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A CONSTRUCTION OF

-ANALOGUE OF DEDEKIND SUMS

JUNYA SATOH

0. Introduction

If one looks back the classical proof (cf. Carlitz [4]) of the reciprocity law for

Dedekind sums in order to construct ^-analogue of Dedekind sums which also

have the reciprocity law, one can soon see that the following elementary equation

is essential in the proof:

/i\ I — u l — v _ l — v l — u . 1 — u 1 — v
e* — u e* — v u — v e* — u v — u ^ — v'

I — u
for any distinct complex numbers u and υ, where — means the generating

e — u
function of Euler numbers associated to u. So we must extend the above equation

to the generating function of #-Euler numbers for our purpose. As a result, we

obtain a very suggestive equation (see Lamma 5) under the conditions | u \ > 1 and

M>1:

(2) Fu;q(t) *Fv;q(t) = Fu;q(t) + Fv.q(t),

where Fu>q(t) means the generating function of #-Euler numbers associated to u

and the left hand side of (2) is determined by Lemma 4. The above equation is

correspond to the decomposition into partial fractions of — : : (1). We

e —u e —υ

take a deep interest in the invariance of the form. By the generalization of the

theory, we give a new method of construction of ^-analogue of formal power

series. In the following, we explain about the essence of our theory. In [2], Carlitz

defined ^-Bernoulli numbers for a complex number q as follows:

Received November 6, 1990.

129



130 JUNYASATOH

with the usulal convention about replacing βm(q) by βm(q). However it is almost

impossible to extend the above recurrence definition to arbitrary sequence, harmo-

nizing with ^-Bernoulli numbers. So we need to consider another construction

of ^-Bernoulli numbers. For that reason, in the next place, we explain another

construction of ^-Bernoulli numbers from the position that the generating function

of (/-Bernoulli numbers can be viewed as a solution of ^-difference equation,

following the author's previous paper [6]. Let Gq(t) be the generating function

of ^-Bernoulli numbers, i.e.,

G,(ί) = Σ βn(q) ~f.

Then Gq(t) is determined as a unique solution of the following ^-difference

equation [6, (2)j:

Gq(t) = qetGq(qt) - f - j + 1 .

If I q I < 1, then the solution of the above ^-difference equation is expressed as

follows [6, Lemma 1]:

Gq(t) = - Σqneίn]t(qnt+q-l),
«=o

where [x] = [x q] means __ -. for any complex number x.

Now the generating function of classical (i.e., in the case of q — 1) Bernoulli

numbers is formally expressed as follows:

Gi(0 = -ΓT
 = ~ Σ e%

ex — 1 «=o
so we can easily imagine that

- Σ qne[n]tt
n=0

may be suitable for <?-analogue of G\{t). In fact, if we use an operator φq such

that

φq = lid + (q ~ 1) -fa,

then Gq(t) is expressed as follows:

Gq(t) = ψA- Σqne[nUt).

The purpose of this paper is that we give a new method of construction of

^-analogue using the above operator φq. As the first step, we extend the map :

Gι(t) *-* Gq(t) to general power series using φq and * . Next we show that the

map is a homomorphism. So we can deduce unknown ^-formulae from known
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classical formulae. For exmple, we can deduce (2) from (1).

In the following part, we describe the construction of ^-analogue of Dedekind

sums in order to explain the background of our theory. In the second part, we

bring about our purpose and review the argument of the first part from a new

angle of vision.

1. Construction of g-Dedekind sums

1-1. Notation and properties of an(x q)

Throughout this paper, we assume that q and u are complex numbers such

that | ^ | < 1 and | w | > l . Following Carlitz [5], we define #-Euler numbers

associated to u by

Ho(q;u) = l, (qH(q u) + l)n - uHn(q u) = 0 for n > 0,

and ^-Bernoulli polynomials and #-Euler polynomials by

βnix q) = Σ ί") gmxβm(q)[χ]"-m

and

Hn{x, u q) = Σ fc) qmxHm{u q) [x]""",
m=0 \ m '

respectively. In particular, we define the following:

DEFINITION 1. For each non-negative integer n, we define

an(x q) = 1 Hn (x q'1 q) and an(q) = an(0 q).

