. Let E be a strictly increasing sequence of positive
integers such that (e"),., satisfies the 0 — 1 law. Then E is Hadamard
lacunary.

For the proof, we prepare the following

LemmA 25. Let I and U be an open interval and a Borel set in [0, 2r),
respectively. Writing U(n) = {te [0, 27); nt € U (mod 27)}, we have

47 Im(I N U®)) — @r) ' m(I)m(U)| < 8x/n .

Proof. Without loss of generality, we may assume that U is open and
that m(I) > 4z/n. Set U, = U(n) N [0,2x/n) and U, = U, + 2zj/n (j =
1,---,n—1). Then m(U,) = m(U)/n and U(n) = \ Ji; U,. Let N be the
cardinal number of a set {U,; U;C I,j =0, ---, n — 1} of Borel sets. Then
we have |m(I N U(n)) — Nm(U)/n| < 4zx/n and |m(I) — 2z N/n| < 4z[n. Hence

Im(I N Un)) — @2r) ' m(I)m(U)|
< |m(I N Un) — Nm(U)/n| + @x)"'m(U) |m(I) — 2zN/n| < 8z/n .

This completes the proof.
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Proof of Proposition 23. (45): Let E = (n,);_, be the sequence in this
proposition and let U be a tail set in [0, 2z) defined by (¢'™),.; such that
m(U) > 0. It is sufficient to show that m(U) = 2z. For a given positive
number ¢, there exists a finite union of open intervals  such that m((U — J)
U — U)) <e Let us write J = | JIL, I;, where I;’s are open intervals.
For a given positive integer k, there exists a Borel set B, in C., such that
U= {te |0, 2x); (e, e'™+, ...) e B,}. Set

V = {te [0, 2n); (e, elms+y/mt eitmsa/mit 1. .y e B}, Since, for
any j > k, n, is a multiple of n,, we have U = V(n,) and m(U) = m(V).
By Lemma 25, we have, for j =1, ..., M,

im(I; N U) — (2x)"'m(I)m(U)|
= [m(I; N V(n) — 2x)"'m(I)m(V)| < 8z/n, ,

and hence |m(J N U) — @r)"'m(J)m(U)| < 8zM/n,. Since m((U — J) U
(J — U)) <, we have

Im(U) — 2r)"'m(U)'| < [m(U) — m(J N V)|
+ |m(J N U) — @2r)"'m(JJ)m(U)|
+ @r)*'m(U) |m(J) — m(U)| < 2¢ + 8z M/n, .

Letting £ — o0, |1 — 2n)"'m(U)| < 22m(U)~"'. Since ¢ is arbitrary, we have
m(U) = 2x.

(46): Let (k;))7., and (R))7., be two sequences in (46). Choosing sub-
sequences if necessary, we may assume that there exists a positive integer p
such that, for all j, (n,,, nk9> =p. We show that a set U, =3, (2(j — D= /p,
(2j — D=z/p) having measure r is a tail set defined by X = ('), ¢z

Set B; = {(exp in,t, expinyt);te Uy} (j > 1). Since {(n, Ny = p, we
have U, = {te [0, 2r); (exp in, t, exp ink,jt) e B;}. For every integer k, we
arbitrarily choose an integer j such that 2 <k, k< %) and set B, =
{(cir vy -+ +)5 Ve = C if kR, K}, (ci), ¢ip) € B;}. Then we have, for all &,
U, = {te [0, 27); ('™, e'™+*, ...) e B;} and hence it is a tail set defined by
X having measure z. This shows that X does not satisfy the 0 — 1 law.

Proof of Corollary 24. Let E = (n,);_, be a strictly increasing sequence
of positive integers and suppose that it is not Hadamard lacunary. Then
there exists a sequence (m,)7., tending to infinity such that 1<n, . /¢,
<2. Put k;=my,, and k; = m,; (j=>1). Then {(n,,n,y =1 for all j. By
(46), (€'™),.r does not satisfy the 0 — 1 law.
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4.2. Pseudo-independence (Mixing)
We say that a sequence (X,(£));., of Borel functions in [0, 27) is identi-
cally distributed if, for any Borel set A in C,

m({te [0, 2x); X.() € A) = m({te [0, 20); X()e AY) (k=1

We say that a sequence (X,(£))z., of identically distributed functions is
pseudo-independent (or we say that it satisfies the property of mixing), if,
for any positive integer M and Borel sets {A;})1, in C,

lim, .ot € [0, 20); X0 € A, (G =1, -+, MY
= @)~ [] m({ze [0, 20); X e AD ,

where lim, ...,,, denotes the limit when k,’s diverge satisfying k; # k;
(j #7J). Itisevident that any subsequence of a pseudo-independent sequence
is pseudo-independent. We remark also that, for any strictly increasing
sequence E of positive integers, (e'™), . is identically distributed. We shall
show the following

ProposiTioN 26. Let E = (n,);., be a strictly increasing sequence of
positive integers such that the limit lim,_.. n,../n;, = o(< + o) exists. If o=
+ oo or it is a transcendental number, then (e'™),.» is pseudo-independent.

In the case where ¢ is an algebraic number, it seems difficult to discuss
the pseudo-independence of (¢'™),.,. The following example shows that
there are non-pseudo-independent Hadamard lacunary series.

ExampLE 27. An algebraic integer ¢ > 1 is called a Pisot number if
it is a (rational) integer or all its conjugates (not ¢ itself) have moduli
strictly less than 1 ([13]). Let ¢ be a Pisot number. Then (e¥®%):_, is not
pseudo-independent, where (x> denotes the nearest integer to x.

CoroLLARY 28. Let E be an L-lacunary series. Then (e'™),. is pseudo-
independent. There exists an Hadamard lacunary series E such that (e!™),cx
is not pseudo-independent.

For the proof, we prepare two lemmas. Throughout the proof of this
proposition, E = (n,);., is a strictly increasing sequence of positive integers.

LEmMA 29. (e™),.r is pseudo-independent if and only if:

(48)  for any positive integer M and functions {¢,(H)})~, in A(0, 2r),
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Proof. We say that a Borel function ¢(f) in [0, 2z) is an indicator
function if ¢(f) =0 or 1. From the definition, the following property
evidently holds: (e*"),.r is pseudo-independent if and only if, for any posi-
tive integer M and indicator functions {¢,(9)}",,

. 1 27 M M .
llm(k,,...,h,y—-»-~j 11 ¢:(m Bt = 1 4,(0) .
2 Jo j=1 j=1

For any ¢ e A(0, 27) and ¢ > 0, there exists “a finite sum of indicator func-
tions” 4 such that sup, ;o |¢(€) — V()] < e. This shows that the above
property holds if and only if (48).

Lemma 30. (ei™),.r is pseudo-independent if and only if:

(49) for any positive integer M and integers {m;}-, (all m; is not 0),
there exists a positive integer K such that, for M integers {k;}}-, satisfying
ky>K(G=1,---,M) and k; # ky (j#7J), 237 m;n,; # 0.

Proof. First we prove the “if” part. Suppose that (49) holds. Let
M be a positive integer and let {¢,(H)}!~, be functions in A(0, 2r). Then
we have

. 1 2t M
Tt o |, 1] (et
2 Jo =1

. 1 2z M . .
= limy, .. [T 22 ¢y(m)exp (lmnk,t)dt
27T 0 j=1meZ
. " " 1 2 M .
= limy, ... .4 e 20 $i(my) -+ Ou(my) - J [1 exp (Lmjnkjt)dt
mi€Z muyeZ o7 Jo j=1
a » . 1 2r M .
=27 0 2 g(my) -+ ¢M(m}1) Limee,,o ey —— [T exp (lmjnkjt)dt .
mi1€Z myEZ 2r Jo j=1

By the hypothesis, the last part in the equalities is []%, $;(0) and hence
(48) holds. By Lemma 29, (e™),.; is pseudo-independent.

Next we prove the “only if” part. Suppose that (e™),., is pseudo-
independent. Then (48) holds. Let M be a positive integer and let {m,}}.,
be integers such that all m, is not 0. By (48), we have

21

M M 2
[1 exp (im;n, f)dt = (2z)" "' [] | exp (im,;t)dt =0 .
=1 ji=1Jo

llm(,“,...,,m) —
2r Jo j=

Hence > %%, myn,, + 0 for all sufficiently large mutually distinct M positive
integers {k,})-,. This signifies (49).
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Proof of Proposition 26. We use (49). For mutually distinct M positive
integers {k;}}~,, set K(k,, ---, ky) = max{k;;j=1,---, M}. First suppose
that ¢ = +oco. Let {m;}}", be integers such that all m, is not 0. Then
we have

lim, ..o

M
Z m;ny,
Jj=1

n
> llm(kh_,,,k”) {n,«h,...,km = Pk, ek -1 lemjl} = +oco.
7=

By (49), (¢**),c» is pseudo-independent.

Next suppose that ¢ is a transcendental number and let {m,}}-, be the
same as above. Since ¢ is a transcendental number with > 1, we have
7 = inf| 337, m;6”i| > 0, where “inf” signifies the infimum over all M non-
negative integers {n)}I., satisfying n} + n}, (j+#j’) and min, ;_, n} = 0.
Hence

Lmg, ... k0

M
Z mjnk/
Jj=1

> hm(kl,...,k,,,) nK(kl,-",kM){

M
Z mjo-kr K(k1y+++,kar)
Jj=1

+ o(1)"}

< LMy g DMk, = 00

By (49), (e!™),cr is pseudo-independent.

Now we give the proof of the statement in Example 27: If ¢ is a Pisot
number, then X = (e¥”*)y_, is not pseudo-independent.

Set n, = {(¢*> (k > 1). If ¢ is an integer, then on, — n,,, = 0 for all
k. By Lemma 30, X is not pseudo-independent. Suppose that ¢ is not an
integer. Let w,, ---,w,_, denote all its conjugates. Since ¢ is an alge-
braic integer, ¢* + of + .-+ + 0%_, is an integer and hence ¢* — {¢*) <
(M — 1) max;|o,|* (k > 1) ([13]). Since max;|w,| <1, we have lim, _., (¢*—{d*))
=0. Let >’.,m;z2’ =0 be the algebraic equation whose roots are o,
o, -,y .. Then

M M

lim > m;n,,; = lim >} m ({c"*’) — d**7) = 0.

k—oo =0 koo 7=0

Since > %, myn,.; is an integer for all k, this shows that >}’ mn,, ;=0

for all sufficiently large k. By Lemma 30, X is not pseudo-independent.
Corollary 28 is an immediate result of Proposition 26 and Example 27.

+) Throughout this paper, we use the symbols O (g(x)) and o(g(x)). See [19],
p. 14.



ON LACUNARY SERIES 117

4.3. The law of large numbers

In the theory of uniform distribution, H. Weyl proved the following
theorem: Let E = (n,);., be a sequence of positive integers. Then
m({t € [0, 27); lim_., | > %, e™'|/[K = 0}) = 0. This theorem corresponds to the
strong law of large numbers in the probability theory. On the other hand,
R. Salem estimated the exceptional set {¢ € [0, 2r); limsupy ... | > 5., ™|/ K >0}
in the case where n, = O(k?) (p: a given positive integer) ([14], p. 494).

We shall estimate the exceptional set in the case where E is L-
lacunary.

Let ¢ = C U {oo} denote the one-point compactification of C. For a
strictly increasing sequence E = (n,);_, of positive integers, B(t; E) denotes
the totality of cluster points of a sequence (3 %, e /K)%_, in the space
C. For a compact set A in €, set B(A; E) = {tc|0, 27); B(t; E) = A}
We shall show the following

ProposiTiON 29. Let E be an L-lacunary series. Then, for any compact
set A in D, dim (B"'(4; E)) = 1.

