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SURFACES IN MOBIUS GEOMETRY

CHANGPING WANG*

To Chiu and Ya-Ya

§ 0. Introduction

Our purpose in this paper is to give a basic theory of Mόbius differ-

ential geometay. In such geometry we study the properties of hypersurfaces

in unit sphere Sn which are invariant under the Mόbius transformation

group on S\

Since any Mόbius transformation takes oriented spheres in Sn to

oriented spheres, we can regard the Mόbius transformation group Gn as

a subgroup MGn of the Lie transformation group on the unit tangent

bundle USn of Sn. Furthermore, we can represent the immersed hyper-

surfaces in Sn by a class of Lie geometry hypersurfaces (cf. [9]) called Mόbius

hypersurfaces. Thus we can use the concepts and the techniques in Lie

sphere geometry developed by U. Pinkall ([8], [9]), T. Cecil and S. S.

Chern [2] to study the Mόbius differential geometry.

We will study in detail the surface theory in Mόbius geometry. The

same method can be easily generalized to high dimensional cases. We

give a complete Mόbius invariant system for any immersed surface with-

out umbilic point in S3 which determines this surface up to Mόbius

transformations. Moreover, given any such Mόbius invariant system we

can obtain the corresponding Mόbius surface by solving a linear PDE

determined by this invariant system.

An immediate application of our theory is the classification of Dupin

surfaces in Es under the conformal transformation group. We show that

up to the conformal transformations a Dupin surface in E3 is a part of

a revolution torus, a right circular cylinder or a right circular cone.

Mόbius geometry has a close relation with the famous Willmore con-

jecture. An elegant application of Mόbius geometry was given by R. L.
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Bryant [1] in order to study the Willmore surfaces in S\ In this paper

we give an expression of the Euler-Lagrange equation for Willmore sur-

faces in terms of Mobius invariants.

This paper is organized as follows:

§ 0. Introduction

§ 1. Lie sphere geometry

§ 2. Mobius surfaces and Mobius transformations

§ 3. Mobius invariants for Mobius surfaces

§ 4. Fundamental theorems for Mobius surfaces

§ 5. Classification of Dupin surfaces in E3 under the conformal trans-

formation group

I would like to thank Professor S. S. Chern for his direction and

Professor U. Pinkall for helpful discussion.

§ 1. Lie sphere geometry

In this section we review some basic concepts and facts concerning

the surfaces in Lie sphere geometry. For detail we refer to Cecil and

Chern [2] and Pinkall [9].

1.1. Oriented spheres and Lie transformations

Let S3 be the unit sphere in E" and US* the unit tangent bundle of

S\ An oriented sphere in US3 is a mapping (x, ή): S2-+US3 such that

x : S2 —> S3 is an umbilic sphere and n is one of the unit normal vector

fields along S2. When x : S2 -> S3 shrinks to a point x, we define n to be

the inclusion ix : UXS
3 —• US3 and get a special class of oriented spheres

(x, ix): S2 -> US3, x e S3, called the point spheres in US3. The so called

Lie transformations are the diffeomorphisms from US3 to itself that take

oriented spheres to oriented spheres.

Any oriented sphere k can be represented by the equation m = cos θx

— sin #7i, (x, ή) e US3, for some m e S3 and θ e [G, π), and kr — (m, cos#, sin#)

is uniquely determined by k up to signs.

Let R* be R6 equipped with the product < , > defined by

(1.1) (x, Xs) = x\ + x\ + x\ + x\ - x\ - xi Oi, x2, , x6) e R 6 ,

and 0 be the quadric in P 5 defined by Q = {[x] e P 5 |<x, x> = 0}. Then

we have a mapping from the set of oriented spheres in US3 to Q given

by k->[k']. It is easy to see that this mapping is bijective. Moreover,

two oriented spheres ku k2 in Ϊ7S3 are (oriented) contact if and only if
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(i.2) (k'u k'2y = o.

Thus we can identify the oriented spheres in US3 with the points in Q.