These polynomials have the almost same properties with classical Bernoulli

polynomials Bn(x) and play an important role in this paper in spite of the di-

vergency of Iim9^i an(x q). In fact, (8) implies as a Laurent series

(3) limΛω =-^#,
9 - 1 l

where Aq(t) and Gq(t) mean the generating functions with indeterminate t of

an(q) and βn(q), respectively.

Now we study properties of an(x q) for > 0, which will be used to define

our ^-Dedekind sums sn;q(h, k).

LEMMA 1. For any non-negative integer n and positive integer k, we have
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(4) [*]» *Σ (qζ)aan ( f qk) = - ^ l Hn({qζ)-' q),

where ζ is a k-th root of unity.

Proof. By the definition of an(x q), the left hand side of (4) is equal to

This is equal to the right hand side of (4) by [6, Lemma 2], which will be again

proved in the last of this paper in consequence of our theory : (16). CH

Next we define (/-analogue of Bernoulli (or Euler) functions as follows :

DEFINITION 2. For each non-negative integer n, we define

an(x;q) = an({χ) ;q)q{x},

where ixi means the decimal part of x.

Using this notation, Lemma 1 is expressed as follows:

(5) [Λ]- Σ VaΛgt: ,ql)=ΊArτHn{{qQ-'-,q).
a mod * \/C / # ς ±

By solving the above equality with respect to cίniη: qk), we obtain

LEMMA 2. For any non-negative integer n and positive integer k, we have

Proof Since c*n(τ: i qk) is a periodic function with period k with respect to

a ^ Z, they are represented as finite Fourier series:

where ξ is a primitive λ -th root of unity. Hence we obtain the following by (5)

This completes the proof of Lemma 2. EH

Note that by (3) and [4, (6.4)] we have

_
where Bn(x) mean the w-th Bernoulli functions : Bn(x) = Bn({x}).
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Now we define ^-analogue of Dedekind sums using άn{x q) as follows:

DEFINITION 3. For each non-negative integer n and for any positive integers

h and k, we define

Sn qih, k) = Σ Bl (fj an ( η p ?*).
a mod k \#/ \ At /

Then we obtain the following result which is an immediate consequence of

Lemma 2:

LEMMA 3. For any non-negative integer n and positive integers h and k such

that (h, k) — 1, we have

«•,»• *> - ^

Note that by (6) we have

hm (*,;f(Af *) - — J = ̂ r y (sM+1(Λ, k) --η^

where sn+i(h, k) are classical n + 1-th higher-order Dedekind sums introduced

by Apostol [1]. In the next section we prove the reciprocity law for these

^-Dedekind sums.

1-2. Reciprocity law for sn;q(h, k).

Our main result in this section is described as follows:

THEOREM 1. For any non-negative integer n and positive integers h and k such

that (h, k) = 1, we have

[kVsn Ah, k) + [hYsnAk, h)

= {(q - l)a(qk)a(qh) [k][h] + a(qk)[k] + a(qh)[h]}n

- η^ {(q - l)a\q) + a(q) + a(q))n -^an{q),

with the usual convention about replacing af(q) by cti(q) (note that cx°(q) is equal to

cio(q) not necessarily to 1).

Our result implies ApostoΓs reciprocity law [1, Theorem 1]. In order to prove

Theorem 1, we need several lemmas.
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Let/(O and git) be power series which have the following representations:

/ ( * ) = Σ o / . β w ' = Σ / - - &

and

w=0 w=0 "

respectively. Then we have

Fn= Σfm[mV
m=0

and
OO

m=0

for n > 0 (according to necessity, we assume the convergency of the above series).