Proof. Let E = (n,);., be an L-lacunary series and let A a compact
set in D. There exists a sequence (c,);.; of complex numbers such that
le,] <1 (kB >1)and A ={ce C;liminf, .. |25, c,/K — ¢|] = 0}. There exists
a sequence (¢,)7-; in [0, 2¢) such that exp (ig.. .) + exp (i) = 2¢, (k> 1).
Then A = {ce C; liminf, . |> 5, e*/K —c|=0}. Set 2, =k (k>1). Let
k, be a positive integer such that, for & > k, A,n;' > 2zn;l,. Set 7., =

[@7] + ¢ — 2720 [n, 2rmj + ¢ + 272 ) (G =1, -+, m, k> k). and U
= Uki7h,; (R > k). Then m(y,;) = A,n;', the distance between 7, and
Trie1 18 2r — 2)[n, and y;,; contains at least one interval in {y},, )i
Define inductively (Ui, by U, = U, and U,,, = U {yturs; 75sr; < U,
j=1---,n.} (B> k). Then (A)5.: and (Ui, satisfy the conditions in
Lemma 7. Hence, with U = M., U, dim (U) = 1. For every t,¢ U, we
have

K K K K
§ ik = E ok ofE) K e s v,
k=1 k=1 k=1 k=1

and hence B(t,; E) = A. Since B'(A; E) D U, dim (B™'(A; E)) = 1. This
completes the proof.

4.4. Known theorems

There are various interesting theorems in this area. Let us dote the
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following three theorems: Let E = (n,);., be a strictly increasing sequence
of positive integers.

(50) If ¢ > 0, then
m({t € [0, 2x); limg .., | D> K., cos n,t|/K'*** = 0}) = 2= (The strong law of large
numbers, [4]).

(B1) If e>0 and n,,./n,>1+ k¢ (k> 1), then, for 0 < & <7,

limge_. m({t [0, 2%); & < | 1., cos myt/ VK| < 7)) = 27r( vlﬁ j:e‘“dx> (The

central limit theorem, [6]).

(52) If E satisfies the condition in (51), then
m({t € [0, 2r); limsupy_.. | > %, cos n,t|/vK log log K = 1}) = 2z (The law of
iterated logarithm, [16]).

§5. The behaviour of partial sums of L-lacunary series

5.1. If E is L-lacunary, (e'™), . is pseudo-independent. Hence it seems
that (e'™),., behaves like an independent sequence. In this paper, we shall
study the behaviour of partial sums of L-lacunary series from the point
of view of the recurrence and the transience.

Let ¢ = CU{} and R = R U{} be the one-point compactifications
of C and R, respectively. Let F(¢) be a Taylor series. C(¢; F') denotes the
totality of cluster points of a sequence (F,(®):.. in . C(; Re F) (re-
spectively, C(¢; Im F)) denotes the totality of cluster points of a sequence
(Re F,,(®)z_, (resp. Im F,(t))3..) in R. For a compact set A in €, set
C(A; F) = {te[0,2z); C(t; F) = A}. For a compact set B in R, set
C'(B;Re F)={te]0,2r); C(t; Re F) = B}. C-'(B;ImF) is analogously
defined. We say that:

F(t) is recurrent in C if m(C-(C; F)) = 2x.

F(¢) is transient in C if m(C~'({oo}; F)) = 2r.

F(t) is recurrent in R if m(C-'(R;Re F) N C-'(R; Im F)) = 2x.

F(t) is transient in R if m(C-'({oc}; Re F) N C~'({oo}; Im F)) = 2x.

We shall show the following

THEOREM 30. Let F(t) be an L-lacunary series such that (|I7' B, is
increasing.

(A) If 3T s(m; F)* < +oo, then F(2) is transient in C.
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B) Ifi s(m; F)* = 4+ oo, then F(t) is recurrent in C.

m=1

©) Ifi s(m; F)=' < 4o, then F(t) is transient in R.]

m=1

(D) Ifi s(m; F)™ = 4 o0, then F(t) is recurrent in R.

m=1

THEOREM 31. Let F(t) be an L-lacunary series such that F ¢ L*0, 2r)

and W(F) < 4+oo. Then F(t) is recurrent in C.

CorOLLARY 32. Let a be a real number and let F,(t) be an L-lacunary

series such that lﬁ'a(k)l =k* (k> 1).

(B3) If « > 0, then F.,(t) is transient in C.

(B4) If —12< a <0, then F,(t) is recurrent in C.
(65) If a > 1/2, then F.(t) is transient in R.

66) If —1/2< a < 1/2, then F.(t) is recurrent in R.

5.2. Proof of (A) and (B)
We prepare some notation and lemmas. Let F(f) be an L-lacunary

series such that (|F~‘(k)]);°=1 is increasing. Set:

(67

_7(k) = (the integral part of k/2)
n, = ny(F), a, = |Fk)|

M 172
0 = sm; ), w(m, M) =( 3 at)”
k=m
M
T, =2 s:% (T, =0)
M M
U, = Z 8. 5@ns: ), Vy = Z 8,8
m=1 m=1
¥ k-1
rm, M) = 3, mi* 2, my, 7(m) = y(m; F) = lim y(m, M)
- = e
M
7(m, M) = 12_.“ ngt, 7(m) = f(m; F) = }{ig?(m, M)
"A={meZ";m> 128, 4a, < wim — 63, m), a, < 2"}, A°'=2Z" — 4,

where % is a non-negative integer and m, M are positive integers satisfying
m < M.

For 5 > 0, two positive integers K, M (K < M) and a Borel set U in

[0, 27), we put
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h(K, M; U, 77) - IU K<m<ZJ‘:I meA Zﬂ(Fm(t))dt

(38) 2
H(K, M; U, 7) = j { > A@(Fm(t))} dt .

U \K<m<M,me

LemMa 33. C, = 32, 2"mfy(c(m)) < + oo,
Cz = Zia n, Z;‘ozmm 2jj6f(f(m -+ ])) < 4 oco.

Proof. Let us remember the notation ¢(-) and 4(-) in Lemma 5. Set
q = q(Spec (F)) and 6 = 0(Spec (F')). By Lemma 5, we have

C <03 2"mnlig/e < &3 2"mexp {— g™ — 1/g)} < +oco
m=1 m=1
and

G033 2, 05 3 2n + )
m=1 j=m+ m=1 j=m+

o ©

<620 20 2fexp{— g (1 —1g} < Foo.

m=1 j=m+2

LEMMA 34, D e @,? < 400, G = D en sy’ < +oo.

Proof. Since C; < > e 077 < a7 3 s @)% it 1s sufficient to show
the first inequality. Set A ={1,2,---,127}, 4; = {me A° — A; a,, > 2"},
M) = {me A° — A7 — A;;64](m — )} (1 < p < 64). The required inequality
follows from 64 inequalities “2 7, c. ) @,° < 4a, (1 < ¢ < 64)” since

Sar= (D D+ 2 5 Ja

mede meA] me Ay £=1 medy(p)

< 12707 £ 312 4 25607 < oo .

Hence we show that these 64 inequalities hold. Suppose that there exists
an integer 1 < ¢ < 64 such that the cardinal number of 4i(x) is less than
2 and let ¢ be one of such integers. Then we have evidently > ,.c ., o
< 4a;'”. Suppose that there exists an integer 1 < p < 64 such that the
cardinal number of /4;(¢) is larger than 1 and let p be one of such integers.
Then, for two integers m, je 4i(p) (m < j), we have 4a; > w(j — 63,j) >
(64a%_&)'* > 8a,, and hence 2a, < a,, This shows that ZM%W a;? <
al—l/z Z/;.OZO 9=k 4a1—1/2'

Lemma 35. If lim, .. Ty = +co, then lim, .., Uy,/T,; =lim, ..V, /T, =0.

Proof. Since lim,, . s, = + oo, we have evidently lim,_., V,/T, = 0.
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For a fixed number 0 <e<1, we put N,={neZ*';n>2}, I, =
meZ*;a,s;!>¢), It=2" 1. and I'(y) = {mel';N|(m—p} Q< p
< N,). For a fixed integer 1< u <N, we shall show that W, ,6 =
Dimer.m @t < 2a7% If I'(r) = 0, then this inequality evidently holds. If
the cardinal number of I'.(x) is 1, we have, from o, < a, (mn>1), W, , <
a;? < 2¢7. If the cardinal number of 7",(z) is larger than 1, we have for
two integers m, je I'.(1) (m <)),

@} > &1 > cw(j — N, + 1,j) = N&'a_y,.. > Nedt, > 2a, ,

and hence W, , < ai*>7.,27% = 2a;°. We have

N
2 et =2 W, , <2Na*,
r=1

me e

and hence

U, <¢é&” Z sk + Z 5,

1<m<M,mert 1<m<M,meT,
2/5 -2 2/5 -2
ﬁs/TM’i‘ZFam és/T)I_I_ZMal .
mele

Therefore, limsup,,_., U,/T, < ¢/°. Letting ¢ — 0, we obtain lim,_. U,/T,
= 0.

Now we give the proof of (A). Suppose that > v_;s;* < +oo. Since
Spec (F') is L-lacunary, there exists a positive integer m; such that, for
m > mj, 8mn, _, < a,n,. Note that N, = a, and v(F,) = a,. We have,
from Corollary 22,

mede mede,m<my meAC,mi<m

mo= 3 m{te02m R0 < L) = 2+ &

< 2a(m, — 1) + 10447* > pp.

meA, mi<m

< 2zm, + 10° max {a;"%, 1} 2] @) < +oo .
me A¢

Let me A. We shall use Lemma 16 for Q(t) = F,(f), J=(m), =1, M
=m and I = [0, 27). First we note that w(z(m), m)=* < 2s;? and y(z(m), m)
< y(e(m)). Since Ny, = m > 64, J = t(m) <m — 63 = N, and 4u(F,) =
4a,, < wim — 63, m) < w(z(m), m) = w(z(m); F,), we have, from Lemma 16,

IZK A(F,@)dt < 10°[w(z(m), m)~* + {2z (c(m), m) + 7(z(m), m)}a,m® + 2zm 7]

< 10%2s;2 + (2x + 1)2™my(c(m)) + 2zm™%}
< 1052 + 2 mir(e(m) + m) .
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Hence
= lim b1, M5 (0,20, 1) = [ 3 A(Fu(9)de
oo 0 med
< 109{2 8.0+ 20 2rmfy(z(m)) + 2] m'z}
med med med
< 109(21 s+ C+2) < +oo.
m=1

Consequently, (using y,, < 64z7%4,,)

(59) > mi{te [0, 20); | Fo()] < 1/4)
= 2+ 20 <M+ 6dnm, < oo

mede

Choosing a countable dense set 2 in C, set U= ,cs U,, where U, =
{te [0, 27); liminf, . |F, () — a| < 1/4}. By (59), we have

m(Uy) < lim 3 m({te [0, 27); | F()] < 1/4}) = 0.

p—eo m=p
Considering F(¢) — a, we have m(U,) = 0 and hence m(U) < >, m(U,)
= 0, that is, m(U*) = 2x.

Let t,e Ue. For every be C, there exists ae X such that [b — a| <
1/8. Then

liminf |F,.(t) — b| > liminf |F,(t) — | — 1/8 > 1/8 .

m—oo

Since b e C is arbitrary, we have lim,_. |F,(t)| = 4+ . This completes
the proof of (A).

For the proof of (B), we prepare some more lemmas.

LEmmA 36. Let > 0, K a positive integer, U a finite union of inter-
vals in [0,27) and C, = >, 2™"m%(c(m)). Then there exists a positive
number A,(y, U, C,) depending only on 7, U and C, such that (K, M; U, n)
< 10°m(U)y*Ty as long as Ty > Ay, U, C).

Proof. Without loss of generality, we may assume that m(U) = 0.
Let us write U = )2, I,, where I,’s are mutually disjoint intervals. Set
ky =1+ max{m(I,)"; m(I,) # 0,1 < p < vy}

Let me A. We shall use Lemma 16 for Q&) = F,.(t), J=1w(m), M =m
and I=1I,. Since Ny, =m>64,J=1(m)<m — 63 = N;, — 63 and 4u(F,)
= 4a, < w(m — 63, m) < w(z(m), m) = w(z(m); F,,), we have, for 1< p < v,
satisfying m(I,) + 0,
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[ 2o

< 10{m(L)7w(z(m), m)~* + (m(1,) + D', r((m), m)m® + m(L)y 'm~?}
< 109m(1,u)7]2(s1;2 + /fvzmmer(f(m)) + 77—3m_2) .