And we define a * product between e[m]t and e[n]t as follows:

Λm\t ju Λn\t -— Λm+n\t

and extend it between/(0 and # ( 0 linearly. Then we have

(7) f(t) * £ ( 0 = Σ

tk

and the coefficients of η~j in (7) are given by
OO 00 00 00

Σ Σ fmgn-minY = Σ Σ fmgnlm + n]k

n=0 m=sO w=0 w=0
OO 00

= Σ Σfmg.(qmln\
W=0 «=0

= Σ

= Σ (?) G, Σ /««-'[»]*-'

ί = 0 N * 7 m = 0 ; = 0

ft

= Σ ί y G, Σ ί ) <ί - D
V/ ;=0 V/

F+G}k.
Hence we obtain the following:

LEMMA 4. For the above fit) and git), we have

fit) * git) = Σ{iq~ DFG + F+G)nζj.
n=0 "
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Similarly to [6, Lemma 1], we can express Fu;q(t) by

(8)
n=0

,-nΛn]t

if I u | > 1. Hence the * product is defined between FU;q(t) and Fv;q(t) if | u > 1

and I u I > 1, and the following holds:

LEMMA 5. For any distinct complex numbers u and υ such that \ u | > 1 and

I v I > 1, we have

(9) Fu;q(t) * Fv;,(t) = ~ f FU;q{t) + yΞ-J FV.,M).

Proof. Using the * product, the defining equation [6, (6)] of Fu;q(t) is ex-

pressed by

le'*Fu;q(t) = Fu;q(t)+^-l,

where we regard e' as eιι)t. Hence we obtain

(±e> * Fu;q(t)) *(^e'* Fv;q(t)) = Fu;q(t) * Fυ.Q{t) + ( ^ - l) Fu;q(t)

And the left hand side of the above equality is equal to

^em * (FuAt) * Fv Λt)) = ^ B " ( ^ * Λ;»

Therefore Fu;q(t) * F» ; ί(ί) is a solution of

(10)

=/(ί) + (1 - l) Λ w ( ί ) + (^ - l) F,At) + (^ - l) (^ - l ) ,e

and the uniqueness is showed easily. On the other hand, we can see by a short cal-

culation that the right hand side of (9) satisfies (10). This completes the proof of

Lemma 5. CH

Since the * product is defined between Aqk (ίk]t) and Aqh (ίh]t), we obtain

the following by Lemma 5:

LEMMA 6. For any positive integers h and k such that (h, k) — 1, we have

(11) AA\.k]t) * Aq> (Wt) =jcΣqζ
1-ι ζ -Λ 1 friθ-' tffl
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Proof. Noting
v 1 _ I — k

we can see easily by Lemma 5. •

By comparing the coefficients of —j in (11) and using Lemma 4, we obtain the

following:

LEMMA 7. For any non-negative integer n and positive integers h and k such

that (h, k) — 1, we have

{(q - l)a(qk)a(qh)[k][h] + a(qk)[k] + a(qh)[h]\

At present position, we can see the reciprocity low for g-Dedekind sums im-

mediately from Lemmas 3 and 7. We done the proof of Theorem 1. •

Finally we conclude this part by raising the following questions:

(i) Find the reciprocity law for generalized ^-Dedekind sums

mod k \fC I \ fC /a mod k

(ii) Determine the relationship between g-Dedekind sums and Lambert series.

2. Generalization of construction of ^-analogue

In this part, we construct ^-analogue of formal power series which satisfy

some conditions (for example Fu;ι(t) and Gι(t) etc.). The * product introduced in

the first part is defined between power series in e\ so in order to treat Gi(t), we

need to extend it to polynomials in t at least.

For fixed complex number q such that | q \ < 1, we define an operator φq on
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formal power series ring C[[fl] as follows :

DEFINITION 4. F o r / ( ί ) e C[[ί]], we define

We construct ^-analogue based on the operator φq. And the following Lemma

is essential in our theory:

LEMMA 8. There uniquely exists a C-multilinear map Φn for each positive

integer n:

Φn'.Cίίt]] X ••• X C[[f l ] >C[[f]]

such that

(i) Φn(fu...9fn) = /i(0) •••/„(()) mod degl,

(ϋ) Φnifu. ..,/*-!, 1) = Φ«-l(/l,. . .,/n-l) if ft > 1,

(iii) <pq(Φn(fu...,fn)) =Φn(φq(fi),...,φq(fn)),

Proof. The uniqueness of Φn for each n > 1 is showed without difficulty, be-

cause Φn(tmi,... ,tmn) for non-negative integers m, (1 < i <* ή) is uniquely deter-

mined by the mathematical induction on n and m\ + + mn.