Hence

ME, M U = 5 f S A F0)

Iy K<m<M,me

<10°m(U)y* 2. (sa* + kp2"mr(z(m)) + 77'm™)

KE<m<M,med

< 10°m(U)7 Ty + £4Cy + 297°) .
Putting A,(y, U, C) = «,C, + 277°, we obtain the required inequality.

Lemma 37. Let 3, K, U, C, be the same as in Lemma 36 and let C,
= Dt My D Tems2 27%7((m + J)). Then there exists a positive number
Ay, U, C,, C,) depending only on 3, U, C, C, such that HK, M; U, <
10°m(U)y*T3; as long as Ty > Ay, U, C,, C).

Proof. We use the same notation v;, I, 1 < p<y,) and #, as in
Lemma 36. Putting

A(0) = {me 4;128|(m — £)}

H(K, M; 1,,7) = Ly { z,(Fm(t))}Zdt

K<m<M,meA8)

HI(K, M; L) = | 3 A(FL )t
Ty K<m<M,m€AW) m<j<M,jeAl)

1<6<128,1<p<yy),

we have

H(K, M; U,7) < 128>, > H(K, M; L, 7)

=1 m(Tp)#0

@ =l 3 aEora+2) > HIK ML)

U KEm<M,me =1 m(Ly)#0

- 105{7:%(1{, M;Unp+ > > H(K M; I, 77)} .
=1 m(Tp)#0
Now we estimate Hy(K, M; I,,7) for fixed ¢ (1 < ¢ <128)and p (1 < ¢
<y, m(I,) # 0). Let m and j be two integers in A(4) such that m <.
We use Lemma 18 for Q(f) = F,(t), R(t) = F,(t), J = z(m), J' = =(m + J)
p=1, M=m, M'"=j and I =1, Note that
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w(z(m), m* > s3,/2, w(x(m + j), my* > w(m, j)* |2 > §%_,,../2
a, <2m a; < 2/
7(x(m), m) < y(z(m)), 7(z(m), m) < 7(z(m)) .

Since

Ny, =m> 64, Ny, =j > 64
J=1z(m) < m— 63 =Ny, — 63,

J/:T(m_j)gﬂ;l,],,ézj_%gj—(ﬁ:]\fm—&%

4u(F,) = 4a,, < wim — 63, m) < w(z(m), m) = w(z(m); F,,)
4(F)) = 4a; < w(j — 63,)) < w(z(m + j), j) = w(z(m + j); F,),

we have, from Lemma 18,

[ aEonE

< 10°{m(L )7 w(z(m), m)~* 4+ (m(1,) + Dy*a,.y(z(m), m)m® + m(1)y 'm™%
X {7w(e(m +j),j)7* + 57'm™"} + 10°7a,7(z(m + j), j)j’nn,

< 10"m(L)y'(s5’ + kp2"mlr(z(m)) + 97°m=*) (8721 + 77 7%)
+ 107277 (z(m + j)n,, ,

and hence
H(K,M;1,7)
< 108m(L)gt . 2 (832 + £p2"mr(z(m)) + 7°m™*)
K<m<M,meA(l) m<j<M,jeEA)
X (852par +97%7%) + 10" 5] 2 ) 2% (z(m + j)n,,

K<m<M,meA(l) m<j<M,je€A(

M
< 10m(L)y* 25 (s5° + £,2"mp(z(m)) + p7'm™)

=
X 3 (s + 7757 + 10°7G,
< 10°'m( L)y (T + £y Ci + 297 )Ty + 297°) + 10°7°C, .
By (60), we have
H(K, M; U, 7) < 10z°h(K, M; U, 7)
+ 10%128m(U )y (T + £5Cy + 297N Ty + 297%) + 10°128u,7°C, .

Taking account of this inequality, choose a positive number A,(y, U, C,, C,)
sufficiently large. Then the required inequality follows from Lemma 36.

Lemma 38. Let K, U, C, be the same as in Lemma 36. Let 0 <y < a,
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and C, = >.,.-..8,. Then there exists a positive constant A, = A,(Ty_,,
7, U, @, C,, Cs, (1)) such that WK, M; U, y) > 10"'m(U)7'T,, as long as
min {TM’ T,/U,, T/ VW} > A,

Proof. We use the same notation v, I, (1 < ¢ < v,), £, as in Lemma
36. Let meA. We use Lemma 20 for Q(t) = F,,(t), J = z(m), M = m and
I=1,. We have, for 1 < p <y, satisfying m(l,) # 0,

L 3, (Fo@)dt > 10~ m(L)w(l, m)~

— 10°[m(L)7"w(, m)~*{a,w(l, m)~'}* + m(L )7 a,w(l, m)~*w(l, m)~*°
+ (m(L) + Dy'r(L, muw(l, m)~*{a, w(l, m)~'}"*
+ m(@)7w(, m)~*a,w@, m)’w(z(m), m)-*F"
+ (m(L,) + Dp'a,y(z(m), m)m® + m(1)y"'m™]
> 107°m(L)7’s;’ — 10°m(L )7’ [s;.%(a, 80" + aosy’s7°
+ £y (D)8 (@nsy))” + 8,527, 8, + k2" miy(z(m)) + 97°m7
and hence

MEM; U= 5 [ 5 2@t

mI)#0 J I, K<m<M,me
> 10°m(U)g(Ty;, — Tx-, — Cy)
- 106m(U)7]2[(1 + KUT(]-) + 24)(])1 + aOVM + KUcl + 277—3] .
Taking account of this inequality, choose a positive constant A, suf-
ficiently large. Then we obtain the required inequality.

Now we give the proof of (B). For 0 <7< a, acC and two positive
integers p, K (n < K), we put Uy, K, a,7) = UL_, {te [0, 2r); | F,(¢) — a]
<gtand Uly, ¢, = Uz-, Uly, K, a,7). Note that U(y, K, a, )" is a finite
union of intervals. By Lemma 37 and 38, there exists a positive integer
M (K< M) such that WK + 1, M; Uy, K, 0, »)%, »/3) > 10~*m(U(y, K, 0,
) /3Ty, H(K + 1, M; Uy, K, 0, )¢, 9/3) < 10°m(U(y, K, 0, 7)°)(5/3)' T}
Then we have, from Corollary 9,

m( U(#7 K, 0, 77)0 N UK+ 1, M0, 7]))
N ’”<{t U K, 0,75 3 7(Fu@)> o})

M
2 m({t © U(/l’ K, O’ ﬁ)c, 7n,§(+1 2N3(Fm(t>) > 0})

> WK + 1, M; U(g, K, 0, 9)°, 43 H(K + 1, M; U(y, K, 0, 79)", 4/3)""
> 107*m(U(y, K, 0, 7)) ,
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and hence

m(U(p, M, 0, 7)) = m(U(y, K, 0, 7)°) — m(U(y, K, 0, 7)° N UK + 1, M, 0, 7))
.é (1 - 10_38)m(U(F‘3 Ky 01 77)0) .

Repeating this discussion, we have m(U(y, 0, 7)°) = 0, that is, m(U(g, 0, 7))
= 2r. Considering F(¢) — a, we have m(U(y, a, 7)) = 2z. Choosing a counta-
ble dense set ¥ in C, we put U= Ner MNiz: (i1 Uy, @, a,/£). Then m(U)
= 2z. Hence it is sufficient to show that, for any te U, C(¢; F) = €. Let
t,e U. We have, for every ae2, liminf,..|F,() — o/ =0 and hence
C(@t,;; F) © 2. Since C(t; F) is closed, C(t,; F) = €. This completes the
proof of (A).

5.3. Proof of Theorem 31
Let F(¢) be an L-lacunary series such that F ¢ L¥0, 27) and v(F) < 4+ oo.
Set:

n, = n(F), ¢, = |F(B)]  (k>=0)
(61) wim, M) = (3 az)‘” 1< m< M)
r(m) = y(m; F), 7(m) = j(m; F) (m>1).

Without loss of generality, we may assume that a,, < 1 (m > 1). We define
inductively a sequence (I"(m));_, of non-negative integers by I'(0) = 0 and
by I'(m) = min{ke Z*; w(I'(m — 1) + 1, k) > 8}. Let us note that I'(m) —
I'm — 1) > 64 (m > 1). For 5> 0, two positive integers K, M (K < M)
and a Borel set U in [0, 27), we put

J’i’z(K, M; U =[5 3 (Fro®)at
(62) U m=K

| M50, = [ {5 2,Frn@) ae.

Lemma 39. Putting I'(m) = I'(z(m)) (m > 1), we have, for > 1, M >
k+1,

i wl(m + k), ['(m))* <log(M — k) + 1
(63) m;k-n-l
53w, Im)* > 10" log M.

Proof. We have 64 < w(I'(m) + 1, I'(m + 1))* < 65 (m > 1). Inequali-
ties (63) follows from these inequalities.
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The following Lemmas 40, 41, 42 and 43 play the analogous role as
Lemmas 33 36, 37 and 38, respectively.
Lemma 40. C, = 312, mé(l'(m) + 1) < + oo,
Co = 2inat Brimy 2 femn ST + ) + 1) < + 0.
Proof. Use Lemma 5.
LemmA 41. Let 7 > 0, K a positive integer and let U be a finite union
of intervals in [0, 2x). Then there exists a positive number A(y, U, C,) de-

pending only on 1z, U, C, such that AK, M; U, 7) < 10°m(U)yt log M as long
as log M > A,(3, U, C).

Proof. Without loss of generality, we may assume that U is an illter-
val satisfying m(U) + 0. Set x, = 1 + m(U)"'. The estimation of L, =
.[ 2,(Frm@)dt (m > 1) is essential, for which we use Lemma 16. Put Q(t)
=U o), J =1'(m)+1, M=m and I = U. Then we have, from Lemma
16,

L, < 10'm(Uyp{w(l*(m) + 1, T(m))™* + rym®y(F(m) + 1) + n~*m™%}
Hence, by (63), we have, for K < M,

hK, M; U, 1) < 100m(U)f(log M + 1 + £,C, + 27) .
Put A,(y, U, C~',) =1+ fCUél + 277%  Then we obtain the required inequality.

LemmaA 42. Let 5, K, U be the same as in Lemma 41. Then there
exists~a positive number A,(y, U, @,, C'z) depending only on 7, ~U, C~'1, C~'2~ su~ch
that H(K, M; U, ») < 10®m(U)y'(log M)* as long as log M > A,(y, U, C,, Cy).

Proof. We may assume that U is an interval satisfying m(U) # 0.
Set k; =1+ m(U)™'. The estimation of I:m,, = f 2,(Frmy@)2,(Fr ;) (@)dt
(1 < m < j) is essential, for which we use Lemma 1%. Put Q@) = Fr (),
ROy=Fr,®), J=Tm+1, J/=Im+j)+1, ng=19, M=m, M'=j
and I = U. Then we have, from Lemma 18,

Ly, < 10°mU){w((m) + 1, T(m))™* + egmr('(m) + 1) + p~'m"?}
X Aw((m + j) + 1, TGN + 777 + 10215 (m + ) + Dipe -

Hence we have, from (63),

~ -~ M ~
HE M; U <=hEM;Unp+23 5 L.,

m=K j=m+1
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< (K, M; U, ) + 2-10°m(U)y'(log’M + 1 + «,C, + 297%)
X (log M + 1+ 297 + 102G, .

Taking account of the last term and Lemma 41, choose a positive number
A, U, 6’1, C,) sufficiently large. Then we obtain the required inequality.