Next we show the existence. For that, we introduce the following bracket

[*, * ] = [*, * ] ί f r o m C [ [ f l ] X C[[fl] to C[[fl] by

n=0 nl

where f{n) and g(n) mean the Λ-th formal differential of/and g ^ C[[£]], respec-

tively.

Now lid and [*, * ] satisfy the conditions (i), (ii) and (iii) of Lemma 8 for the

cases of n = 1 and n = 2, respectively, thus by the uniqueness we have the fol-

lowing:

Φi = lid and Φ2 = [ * , * ] .

On the other hand for n > 3
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satisfies the conditions (i), (ii) and (iii) of Lemma 8, so it coincides with Φn by the

uniqueness. This completes the proof of Lemma 8. •

Hereafter we denote [/, g]q by f*qg for/and g e C[[£]], i.e.,

DEFINITION 5.

By Lemma 8, we can investigate the properties of

LEMMA 9. * 9 satisfies commutative law, i.e.,

for any f and g

Proof It is clear because of the defintion of * 9 or the uniqueness of Φ2. Π

LEMMA 10. * g satisfies associative law, i.e.,

(f*qg)*qh=f*q(g*qh),

for anyf, g and h e C[[ί]] .

Proof By the uniqueness of Φ3, both of [ [ * , * ] , * ] and [ * , [ * , * ] ]

coincide with Φ 3 D

Note that C [ [ f l ] has a product structure with respect to * 9 , by Lemmas 9

and 10.

Next we explain that * 9 satisfies a kind of exponential law.

LEMMA 11. For each complex number a, there uniquely exists fa(t) ^ C[[f l ] ,

such that

/β(0) = 1 and φq((fa(t)) =q%(t).

Proof It is obvious that fa(t) = e[α]t. D

Now we can easily describe that * q satisfies a kind of exponential law as

follows:

PROPOSITION 1. For any complex numbers a and b, we have
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Φ2<fa, /») = /β+», i.e., e M t * t e m t = ela+bU.

Proof. By Lemma 8, Φzifa, fb) satisfies the conditions of Lemma 11 for

a + b, so it coincides with fa+b. CU

Therefore the * q product is regarded as an extension of the * product

which is introduced in the first part. And by the above argument, we can

construct ^-analogue of formal power series which satisfy some conditions.

DEFINITION 6. We set the following:

( oo oo "I

Σ ane
nt I Σ anq

n is absolutely convergent. ,
«=0 «=0 J

!
oo oo Λ

Σ anq
ne{n]t | Σ anq

n is absolutely convergent. ,
n=0 «=0 J

f finite

Rq[t]q = (RΛt]q, +, * β ) = Σ
1 W=0

W=0

n times

Note that all of elements of Rq[t\q can be viewed as those of C[[fl] because

of the condition on R, so let iq be the inclusion map, i.e.,

Rq[t]q cl*C[[f]].

DEFINITION 7. For each / = Σw=o ane
nt e Rt we define

/*« = Σ ane
Mt.

«=o
And we define φq as follows:

φq:R[t] >Rq[t]q

finite finite

Σ f«ttt" Σ/.*•*, ί*, * , ί .
n=0 «=0

n times

If we extend φq to i?9[flί, then it is a ring endomorphism on Rq[t]q with

respect to + and * Qi and the following diagram commutes:

C[[fl]

And by the definitions, it is clear that iq ° φq ° φq is C-homomorphism from R[t]
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to C[[/]]. So we define ^-analogue for each element of R[t] as follows:

DEFINITION 8. For e a c h / e R[f\, we define a ^-analogue fq of/ by

EXAMPLES. Using our construction of ^-analogue, the generating functions

of Carlitz's ^-Bernoulli numbers and ^-Euler numbers are expressed as follows:

Gq(t) = (Gl(ί)) ,

1J/Ί \

and

Since iq ° φq° ψq is C-homomorphis, we obtain the following:

THEOREM 2. For H(h tn) = Σ ami „,„ tΓ «" e C[tu . . . , ί j ,
/• ft i tnι,...,tnn^C

we formally set

H "itu . . ftn) = = ^-ι ^wi mn 1̂ * ί ' ' " * ? 1̂ * ? * ' ' * ? «̂ * 9 * ' ' * <? tn-
m\ ntn^C ^ ' ^ '

And forfi,...,/« ^ R[t], t/ the following holds

H(fu...Jn) - 0 ,

then the following holds

* , , . . . Λ f n ) q ) = 0 .