LemmA 43. Let K and U be the same as in Lemma 41 and let 0 <7
< a,. Then there exists a positive constant A, = A(K, 7, U, a,, C, 7(1)) such
that h(K, M; U, 7) > 10-*m(U)y* log M as long as log M > A,

Proof. We may assume that U is an interval satisfying m(U) +# 0.
The estimation of L,, = J‘U 2,(Frm@)dt (m > 1) is essential, for which we
use Lemma 20. Put Q(t) = Fr (), J =I(m)+ 1, M=m, I = U. Then,
we have, from Lemma 20, A(K, M; U, 7) > 10°m(U)jw(@, I'(m))* — B,,
where B,, is determined by (39). Note that > ¥_; B,, = o(log M). We have,
from (61),

MK, M; U, 7) > 107°m(U)y* log M + o(log M)

Taking account of this inequality, choose a positive constant A, sufficiently
large. Then we obtain the required inequality.

Now we give the proof of Theorem 31. For 0 <5< a, acC and
two positive integers u, K(¢ < K), we put I~J(/,e, K, a,7) = L., {tc0, 2n);
|Fro(® — al < 7} and Uly, a,7) = Uz-, Uy, K, a,7). By Lemma 42 and
43 there exists a positive integer M (K < M) such that A(K + 1, M; U, 7/3)
> 10-'m(U")(/3) log M and H(K + 1, M; T, 9/3) < 10*m(T")(/3)"(log M)",
where U’ = Ij(y, K, 0,7)°. Then we have, from Corollary 9, m(ﬁ(y, M, 0, )°)
<(@1- 10‘33)m(l7(/,e, K, 0, 7)°). Repeating this discussion, we have m(ﬁ(y, 0,7)°)
= 0, that is, m(ff(/z, 0, 7)) =2r. Considering F(f) — a, we have m(ﬁ(pz, a,n)=
2z. Choosing a countable dense set Y in C, set U= Maes Mem (Ni=1 ﬁ(y, a,
a,/0). Then m(U) = 2z and, for any te U, C(t; F) = C. This completes
the proof.

5.4. Proof of (C) and (D)

The method of the proof of (C) and (D) is analogous as in (A) and (B).
Hence we only give the sketch of the proof. Let F(f) be an L-lacunary
series such that (a,)., is increasing, where a, = |F(k)| (k> 1). Set s, =
Cor, al)” and T = >m syt (m>1). It is sufficient to show our asser-
tion with respect to cluster sets of P(f) = Re F(f). Using Corollary 22,
we choose suitably a set Ain Z* so that > et St < +oo and that, for
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any p >0, 3. m({t e [0, 2r); | P, ()] < p}) < + oo, where 4° = Z* — A. For
0<9p<a, m je A (m <j) and a finite union of intervals U satisfying
m(U) # 0, set

*

LU, = [ 1(Pu®)dt  (P.@) = Re F,(@)
(64) Lo Uyn) = | 1P (P )t

bu(U) = Lm(U) [ S0 arydr

Then we have, for sufficiently large m and j satisfying m, je fl, m -4 128
<

om(U)pszt < 6,.(U, 1) < 6m(U)ps;!
(65) | LU, 7) — £,(U, )| < 0o(1)/s,,
| L U, | < 0.0(U)s5,"87 2 1 5

where 0, 6, and 6, are positive constants which are independent of 5 and
U. This shows that > 2_, L.(U, n) converges if and only if >3 _;s;! con-
verges. The property (C) follows from this fact.

To prove (D), suppose that > 7_,s;! = +o0. For 0 <y < a, two posi-
tive integers K, M (K < M) and a finite union of intervals U, set

MEM; U =[5 (Pa®)de
(66) <m<M,m

HE MU = [ {5 p(Pa) de.

F \K<m<M,med

Note that

E(K, M; U, 5) < 198K, M; U, 7) + 2- 198" ; 519 Lo (Uss)

=1 m,j
where > denotes the summation over all m, je A satisfying K < m < j <
M, m = £ (mod 128) and j — m = 0 (mod 128). Using (65), we see that, for
given 5, K and U (m(U) +# 0), there exists a positive integer M (K< M) such
that A(K, M; U,7) > 2-0,m(U)T,, and H(K, M; U, ) < 4-1280,m(U)yT%.
Using these two inequalities, we have m(U(y, 0, 7)) = 2r, where f](p, 0,7) =
Usn-. {t€l0, 27); | P,(®)] < 7}). Choosing a countable dense set Y in R, set
Ulp, &, 1) = Us-, {t€ [0, 20); [Po(t) — €[ <y) (Ee D) and U = Mez N7 N
Ulp, & a,f0) .
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Considering P(f) — &, we have m(U(y, &, 7)) = 2r and hence m((*J) = 2r. For
any te U, C(t; P) = R. This shows that (D) holds.

We note that if F(f) is recurrent in C, then it is recurrent in R.
Hence Corollary 32 is an immediate consequence of Theorem 30 and 31.

5.5. Application to the theory of cluster sets of Steinhaus series

Let 2 be a countable product of an interval [0, 1). Element of 2 is
denoted by a small letter w or a sequence (¢;, ¢, - - -), where ¢;€[0,1). A
probability measure in 2 (, which is denoted by “Pr”,) is defined by a
countable product of the 1-dimensional Lebesgue measure.

For a sequence (c,)7., of complex numbers, a (formal) complex Stein-
haus series is defined by ¥(w) ~ X, r.ic, exp 2nig,) (@ = (s, s, - - -)). We
write T(k) = ¢, and s(k; ¥) = 5, |e,)'”? (B > 1). C(w; ¥) denotes the to-
tality of cluster points of a sequence (¥ ()., in €, where ¥, (0) =
2o ¢ exp (2nig,) (@ = (4, @s, - - -)). For a compact set A in C, set C-'(A; ¥)
={wef; Clo; V) = A}.

For a sequence (&,):., of real numbers, a (formal) real Steinhaus series
is defined by y(w) ~ X5, & cos 2zg, (0 = (¢y, @, - - -)). We define analo-
gously as above: J(k), s(k; ), C(-;4), C'(-; ).

We say that:

¥(w) is recurrent in C if m(C(C;¥)) = 2z .
U(w) is transient in C if m(C-'({o0}; ¥)) = 2r .
Y(w) is recurrent in R if m(C-'(R;)) = 2= .
Y(w) is transient in R if m(C-'({o0}; V) = 2 .

Then we have the following

THEOREM 44. Let ¥(w) and (w) be a complex Steinhaus series and a
real Steinhaus series such that (F(R))r., and (J(R)):.. are increasing,
respectively.

Ay If i s(m; ) * < 40, then ¥(w) is transient in C.
m=1
BY If> s(m;¥)* = + oo, then U(w) is recurrent in C .

m=1

cy Ifi s(m; )t < 400, then (w) is transient in R .

m=1

(DY Ifi s(m; ) = oo, then (w) is recurrent in R .

m=1
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THEOREM 45. Let ¥'(w) be a complex Steinhaus series such that sup, |¥'(k)|
< 40 and >, |F(R)} = +oco. Then it is recurrent in C.

Proof of Theorem 44 and 45. Let ¥'(w) be a complex Steinhaus series
such that (¥(k)|);_, is increasing. For every w = (¢,, ¢, - --) € 2, we con-
sider an L-lacunary series F,(t) ~ > .., ¥(k) exp (2rig,) exp (in,t), where n,
= 2" (k> 1) and, for every te [0, 2r), we consider a complex Steinhaus
series ¥ (w) = F,(t). Then s(m; F,) = s(m; ¥",) = s(m; ¥) (m > 1). We easily
see the following implications:

“F.,(t) is transient in C for all we 2”
S “m X Pr({tel0,2x),we 2; Ct; F,) = {oo}}) = 22
= “Pr({oe 2; C@; F,) = {o0}}) = 1 for almost all ¢¢ [0, 27)”
= “U (o) is transient in C for almost all te [0, 27)”.

Now, to prove (A), suppose that >z _,s(m;¥)* < 4+oo. Then F,(t)
is transient in C for all w € 2 and hence ¥',(w) is transient in C for almost
all £e[0,2z). There exists f,€[0, 2z) such that ¥, (»w) is transient in C.
Since a mapping (¢, ¢,, - - -) € 2 — (¢, + n,tp/2x(mod 1), ¢, + n,ty/2x(mod 1), - - -)
€ £ is bijective and preserves the measure “Pr”, ¥'(w) is also transient
in C.

Since the proofs of other properties are analogous as in (A), we omit
the proof.

§6. Convergence of L-lacunary series

For a Taylor series F(f), ac € and & e R, we write simply

- C(a; F) = C({a}; F) = {t [0, 2n); C(t; F) = {a}}
{C“(S; Re F) = C'({§}; Re F) = {te [0, 27); C(¢; Re F) = {£}} .

We write log* x = max {log x, 0} (x > 0). In this chapter, we shall show
the following

THEOREM 46. Let F(t) be an L-lacunary series such that F¢ A0, 2x).
(68) dim (C'(o0; Re F)) = dim (C*(c0; F)) = 1.
69) If ljm log* [ﬁ'(k)!/log n(F) =0, then, for any &£ € R, dim (C'(¢; Re F))

=1.
(70) If limsup log* |F'(k)|/10g n.(F) > 0, then, for any & € R,
koo

dim (C'(&; Re F)) < 1.
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(71) If lim |[F(k)| = O, then, for any ae C, dim (C-'(a; F)) = 1.
(72 If limsup|F~(k)l > 0, then, for any acC, C'(a; F) = 0.

Proof. We write simply P(f) = Re F(t), P.(f) = Re F,(t), a, = |F(k)),
n, = n(F) (k> 0). There exists a sequence (¢.)i-, in [0, 2z) such that
P(t) ~ >0 a, cos (n,t + ¢,). For the sake of simplicity, we give the proof
in the case of ¢, = 0 (k> 0). (The proof in the general case is analo-
gously given.) Note that > 7 ,a, = - oo.

(68): Let k; be a positive integer such that, for k> k), (z/4)n;' >
2rngl. Set yi ;= [@rj — /)0y, Caj + a/d)n] (G=1, -, n.; k> k). We
define inductively (Ui, by Uy = Uiiri,; (0 =n,) and by U, =
Ufreire, Uy j=1,---,n). Set 2, =x/4(k>1). Then we see that
(Ui, and (2,)7., satisfy the four conditions in Lemma 7. Hence, writing
U= M.y Us, we have dim (U) =1. For every tc U, liminf, . P,(f) >
1/+/2 -liminf,_ . 3" ,a, = + oo, and hence C'(c0; P) D U. Consequently,
dim (C*(c0; P)) = 1. Since C'(oo; F) D C!(o0; P), dim (C !(oo; F)) = 1.

(69): Suppose that lim,_. log* a,/log n, = 0. Considering P(f) — & if
necessary, it is sufficient to show that dim (C'(0; P)) = 1.

There exists a decreasing sequence (1,);., of positive numbers such
that 2, <1, lim,_,, (log 1/4,)/logn, = 0 and > 7, a4, << +oo. There exists
a sequence (s;)7_, in [0, 27) such that 0 < s, < 2z/n,, a, cos n,s, > 0 (k > 0),
lim,_.. a, cos ns, = 0 and > 7., a, cos n,s, = +oo. Set b, = sup,-; @, Cos n,s,
and p(k) = b, + >k amnn, + 25, i, (R > 1). Then lim,_. y(k) = 0.

We say that an interval y in [0, 2r) is Z-interval, if there exists a
positive integer k such that m(y) = 1,n;'. Then such an integer is uniquely
determined and denoted by k(y). Set k'(y) = k(y) + 1. We denote by ¢,
the middle point of y and write & = > £ a, cos n.s,. For every A-interval
v, we shall define a positive integer m(y) and two finite sets 4(y), V(y) of
A-intervals.

{Definition of m(y), 4(y) and F(y)): Let y be a 2-interval and suppose
that & s 0. We define inductively a sequence (,(;)i-wy DY & (7)) =
— sign, (§,) and e,(y) = — sign, (&, + > 524, edy)a, cos ns,), where sign, x =
1 (x>0, =0((x=0)and = — 1 (x<<0). Set

m(y) = min {m;

g + ; ei(y)a, cos ns;

k )

< l2li2}

(Since lim, . (& + 2 rwo e(p)a, cosns,) = 0, it is defined.)) For every
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F@)<k<m@), setd, ={y.;;re; ©r.j=1---,n}, where yi, = [s, +
z/4-(1 — sign,e.(Pn;' — (240", s + 7/4-(1 — signye(P)ni' + (1/2)4n;]
and 7;,; = 70 + 22(j — Dng* 2 <j < n). We define inductively (4,)1%,,
by 4, = 4}, and 4, = {r; c € 4;, there exists 7’ € 4,_, such that ¢ C y'}.
Now we put 4(y) = 4., and V(y) = {c;c€ 4, k = E (), - - -, m()}.

Suppose that & = 0. Then we put m(y) = £'(y) = k(y) + 1 and 4(y) =
F@y) = {[sne) — (1/2)2m<r)n;zl(r)a Suiy + U2 A nnin] + 2ajns00 =1, - -, Moy}

We denote by ¢ <7y, if € 4(y) and by [y, if €V (y). Now we show
the following

Lemma 47. Let y and © be two 2-intervals.
(73) If © <7y, then |&| < 1/2:&,] + 9(k(y)) .
(74) If =1y, then, for any ter, [Py < 1§ | + n(kG) .

Proof. (73): Suppose that & # 0. Then [&§ + 2 7%, e.(y)a, cos n,s,|
< 1/2:1¢,|. Note that k(zr) = m(y) and [t. — t,| < A nil). There exists a
finite sequence (¢,)r%.,, in [0, 27) such that e,(y) cos n.s, = cos n,t, and
[t — t.| < Ang* (R'(y) < kR < m(y)). Hence we have

k() k() !
& = |&, + a, cos nt. + >, a,(cos n.t. — cos nt,)
te) =0 |
k(z) k()
=& + e()a, cosnis, + 2, a(cos nit. — cos n,t,)
kE=k" () k=K ()

k()
+ 2, a(cos nt, — cos nt)
k=0
k)

k()
< 1/2:0g1 + k;( ) apd, + kZI @Ay ey, < 112018, + 7(k(y)) .
S =

Suppose that & = 0. Then E'(y) = m(y) = k(z). There exists ¢ ¢ [0, 27)
such that cos n,,S;. = cos n,,t' and |¢t. — t'| < A, ,nis. Hence we have

€] = &, + ay cos nk(.—)t/ + ak(r)(cos Nyt — Cos nk(r)tl)

k(r)
+ > a,(cos nt. — cos n,t,)
k=0

k@)

< by + G + :Z;l Ao ity < p(k(p)) = 1/2-1&,| + 7(k()) .

(74): Using

k()
& + k;()%()’)ak cos ns, | < |&,| + bk(r) s
S
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we see analogously as in (73) the required inequality. This completes
the proof of Lemma 47.

Now we return to the proof of (69). Considering P(f) — & if necessary,
it is sufficient to show that dim (C-'(0; P)) = 1. First we choose a sequence
(U,)i-x; which satisfies the conditions in Lemma 7. Let k;/ be a positive
integer such that, for k> k), An;' > 2zn;!.. We define inductively a
sequence (4d(m))z_, by 4(1) = {7% + 2rjlng 55 =1, -, My}, where 7;%,:
[siy — U2y nit, sip + (124 ng ] and by 4(m) = {r;c € 4(y), y € 4(m — 1)}
Then 4A(m) (m > 1) is a finite set of 2-intervals. Set 4 = {y; y e 4(m), m > 1}
and V = {r;7elV(y),re 4} U 41). Then they are infinite sets of A-inter-
vals. Now we define (U)iiy by Uy = U{y; m(r) = 4ni, y eV} (B> k).
Then it satisfies the four conditions in Lemma 7 and hence, putting U =
Mi-xy Us, we have dim (U) = 1.

Next we show that, for any t¢ U, lim,,_.., P,(t) = 0. Let t,e U. There
exists a sequence (y,);.; C 4 such that 7, > 7,,, and 7,5¢ (¢ > 1). By (73),
1&,..] < 1/2:18,,| + 7(k(r)) (£>1). Hence lim,..&, =0. There exists a
sequence (rm)::ké, C V such that z,, D z,,,, m(z,) = 2,n;' and 7, 5 £, (m > 1).
For every m > 1, there exists a positive integer ¢(m) such that z, [1,m-
By (74), |P.()| < |8, | + 7(R(rsmy)). Hence lim, ... P, () = 0. This com-
pletes the proof.

(70): Suppose that limsup,.. log* a./logn, > 0. Let us show that
dim (C-(0; P)) < 1. There exists a positive number « and a strictly in-
creasing sequence (k;)7_; of positive integers such that a,, > n;, (j > 1).
Choose a number g so that 1/(1 +a) < g < 1. Note that C*(0;P)
M1 U=, V;, where V, = {te[0, 2r); a,,|cosn,t| < 1} (j > 1). We have,
for any j>1, V,=U,-u Ui T/(c;),t’ where n’ = Ny, Tl(c',),e =T + 2nt +
(=[2)signo)/n,, (L =1, -+, n,;0 = 1) and 7, = [—(x/2)a;/n;}, (x/2)a; n;]].
Hence

A(C(0; P)) < lim 3 A,(V) < lim 3 2n, m(z, )?

oo =g pooo g=p

= 2rf lim > a;fni;? < 22flim 35 ni @9 =0,
p—oo j=p pooo g=p

Consequently, dim (C'(0; P)) < < 1.
(71): Set 2, =1 (k>1). Then 2-intervals are defined. Set s, =0
(k> 0). Then, for every 2-interval 7, m(y), 4(y) and F'(y) are defined. Then
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the analogous argument as (69) is applicable. Hence we omit the proof.
(72): Evident.

§7. The deficiency of L-lacunary analytic functions
Let g(2) be an analytic function in D. The characteristic function

27

of g(z) is defined by T(r, g) = 1/27rj log* |g(re?)|dt (0 < r < 1), where
0

log® x = max {log x, 0} (x > 0). The counting function of g(z) is defined

by N(a,r, g) ———'r ma, s, g)/sds (ac C,0 < r<1), where n(a,s, g) denotes

0

the cardinal number of {z; 0<|2| < s, g(2) = a¢}. We say that an analytic

function g(2) in D is of unbounded type if lim,., T(r, g) = +oo. For an

analytic function g(z) of unbounded type, the deficiency d(a, g) (ae C)

is defined by d(a, g¢) = 1 — limsup,.., N(a, r, g)/T(r, g). Note that, if 5(a, g)

= 0, then g(2) attains a € C infinitely often in D. In the theory of value-

distribution, the deficiency plays an important role and we know the fol-

lowing theorem: The deficiency of an analytic function (of unbounded

type) vanishes except a set of the logarithmic capacity zero, where the

logarithmic capacity is a potential theoretic outer measure ([3]).

On the other hand, various properties for value-distribution of lacunary
analytic functions are known. Let us note the following two theorems:

(75) There exists a positive number § > 1 such that an analytic func-
tion g(z) in D attains every complex number infinitely often in D if

2= |&(R)| = +oo and n,,(g)/n(g) > 6 (k= 1) ([17)).

(76) Let g(z) be an analytic function in D such that limsup, .. |g(%®)|
> 0 and that Spec(g) is a finite union of Hadamard lacunary series.
Then dé(a, g) = 0 for all ae C ([10]).

These two theorems suggest that the deficiency of an analytic func-
tion g(z) of unbounded type vanishes for all complex number if Spec (g)
is sufficiently thin. We shall show the following

THEOREM 48. Let f(2) be an L-lacunary analytic function of un-
bounded type. Then é(a,f) = 0 for all aeC.

It is natural to define §-thin sets: A subset E in Z* is d4-thin, if, for
any analytic function g(2) of unbounded type satisfying Spec(g) C E,
o(a,g) = 0 for all ae C. Theorem 48 shows that there exist §-thin sets
and that L-lacunary sets are §-thin. But it seems difficult to determine
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d-thin sets.
For the proof of the theorem, we prepare some lemmas; in which the

first lemma is given by elementary calculus.

LemMmA 49. For any a, be C (b # 0),
27
zij log* 1/|a + be"| dt < min {log* 1/|al, log* 1/|b[} + 1.
T Jo

LEmMA 50. Let Q(t) be a non-constant Taylor polynomial such that
|Q(Ny)| > 1. Then
W) M(p) = m({te [0, 27); |Q@)| < p}) < 32ZNy'™ (0> 0).

Proof. We prove (77) by an induction for N,. In the case of N, =1,
we have

M(o) < m({t€ [0, 2r);|Q(1) sin n,(Q)t] < p})
Q(l)%t} < o})

= m({te [0, 20); |§(1) sin ¢] < o)) < 4m({ te [o, g);
< 18w <32,

Suppose that (77) holds for all Taylor polynomial R(f) satisfying N,
=k and |R(k)| > 1 and let Q(¢) be a Taylor polynomial such that N, =
k+ 1 and |Q(k 4+ 1) > 1. Now let us show that My(o) < 32(k + 1)p"/**»
(p > 0). In the case of p > 1, this inequality evidently holds. Next we
fix for a while a number 0 < p < 1. Set R() = Q' ()e "'n;},, where n, =
n(Q) and n,., = n,,,(Q). Since N, =k and [R(k)|=|Q(k + 1) > 1, we

have M(o*/* ) < 82k(p*/* 1)/ = 32ke'/*+. Set

P(f) = Re Q(8), Pyt) = Im Q(?)

U, = {te [0, 27); |IRe Q)| > 1/¥ 2 - 10"V}

U, = {te[0,20); Im @ (1) > 1/v 2 -ny, 10"} .
We have, for every te U, |Pi(t)] = |Re Q)| > 1/4/ 2 - n,.,0**" and hence,
for any interval I in U,

m(te I; | P(t)) < x}) < 44/ 2 -nplp ¥/E g

Since U, is a finite union of at most 2n,,, intervals,

m({te Uy; |P(t)] < x}) < 8[2—-‘0"‘/"5"‘)3(: .
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Analogously,
mi{te Uy |P()| < xP) < 8/ Z -p /i
Hence

m = m({te U, U U; |Q)] < x)) < 16V 2 p7*
On the other hand,

m, = m(Ur 1 U9 < m{te [0, 20); |QOnzli| < o)
— MR(‘Ok/(k«H)) g 32kpl/(lc+1) .

Consequently,
My(x) < m, + m, < 16ﬁ.p—kl<k+1)x + 82kpHED
ChOOSing X = p, we obtain Mq(P) < 32(k + 1)‘01/(“1)'

Lemma 51. Let Q(t) be a non-constant Taylor polynomial such that
Q) > 1. Then

(78) My(p) < 32N,0"%e (o > 0).

Proof. We prove (78) by an induction for N,. In the case of NV, =1,
we easily see (78) since v(Q) = [Q(NQ)I > 1. Suppose that (78) holds for
all Taylor polynomial R(z) satisfying N, = k and v(R) > 1, and let Q(¢) be
a Taylor polynomial such that N, =k + 1 and »(@) > 1. Now we show
My(o) < 32(k + 1)p/**"* (0> 0). In the case of p > 1, this inequality evi-
dently holds. For a fixed number 0 < p < 1, the following two cases are
possible:

@ QU+ DI = () [Qk + 1) < pe0r,
In the case of (d), we consider R(f) = p~*/**"*Q(¢). Since N, =k + 1 and
|R(k + 1)| > 1, we have, from Lemma 50,

MQ(p) = MR(pI—kZ/(k+l)2) < 32(k 4 1)(‘014“/(15“)2)1/(,‘“)
— 32(k + 1)p<2k+1>/(k+1>3 < 32(k + 1)p1/(k+1)2 .