EXAMPLES. The motivation of this paper is the construction of ^-analogue of

(1) (see Introduction). At present stage, it is clear, i.e., we have the following by

Theorem 2:

Fu q(t) *qFv;q(t) = u _ y Fu q(t) + ^ _ ^ Fv;q(t) ,

for any distinct complex numbers u and v such that | u \ > 1 and | υ \ > 1.

Next we shall look back the argument of the first part through our theory.

For that, we need two Lemmas.

LEMMA 12. For any fit) = g(t)h(t) such that g(t) is monomial in t and

h (t) ^ /?, and positive integer k, we have
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Proof. By the definition and a short calculation, we can obtain what we want.

D

LEMMA 13. For any f(t) e C[[i]] and x^Cwe have

f(t)*qe
[*]t=f(q*t)e[x]t.

Proof. This is also clear, by the definition and a short calculation. D

Now since classical Dedekind sums sn(hyk) are expresses as follows [3, (6.5)]:

for n > 1 and so(h, k) = Bι, their generating function Sh,k(t) is given by

BιGl (1) + 1 C 5 X ~ζ=Ύ r-*-i Fζ-' (1)
Hence we have

Bid (t)+tΣ Y~ λ

r h 1 F c -i(0.
ς Λ — l

Directly we can construct ^-analogue of the above equality, but by treating

h'\.—, we can obtain a simpler result. By Theorem 2, we have

(Sh.k(kt)\ ^
\ kt )q ~ k A'{t) + k £x qζ - 1 r-* - i Fw-^V)'

Therefore, by Lemmas 3 and 12, we can express our ^-Dedekind sums which

— H — ) . And we can deduce

Lemma 6, which implies the reciprocity law for ^-Dedekind sums from

GΛkt) GΛht) _ 1 v 1 1

~ki hΓ ~ τ £ Z=Ί ζ - * - i Fζ-1;l(ί)

1 Gχ(Q Giffl A: + A - 2 d
kh t t 2kh t
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which is equivalent to [4, (3.4)].

Finally we conclude this paper by raising two examples about ^-Bernoulli

polynomials and q-Eu\er polynomials. At first, we treat ^-Bernoulli polynomials.

For a prime number p, the following equation plays an important role in construct-

ing the ^-adic Bernoulli measure on Zp:

(12) kn'ι%Bn (^ir) = Bn(x)>

for any positive integer k and non-negative integer n. #-Analogue of (12) is given

by Carlitz [2, (5.9)] and that of the equation for Euler polynomials is given by the

author [6, Lemma 2]. Using our construction of ^-analogue, we can clearly explain

them as follows:

Now ^-analogue of (12) for n ^ 0 is expressed by

(13) Ik]"-1 Σ qaβn ( ^ t A . qλ = βn(x:q).

Since the generating function of ^-Bernoulli polynomials is given by

«=o n-

(13) is equivalent to the following:

(14) Gq{t) = TJΛ Σ q"GAQalk]t) ela]l.

On the other hand, the classical equation (i.e., in the case of q = 1) which corres-

ponds to the above equation is

(15) GΛt) = } Σ G 1 ( W ) Λ
κ α=0

and it is trivial. So we can deduce (14) from (15) by Theorem 2, Lemmas 12 and

13.

Next we explain an example about #-Euler polynomials [6, Lemma 2], which

was already used in the proof of Lemma 1:

(16) [kVΣ fa Hn ( ^ ± ^ , uk qk) = * Hn(x, u q),

for n > 0. Similarly to the above argument, we can deduce (16) from a trivial

—~-rFu;1(t) = Σ U~a

 1 Fu,Λkt)eat.
U~l — 1 U~k — 1
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