In the case of (e¢), we consider R(t) = Q(t) — Q(k + 1)e!"=+:@!  Since N,
= k and v(R) > 1, we have, from the assumption,

MQ(p) S MR(p _|_ pk?/(k+l)2) g MR(2pk2/(k+1)2) g 32]2(2{)162/(1»‘+1)2)1/k2
< 32k + 1)/t

For a function P(¢) in [0, 2z), we denote by
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Py = L [(logr 1 _a.
2 Jo 8 P

LEmMA 52. Let Q(t) be a non-constant Taylor polynomial such that
(@) >1 and let n be a positive integer such that 4xv(Q)Nnye¥+V* < n,
where N = N, and ny = ny(Q). Then, with R, () = Q) + ae'™,

(h(R..) < L j " W@ + ae)ds + 6(N + 1)e™
2 Jo

Proof. Set

(R() = Rui(0)

U={tel0,20);|R®)I <t} (r=e @)
1 o1

=5 ) R

t, = 2mv/n, U = {tel0,2r);t, + tfnec U}

1 1
L= togr—— 1 a —1,-n).
T 22 V0% TRG + 4n)| @ n)

Note that A(R) = (1/n) > *-1 L, + L. By Lemma 51, we have
L= [ log = My(e)dp
2z Jo 0
— o {[, & Ma)do + My log — — lim My(e) log 1}
27L' o0 T &0 5
= E(N +1) f pI/(N“)lep + —16'(N+ 1)'e¥-1 < 5(N + te-? .
T 0 T

We have, for any te U, s< [0, 2r),
1Q(t, + s/n) + ae*| > |R(, + tn)| — |QCt + s/n) — QCt, + t/n)|
> e — 2 31 1G] n(@n”! = © — 20(Q)Nn,n"

> — %_e-(lv-»l)‘ > T/2 ,

and hence
1 1
+ —log* _ *
llog 0G +sim) + ae| O TRG + 4n)] i
1 1
< max{l S e Tt t/n)l}lQ(tu + sln) — Q(, + t/n)|
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i 1QR)| n(@)n~! < 4rew(@)Nnyn™ < re~ V1t < e-

We have, for any s e [0, 27),

1 1 .
L,<_~f log* di + e .
- 2z Ju, o8 |Q(, + s/n) + ae'| e

Integrating each term by ds/2z in the above inequality, we have

21 1 .

L < 2n)-2f dtj log* _ds + e

( vy Jo Q. + s/n) + ae’|
_ 27 (2n 1 ]
< (27) j I log* _dtds + e
o do 8 |Q(t, + s/n) + ae'|
Hence
MR = 3L+ L< “j MQ + ae)ds + e + B(N + 1) .
n v=1

This shows that the required inequality holds.

LemmA 53. Let F(t) be a Taylor series such that there exists a positive
integer W such that V'(W, F) < [ﬁ'(W)l/4. (See the notation in Lemma 21.)
Then lim,, ... K(F,) = h(F). If F(t) satisfies also |F(W)| > 1, then h(F) <
10%

Proof. By Lemma 21, we see that, for any 0 << p <1, M(p)/p and
M, (0)]o (m > W) are less than 10°p, ,0'*. The Lebesgue dominated con-
vergence theorem shows that the first equality holds. If lﬁ‘(W)| > 1, then
Pr,w < 1, and hence

1
WE) =2 [ L Muoydo < L 10p,, j p-2dp < 10° .
271' 2 0

LemmA 54. Let g(2) be an analytic function of unbounded type. Then
im0 |8 = 4 o0

Proof. Since log x is concave,
T(rg) < ~log (1 + - [ lglrePdt) < L log 1+ 2 gt )

Now we give the proof of Theorem 48. Let f(2) be the function in
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the theorem. Without loss of generality, it is sufficient to show that
5(0,f) = 0. Writing A(r, f) = 1/2x j log* 1/| f(re")| dt (0 < r < 1), we have
T(r,f) = NQ,r,f) + h(r,f) + OQ) (“the first fundamental theorem” [11]
p. 166) and hence it is sufficient to show that liminf, | A(r, f) < +co. Set
E = (ny)y.,, where n, = n,(f) (k > 1). Let us remember the notation 6(K)
and g(E). Since E is L-lacunary, there exists an integer m; > 2 such that,
for m > m;, m > 1920(E) and 4z0(Eyme™ exp {—q(E)"(1 — q(E) )} < 1.

The proof in the case of limsup,._.. |f(k)| = +oo:

For each number 0 < 5 < 1, set

{m(fi) = max {me Z*; |f(m)| "~ = max {{f{(k)| n™; ke Z*}}
W) = Ny ) = [FmG)I 77, 1) = 71 — W(p)™) .

We easily see that lim, ., m(y) = lim,_, () = + oo and lim,_, r(y) = 1. (See
[6].) There exists a number 0 < 7, < 1 such that, for 5, <7 <1, m(y) >
m; and p(p) > 4. For a fixed 5, <5 <1, we consider a Taylor series F,(¢)
= 3= f(R)r(y)™e™ (n, = 0). Then h(r(y),f) = h(F,). We shall prove ME,)
< 10°. For the proof, we use Lemma 21 for F(t) = F,(t) and W= W(y).
Since

B (W] = p)A — We))" ™ > 41 — Wp) )" > 1
and

Y(We), F) = 35 {nIWp) + n'/ Wy} ()

W(n)

= 1 {MfNgyy + NN} IF(R) T (R)™

k+m(n)
< ) T el + niind 1 — W)™
m(y

m(y)~1

< u)| "L (i, + i)

+ 6 i {ne/nm e + ni/nf,,(,,)}nin(”)/ni]

k=m(y)+1

< 6#(77){m.1(m(7z)) + 75m)} < 120(E)m(y)~*u(y)
< 167 u(n) < |F (W(p)l/4,

we have, from Lemma 53, A(F,) < 10°. Hence liminf,_, A(r, f) <liminf, , A(F,)
< 10%

The proof in the case of limsup,_..|f(k)| < +oo:

Without loss of generality, we may assume that u(f) < 1. Since
S o If(R)F = + o, there exists a strictly increasing sequence (m(£));., of
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positive integers such that m(¢) > m} and |f(m(£))| > m(¢)~'. Set W(¢) =
B, and r(£) = 1 — W(£)"'. For a fixed integer ¢ > 1, we consider a Taylor
series Fi(t) = Sz, f(R)r(£)™e™. Set Fi(t) = S'm, f(R)r(f)™e™ (m > 1). We
use Lemma 52 for F(f) = F%_(t), n = n, and a = f(m)r(¢)". Since

dzu(F,,_)(m — Dn, _e™ < damn,y(m)e™
<Arnf(E)'me™ exp {—q(E)"(1 — ¢(E) ")} < 1,

we have, from Lemma 52,

BED < [T R 4 Farnyee)ds + 6mte
Y4 0

and hence

MED < @[ [T h(E 5 Free )ds,, - ds,

k=mg

< 6e 3 ke * < log® 1|f(m)r() | + 1+ 10°.  (Lemma 49).

k=m

Since
Y(W(), F) = 33 {nW(0) + n'[ Wy} [F4(n)

< 20 {nnge + nifnhg o)

k#m(d)
< 675 (M) + 12(m(E))} < 120(E)m(€)* < 167 'm(£)"!
< 47 | (me) | POV O = [F(W())/4 ,

we have, from Lemma 53, lim,, .., A(F?) = h(F*). Hence

hF?) < log™ 1/If (my)r()™3] + 1 4 10°.

Consequently,

liminf A(r, f) < liminf A(F?) < log* 1/|f(m)| + 1 + 10° .

7ol [

§8. Ranges and cluster sets of L-lacunary analytic functions

8.1. In §7, we showed that an L-lacunary analytic function of un-
bounded type attains any complex number infinitely often in D. In this
chapter, we shall study in detail the value-distribution of L-lacunary ana-
Iytic functions. Let g(z) be an analytic function in D and U a subset of
D such that U N oD # 0, where 9D is the boundary of D. The range of
g(z) in U is defined by R(U;g) ={acC;¥zec U; g(2) = a} = +}. We
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denote by M(U; g) the totality of cluster points of a set (g(2)),cv in € when
|z| tends to 1. We shall study ranges and cluster sets of L-lacunary ana-
lytic functions in some set U such that U N 3D is a singleton.

We denote by D(a,p) (a€C, p > 0) the open disk with center ¢ and
radius p. For every te [0, 2r), set

Rt 8) = (O RUI.(@); g) (the non-tangential range of g(z) at ©)
e<1/2

0<

M(t; g) = (O M({I'.(t);g) (the non-tangential cluster set of g(2) at ?)
e<1/2

0<

M_(t; 8) = M({re"'}<,1; ) (the radial cluster set of g(z) at ¢),

where I'.(t) = Ucrar D(re*, e(1 — r)). We say that te[0,2z) is a Borel
direction of g(z) if R(t; g) = C. We say that ¢ € [0, 2r) is a dense direction
of g(z) if M(t;g) = €. For a compact set A in €, set M:¥(A;g) =
{tel0, 27); M_(¢; g) = A}. For a strictly increasing sequence W = (r)p..
of positive numbers tending to 1, set M, (¢; g) = M({r.e?}s.1; 8), Ry(t; 8) =
Mocecre B g1 D(re®, (1 — r)). We say that:

W is a covering sequence (by g(2)) for te€ [0, 27), if R, (¢;g) = C.

W is a void sequence for ¢, if R,(¢;8) = 0.

W is of pit type at ¢, if, for any compact set A in C,

g(D(r.e*, (1 — r,)) contains A for infinitely many k.

W is of recurrent type at ¢, if it is a covering sequence of non-pit

type at ¢.

We write W(g) = (r.(g))i-,, where r(g) =1— nJ(g)" (k>1). We shall
show the following

THEOREM 55. Let f(2) be an L-lacunary analytic function in D such
that (f(m))z. is increasing and lim, . |f(m)|/s(m;f) = 0. Then W(f) is a
covering sequence for almost all te [0, 27) (a.a.t). Almost all directions are
Borel directions of f(z).

(19 If u(f) < +o0, then W(f) is of recurrent type for a.a.t.

80) If f_] If(m)| s(m; f)> < 4 oo, then W(f) is of pit type for a.a.t.

COROLLARY 56. Let f,(2) (« € R) be an L-lacunary analytic function such
that | f.(m)| = m* (m > 1).

(81 If a = 0, then W(f,) is of recurrent type for a.a.tl.
(82) If « > 0, then W(f,) is pit type for a.a.t.
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THEOREM 57. Let f(z) be the function in Theorem 55. Then almost all
directions are dense directions of f(z).

(83) If i s(m; f)* = +co, then m(M=YC;f)) = 2x.
(84 If 3 |F(m)| s(m; ) < +co, then m(M=({e}; ) = 2.

THEOREM 58. Let f(2) be an L-lacunary analytic function in D such
that W(f) < +oo and Sl If(R)F = + 0. Then m(M=X(C;f)) = 2x.

CoroLLARY 59. Let f.(2) be the function in Corollary 56.

(85) If —1/2 < a <0, then m(M=XC;f.) = 2x.
(86) If @ > 0, then m(M'({oo}; f.) = 2.

THEOREM 60. Let f(2) be the function in Corollary 56 and let W =
(r(f))7-1 @ subsequence of W(f,).

@n If i 1/k; < + oo, then W is a void sequence for a.a.t.
j=1

(88) If i 1/k; = + o and (k;,, — k)5, is increasing, then W is a cover-
=1
ing sequence for a.a.t.

Remark 61. In Theorem 55, we cannot replace “almost all” by “all”
since, for any L-lacunary series (n,);.;, 0¢ [0, 27) is not a Borel direction
of an analytic function 37, 2. The condition “lim,, .. |f(m)|/s(m;f) = 0”
is natural in the theory of lacunary series ([14], p. 396) and it is neces-
sary in this theorem since we see that, if an L-lacunary analytic func-
tion g(z) satisfies |g(m)|/s(m;g) > +v1—1/m (m>1) and Ord(g) =
limsup,,_... log log s(m; g)/log m < + oo, then W(g) is a void sequence for
all{t. At last we note that the statements in (87) and (88) are independent
of «a.

8.2. Lemmas
The following lemma is essential in our discussion.

LemuMA 62 ([5]). Let p be a positive integer and g(z) an analytic function
in D@, r) such that |gP0)] >y, and |gP()| <y, (2| <r). Then g(z)
attains all values w satisfying |w — g(0)] < A(p)rry?*'y;?, where Ap) is a
positive constant depending only on p.
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LemMA 63. Let m > 2 and let (u,)™, be a finite sequence of positive
numbers. Then, with v, =2 u, 1< k< m), we have 7., ufv, <
log (v, /w,). If 2u, < v, 2 < k< m), then >, u,Jv, > 1/2-1og (v, /u,).

Proof. Let us define a function A(x) in [1,m) by A(x) = v,_, +
ulx —k+1) (R—1<x<kk>2). Then u/fv, < h(x)hx)< u,v._,
(k—1<x<k,k>2). Hence

3 wfo, < [ W)/ = log (va/u,) -

If 2u, < v, @< k< m), then v, < 2v,_, (k> 2). Hence

o> 23w, > L j K(2)/h(x) dxc = = log (v, /us) .
r=2 9 k=2 2 )1 2

Throughout 8.2, g(z) is an L-lacunary analytic function in D such
that Ord (g) = limsup,,.... log log s(m; g)/log m < +oo. We put:

n=0, n.=n(g), ri=r(g)=1-n(g)" (k=>1).
C(t; g) = the totality of cluster points of a sequence (g,(e!))s.; in

¢, where g,(2) = g]ﬂ g(k)zm .

(89) .

F, .= gog(k)e“” + e 'g(m)et ! m>1).

m—1 . oo - 1 + rm ng—1
A = 5 W, + 3 180 (ufn)(LE)T =),
LEMMA 64. Let 0 < e < 1/2, m a positive integer and te€ [0, 2x). Then:
(90) limA,,=0.
k—oo

(91) lg(rne) — F, @ < [g(m)|[n, + A, -

92) |g(rne”) — g(@)| < elgm)| + eA,,n (€ D,(t,¢) = D(rpe,e(1 —r,)) .
93) If |g(r.e”) —a| < 272()e|g(m)| and A, <|[g8(m)|/8, then
g(D,. (¢ ¢) > a.

Proof. (90): Since Ord (g) < + oo, there exists a positive number M
such that |g(kR)| < e*" (k> 1). Denoting by E = (n,)7.,, we have

3

-1 o
Ag,m é eank/nm + 2 Z ekM(nk/nm) exp (_ nh/nm)
=0 1

k=m+

>

oo

< e™rp(m) + 238!2) 3 eni/n}
k 1

=m+
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< emMTE(m) -+ IOQTE,l(m)kg‘igl (ekMTE(k)) .

Hence Lemma 5 shows that lim,,_.. 4, ., = 0.

(91): We have

g,m

g(rue) = Fon®] < 5 180 — 1) + 20w (! — 1y

+ 3 1B < B + A -

k=m+1

(92): We have, for any ze D, (¢, ¢),

= - ng—1
80ra0) — 8] < [rae — 2| 53 18| m( 7=
<A = r)n(8m)| + A, L) < elgm)| + eA, . .
(93): We have, for any ze€ D,(t, ),

8Cre)] = [Zm)]| narie™ = 3 (G0 mri™ = L 2(m){ ny — Agyun,
= (g na( -~ Al 20D = <120,

and
18'(2)| < [g(m)| n,y +k§nl§(k)| it
<[gm)|n, A + A ngm)) < 2(g(m)| n,, .

Hence Lemma 62 shows that g(z) attains, in D, (¢, ¢), all values w satisfy-
ing [w — g(r,e")| < 2ADen;(1/8-1g(M)| n,)"(2|g(M)| n,) ™" = 272(e |g(m).

Levmma 65. There exists a strictly increasing sequence W of positive
numbers tending to 1 such that, for any te [0, 2z), M, (t; g) = C(t; g).

Proof. We have [g(k)| < e (k>1). Putting W= (r)i.. (ri=1-—

—okM

e *¥p-Y), we show that W is a required sequence. There exists a positive

—emM

integer m; such that, for m > mi, 7spec(M) < 2e Then we have, for

m > m; and te [0, 2x),

804 — gl < (L= i) 18I ne + 35 18I
<1g(m)] e + 1g(m + DI + Ay

- M M
é e m "I_ e(m+1) eXp {eZm - nm+l/nm} + Ag,md—l .
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Lemma 5 and (90) show that the last term tends to 0 when m — c. Hence
M, (¢t; g) = C(t; g) for any te [0, 2x).

LEmMA 66. If liminf, ., |g(k)| > 0, then, for any tel0,2r) and any
subsequence W of W(g), Ry(t; g) is closed.

Proof. Since liminf,_., |g(k)| > 0, K, = inf,.,|g(k)| > 0. LetaeC and
S a set in R,(¢;g) such that ¥sa. Given 0<e<1/2, we put ¢ =
27°2(1)e. There exists b € ¥ such that |b — a| < ¢K,. Since 3 C R([., (1), 8),
there exists a strictly increasing sequence (m,)7., of positive integers such
that g(D,(t, )2 b (j=>1). By (92), |g(rse*) — b] < &|g(m))| + &A,,n, and
hence |g(r,.e") — a| < &|g(m)| + @Agn; + &K, (j =>1). Since lim;... A, .,
= 0, we have, from (93), g(D, (¢, ¢)) 5 a for all sufficiently large j. Hence
R(I",,(t); 8)3a. Since 0 < e < 1/2 is arbitrary, we have Ry(t; g) 2 a.

LEMMA 67. Let y be a rectifiable curve in D such that, for any 0 <r
<1, y N DO, r) is connected. Set A(r;g) = '[ |g’(2)] 2,(g(@)ds,(2) (> 0),

where ds, is the element of the curvilinear inteéral. If A(r;g8) <+oo for
all p > 0, then M(y; g) is a singleton in C.

Proof. Suppose that M(y; g) is not a singleton. Then M(y; g) N C+ 0.
Since y is connected, M(y;g) is also connected and hence M(y;g) N C
contains at least two points. Let a, b (¢ # b) be such two points. Set
& = |a — b|/3 and 7, = |a| + 2¢. Since y N D(0, r)° is connected for all 0
< r< 1, we can choose inductively two sequences (2,)7.,, (2))7., in r and
a sequence (r;)7., of subcurves of y so that |g(z) — a| < ¢, |g(z;) — g(2))|
= 2¢), g(2) € DW) (ze Ufar) and 7; N yy = @ (j#J). Then

% = 18(z) — 8E)I< | 18'@)1ds(2) = | [8'@)I1,e@Nds )
< 617 | 18')| do(8(2Nds, @)

Since 4,,,(r; 8) < + oo, the last term tends to 0 when j— co. This is a
contradiction.

8.3. Proof of Theorem 55

Let f(z) be an L-lacunary analytic function in D such that (f(m)]):_.
is increasing and lim,_.. |f(m)|/s(m;f) = 0. Without loss of generality, we
may assume that |f(1)] = 1. We use the notation F. . (t) and A, in the
preceding paragraph. Set:
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=0, m=n(f) n=n=1-mp"' =1
A =suwpd,,,  Fu®)=F.0=3 @ + e fome
O Ha = 1FO) an=IF)], 5. = 50m5), 7M) = Faecn(m)
wim, M) = (> at) "

k=m

A

T, = log s, k>L,1<m< M).

For 0 < e < 1/3e, two positive integers K, M (K < M) and a Borel set U
in [0, 27), we put:

ME MU, =[5 2, (Fu0)dt
(95) ) o
A M; U9 = [ {35 2.0 it

The following two lemmas play an analogous role as in Theorem 30.

Lemma 68. Let 0 < e < 1/3e, K a positive integer and let U be a finite
union of intervals in [0, 2r). Then there exists a positive integer Ml such
that, for M > M, 10-m(U)&T,, < MK, M; U, &) < 10°m(U)e*T,. (Compare
with Lemma 36 and 38.)

Proof. Without loss of generality, we may assume that U is an inter-
val satisfying m(U) %= 0. Since lim, . a,/s, = 0, there exists a positive
integer mj, > 128 such that, for m > my, a, < 2™* and 4u(F,,) < w(z(m); F,,).
For every m > mj, we use Lemma 16 and 20 for Q@) = F,(t), J = (m),
p=c¢ea,, M=m and I = U. Then

[ 2Bt < 10mU)Ewm); F,)* + OGn)
and
L Aan(F@)dt > 107 m(U)é*a;,w(1; F,) " — o(ass,”) — O(m™) .
Note that s;* < w(; F,)? and w(z(m); F,)* < 2¢’s;’. Hence
101 — o()m(D)é* mi @5z < AWK, M; U, )
< 10@ + oAU 3 alsi

Since lim,, ... a,/s, = 0, we can apply Lemma 63 for all sufficiently large
M. Then we easily see the required property.
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LemmA 69. Let ¢, K and U be the same as in the preceding lemma.
Then there exists a positive integer Mz such that, for M > Mz, ﬁ(K, M; U, )
< 103’esm(U)T§1. (Compare with Lemma 37.)

Proof. Without loss of generality, we may assume that U is an inter-
val satisfying m(U) = 0. We have

(96) K, M; U,¢) < 105{nZﬁ(K, M; U, ¢+ 5 H(K MU, e)} :

where I—AIZ(K, M; U,e) :j 2 A Fr (D)2, (F())dt and 3, is the summation
over all m, j satisfyingU K<m<j<M m=/{ (mod128) and j = ¢
(mod 128). (See (60).)

For the estimation of ﬁZ(K, M; U,¢) (1 < £ < 128), we estimate 13,,“ =
I Ao Frn(O) Ao (F(D)dt (j — 127 > m > m;), where m; is the integer chosen
irZ; the preceding lemma. If 4(F,) < w(z(m + j); F,), we use Lemma 18 for
Q) = F,®), R@®) = F\t), J=1(m), J' =t(m +j), p=eay, 7/ =ea;,, M=m,
M =j and I=U. Since w(z(m); F,)* < 2%, and w(c(m + j); F))* <
2¢*w(m, j)~%, we have

L, ; < 10°mU){ea,w(z(m); F,)* + Om )Heaiw(z(m + j); F))™ + O~}
+ O(m™%j™%)
< 2e'10"m(U)e{ars;” + O(m™)Ha w(m, j)=* + OG)} + OG~*m™) .

If 4(F;) > w(z(m + j); F,), then ajw(m,j)* = 27'e*u(F,Vw(z(m + j); F})* >
27%7%, In this case, we use Lemma 19 for Q(¢) = F,(t), R(t) = F,t), J =
w(m), 1 = ean, 7 = ea, (K|F,()I3), M=m, M’ =j and I = U. We have

L., < 10"m(U)eatw(z(m); F)™* + Om=)Hea, | ()" + OG-}
+ O(m™%-%)
< 210"m(U)e{ass72 + O(m~)He + OG-} + O(m~5-)
< 2e10"m(U)eass;t + O(m-Hatw(m, ) + OG-} + Om™5?) .

In any case, we have

A

L,,; < 10°m(U)e{a,s;" + Om )Ha w(m, j)* + O 9} + O(m~%) .
By (96), we have
HK, M; U, ¢) < 1002°A(K, M; U, <)
+ 1025128m(U)63{

M

} atsit 4+ O 3 ajw(m, ) + O + OW) .

m=
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Since Y.k alsy? Sl adw(m, )t < 4T,(log w(m, M) — log a,) < 4T%,
we obtain the required property.

For 0<e< 1/3¢, acC and a positive integer s, set U(y a,¢) =
Usn-.{tel0, 22); |F,(t) — a] < ea,}. Using Lemma 68, 69 and Corollary 9,
we have m(U(y, 0,¢)) = 2z. Considering f(2) — a, we have m(U(g, a, ¢)) =
27. Choosing a countable dense set 3 in C, we put U = MNucs (w0 Mir-1
U(y, a, 1/¢). Then m(U) = 2z. Now we show that, for any te U, R, (;f)
=C. Let t,e U,ac3 and 0 < ¢ < 1/3e. Choose a positive integer ¢, so
that 1/4, < 27°2(1)e. Since t,€ (3, Uy, a, 1/4,), there exists a strictly in-
creasing sequence (m;)7., of positive integers such that |F, (t,) — a| < a,, /4.
Then

F(re™) — al < |f(ra,e) — Fo(t)] + | Fo (&) — al
< UM, + Ap + anfl (G

Since lim;_. A, ., = 0, we have, from (93), f(D,,(t, ¢))  a for all sufficiently
large j. Hence R(.w(t);f)2a. Since 0<e< 1/3e is arbitrary,
Ry »(; f)oa. Since ae X is arbitrary and Ry ,(%; f) is closed, Ry ,(%; f)
= C. Hence W(f) is a covering sequence for a.a.t. As an immediate
consequence, we know that almost all directions are Borel directions of
f(2).

(79): Suppose that u(f) < 4. By (92), f(D.@¢ 1) < D(f(r,e"),
uf)+A;). Hence f(D,(, 1) (m>1,tec]0, 2r)) does not contain any open
disk having radius »(f) + A, 4 1.

(80): Suppose that > 5., a,s;2< +oo. For each 0<e < 1/30e, we
shall define a sequence (ﬁm(t, e)z_, (te 0, 2r)) of domains in D such that
D,(t, e C D, ¢ C D, 10:) for all m>1 and all te[0,2r) and that
C((t, ¢); ) = {oo} for a.a.t, where (¢, ¢) = o(Uz: Du(t, ©)).

Then our assertion immediately follows from Rouche’s theorem. In the
following lemma, we define such a sequence.

Lemma 70. For 5> 0, 0< e < 1/30e, a positive integer m and t < [0, 2x),
set:

-ty €) = {reé*=*mir, —eln, <r <1, +eln,}
| 7o @) = {ret*®/mmsr, —en, <r <1, + ¢/n,}
71wt ) = {(r, + ¢/n,)e*; —eln, < s <en,}
|70t e) = {(r, — ¢e[n,)e™; —eln, < s <efn,}
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Tm(t7 5) = U {Tc,m(t9 5); = —, <, T ) l}

ﬁm(t, €) = the interior of y,(t,¢)

9 =2(U Dutt,9)

7-@ ={re; 0 < r < 1}

7t e) = 7(t, &) U 7.(0)

A (2, e) = Z ( If’(Z)IRy(f(Z))dsru,g(Z) C=—« 1,0

gom(lye

4,0 = j( @) (@), 0.0(@)
(4,69 = [ 1F@]3,(fE@Nds,00(2)

Then, for any 0 < e < 1/30e, “{4,(t,e) < 4 oo for all 7> 0} for a.a.t”.

Proof. First we show that, for any > 0, 4., = jh 4. ,@®)dt < + oo,
0

Denoting by L, , = Tm i a,n, r""“{r” Zv(f(re“))dt}dr (m>1,r,=0), we
0

rm—1 k=1

have

A, <[ 37 angrm- l{ﬁ z,,(f(re”))dt}dr = X L.,

0 k=1
Hence it is essential to estimate L, , for all sufficiently large m.

Since (@,)n-; is increasing and lim,, .., a,/s, = 0, there exists a positive
integer mj > 128 such that, for m > m}, 8¢, < Sn_3 Su < ¥ 2 Sn_, and a,
< 2™ For a fixed r satisfying r,_, < r < r,, (m > m;), we have | f(re")| <
|F, ()] + A,, where F, () = X125 (Re™ + F(m—Dr-teim=s 4 F(mrrmetoat,
Hence 2,(f(re*)) < 2,((F, .(?), where 5, =7+ A,. Note that m — 63 > ¢(m),
4(F, ) < w(z(m); F, ,) and w(z(m); F, ,)* < 2¢’s;>. We use Lemma 18 for
Q) =F, @), J=1(m), M= 2" and I = [0, 27r). Then we have

| " 4(fre)dt < j 2 (F, o (O)dt

< 10%{@r)niw(z(m); F,, )" + @r 4+ L)y(z(m))yp2r/1025m10 4 pria-2mncy
< 1092552 + 02 (z(m))) + O@-2m)

We have also, for any m > mj,

Tm

m=1 o
Z aynr™tdr < .[ <Z ahe + 2, aknkr"k“>dr
Tm—-1 \ k=1 k=m

Tm—1 k=

_é kZ_I aknk/nm-l + kz—: akr;ik _é Af,m—l + am-l + am + Af,m g 2(am + Af) .
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Hence
Lo, < |" 3 amrm{10%s;? 4+ 0@ p(z(m) + O@*"))dr
rm—1k=1
< 2:10%(a, + Asit + 0@ r(c(m) + 0@ .
Consequently,

Aoy =3 Ly 2:10% 33 (a, + Asi® + O1) < oo

m=1 m=m}
We have analogously, for any 7 >0, 0 <e < 1/30e, 'r” Ae,, (¢, e)dt < + o0
0

(€ = <, %, 1) and hence j " A(t,)dt < +oo. Putting U() = M {t€ [0, 20);
A, (@ e) < 40l (0<e < 1730e), we have m(U()) = 2r and, for any te U(e),
“4,(t, &) < 4 oo for all » > 0”. This completes the proof of this lemma.

Since > r..8:7 < oo, C(t;f) = {co} for a.a.t. Since Ord (f) < + oo,
there exists a sequence W such that M, (¢;f) = C@;f) for a.t. Lemma 67
and 70 show that “M(7(t, ¢); f) = {oo} for a.a.t” for any 0 < ¢ < 1/30e. Put-
ting U = M (€ [0, 20); Rucp(t; f) = C, M(i(t, o); f) = {oo}}, we have m(U))
= 2r. Rouche’s theorem shows that, for any tc U, W(f) is a pit sequence
for ¢. This completes the proof of (80).

8.4. Proof of Corollary 56, 59 and Theorem 57, 58

Corollary 56 is an immediate consequence of Theorem 55. We show
Theorem 57. Let f(2) be the function in this theorem. We use the nota-
tion a,, $,, 4. ,() in 8.3. Then almost all directions are Borel directions
of f(z) and hence almost all directions are dense directions of f(2).

(83): Suppose that > o_;s,? = +o0. Since (a,)s_; is increasing, (D)
in Theorem 30 shows that m(C-(C;f)) = 2z. Since Ord (f) < + oo, there
exists a sequence W such that M, (¢;f) = C(t;f) for a.t. Since M_(¢;f) D
M, @;f) for at, m(M-XC;f)) = 2.

(84): Suppose that > o _ a,s;?<< +o. By (C) in Theorem 30,
m(C*'({oo}; f)) = 2x. There exists a sequence W such that M, (¢; ) = C(; f)
for a.t. We have also “4. () < + oo for all » > 0" for a.a.t. By Lemma
65, m(M-'({eo}; ) = 2r.

Theorem 58 is an immediate consequence of Theorem 31. Corollary
59 is an immediate consequence of Theorem 57 and 58.

8.5. Proof of Theorem 60
Let f.(z) be the function in this theorem. We write simply f(2) = f.(2)
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and use the notation in 7.3: a,, S., w(im, M), n,, r., F,@), A; .. Let
(m,)7-1 be a strictly increasing sequence of positive integers. Note that
Oy, = mg and s,, = {1 + o(D)/@e + Dyms*® (i = 1. If 7, 1m, < 400,
then

f‘—-‘ ag’l:’sx = O(i “1)> < 4 o0

Jj=1 =1 m;

If >3r..1/m; = +o00 and (m;,, — m;);., is increasing, then

M o
©7) St atsat = (2a + 1)1+ o(1) 3]
J=1 j=1 m]-
and
M M
Z a?njsr—n? Z a?nkw(mj, mk)_z
7=1 k=y+1
M 1 M 1
— @+ )+ Loy 1
Jj=1 mj k=7+1 mk _ mj(mj/mk) *
M 1 M 1
(98) <@+ A +o)dy L 3 L
T omy kSi+l my, — my

Moo Mzj+l 1
<@+ DA +o) - L
|1my kmrom,—my

M 2
< @+ D + o)am)(3 L)
J=1.m;
where 6(m,) is a positive constant depending only on m,.

For 0 <e<1/3¢e and acC, set Y(a,¢) = {t€ [0, 27); “|F, () — a| < ea,,”
holds for infinitely many j}. Choosing a countable dense set 3 in C, set
Y(E) = maez Y(a'! 6), Y= m;e=30 Y(l/g) and Yc = maez Y(a: 1/40)0'

(87): Suppose that 3 5., 1/m; < +oo. First we remark the following
implication: Let £€[0,27) and a€ C. Then

“liminf | F,, () — al/a,,, > 1/50” = “Ry,(t; f)° D Dla, 1/100)” .

joroo

In fact, we have, for ze D, (¢, 1/80) (j > 1),
[f(2) — a| > |Fp(8) — a| — |f(rn,e) — Fp, (O] — |f(2) — f(rn,e)]

1 1
> lFm](t) - al - (gaamj + g(“)‘Af,mj) - (am1/nmj + Af,mj) ’

and hence

liminfinf {| f(2) — al; z€ D, (¢, 1/80)}
joroo
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> liminf{]Fm ® —a| — lfamj} > 3
f 80 200

J—oo

which shows that R, ,(; f)° D D(a, 1/100).
Using Lemma 68, we have

|75 i F@pdt = O3 a5, < +eo
J=1 Jj=1

and hence L 55 Lam ol F ()dt < + 0o, which shows that m(Y(0, 1/50)°)
= 2r. Considering f(z) — a, we have m(Y(a, 1/50)°) = 2r and hence m(Y,)
=2z. For teY, we have R, ,(t;f)° D Uses D(a,1/100) = C that is,
Ryt f) = 0.

(88): Suppose that >35.,1/m; = +o and (m;,, — m,)7., is increasing.
For 0 < e < 1/3e, two positive integers K, M (K < M) and a Borel set U
in [0, 2x), we define

K M5 U,9) = [ 3 R (F ()
(99) . 7 ]:-1{2’[ 2
HK, M; U, ¢) = f {JZK mej(ij(t))} dt .

v
Then we see analogously as in Theorem 55 that, for any ¢, K and U
(m(U) + 0), there exists a positive integer M, such that, for M > M,,
WK, M; U, ) > 10"¢m(U) YL, a% s;2 and

. M M
H(K, M; U,e) < 10°¢m(U) 3 @87 25 apw(my, my)™*" .
=1 k=j+1

By (97) and (98), there exists a positive integer M, such that, for M > I,
(K, M; U, epHK, M; U, &)t > 10-%'6(m,)"'m(U). From this fact, we
obtain m(Y(0, ¢/3)) = 2r. Considering f(z) — a, we have m(Y(qa,¢/3)) = 2x
and hence m(Y(¢/3)) = 2z. Consequently, m(Y) = 2z. By (92), (93) and
Lemma 66, we obtain Ry ,(¢;f) = C (teY).

Remark 71. We see more in detail the following proposition: Let f(2)
be an L-lacunary analytic function such that (| f(m)])z., is increasing and
that ([f(m)/f(m + DD;.: is decreasing and let W= (r,(f))7-. be a subse-
quence of W(f).

(100) If i |f(k)Ps(k;; f)™2 < 4o, then W is a void sequence a.a.t.
7=1

(101) If i |[f(k)Ps(ky; f)2 = 40 and (k;,, — k;)7.. is increasing, then
i=1

W is a covering sequence a.a.t.
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Remark 72. It is an interesting problem to determine analytic func-
tions in D having Borel directions. In this area, the following question
is natural: For a given positive continuous function A(r) in [0, 1) satis-
fying lim, , A(r) = + oo, is there exist an analytic function g(2) such that
T(r,g) < Mr) (0 < r< 1) and that almost all directions are Borel direc-
tions of g(2)?

We can answer, in this paper, this question by using Theorem 55. In
fact, given such a function [A(r), we can define an L-lacunary analytic
function fy(2) = >, 2™ such that T'(r, f;) < h(r) (0 < r < 1). Then Theorem
55 shows that it is a required function.
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