Since the point sphere UXS
S corresponds to the point [x, 1, 0] in Q, we

call such points in Q also point spheres.

1.2. Lie diffeomorphism

Any point (x, ή) e US3 determines uniquely one pencil of oriented

spheres contacting each other at x e S3 with the same orientation n, which

by (1.2) is the projective line on Q spanned by the points [x, 1, 0] and

[n, 0, 1] in Q. Thus we have a bijective mapping

(1.3) L : US3 • A ,

where A is the set consisting of all projective lines on Q. Thus A has

the unique differential structure such that L is a diffeomorphism. We call

L Lie diffeomorphism.

Let 0(4, 2) be the orthogonal group preserving the inner product < , )

in (1.1). Then 0(4, 2) is a transformation group of 0 denned by

(1.4) A([x\) = [xA] , V [x] e Q , A e 0(4, 2),

where xA is the product of two matrices x and A. Since any element

of 0(4, 2) carries projective lines on Q to projective lines on Q, 0(4, 2) =

0(4, 2) mod(± 1) is naturally a transformation group of A. By a theorem

of Pinkall in [9] we know that the mapping Ad(L) :φ-+LφL~ι is an iso-

morphism from Lie transformation group of US3 to O(4, 2) of A. We call

O(4, 2) the Lie transformation group of A.

1.3. Legendre surfaces, curvature spheres and curvature vectors

Let λ : M—> A be an immersion of surface. We write L"1 o X = (n, x) : M

-> US3. Then λ is called a Legendre surface if dxn = 0.

Let ku k2 e C^iM) with (&1; A2) φ 0 and & = kx(x, 1, 0) + £2(rc, 0, 1). [A] : Λf

-> Q is called a curvature sphere of Legendre surface Λ if there is non-zero

vector field Xe TM such that

(1.5) [dk(X)(m)] e λ(m) c 0

at any point me M. Such X in (1.5) is called a curvature vector (field)

corresponding to the curvature sphere [k]. By a theorem of Pinkall ([9],

p. 433) we know that there are at most two curvature spheres [a], [b] : M

—> 0 Moreover, if λ is umbilic point free, i.e., [a] Φ [b] on Λf, then the
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curvature vectors Ex and E2 (corresponding to [a] and [b] respectively) form

a global basis for TM.

Let λ : M~> A be a Legendre surface without umbilic point. We give

an order for the curvature spheres ([a], [b]) of λ. We call (α, b) : M-+R*

a curvature sphere representation of ([α], [b]). Note that for any curvature

sphere representation (α, 6) we have

(1.6) <α, α> = <α? 6> = <6, 6> = 0, (da, b) = - <α, db) = 0,

(1.7) Λ = span(α, 6) : M > A ,

where span(α, 6)(m) is the projective line on 0 spanned by [a(m)] and

[b(m)].

Let i^, E2 be the curvature vectors corresponding to [a], [b] respectively.

By definition we have £Ί(α), E2(b) e span(α, 6). Because of the signature

of < , > we must have (E^b), E^b)) > 0 and <#2(α), E2(a)} > 0 (cf. Pinkall

[8], p. 92). We call (Eu E2) unit curvature vector for the curvature sphere

representation (a, b) if

(1.8) <#>(&), £>(&)> = (E2(a\ E2(a)} = 1.

It is clear that the unit curvature vector (Eu E2) is determined by (α, b)

up to signs.

1.4. Lie sphere geometry
In Lie sphere geometry we study the invariants of immersed surface

f = (x, h) : M -> USZ with dx-n = 0 under the Lie sphere transformation
group of US\ By the above discussion we know that this geometry is
equivalent to the geometry of Legendre surface λ — Lof:M-^A under
the transformation group Q(4, 2) of A.

For any Legendre surface λ we can construct a moving frame in JR6

along M by using the curvature sphere representation and its unit cur-
vature vectors. Since O(4, 2) or 0(4, 2) is linear, we can use the same
method as we do in euclidean geometry or affine geometry to give the
Fundamental theorems for Lie geometry surface. In this paper we will
use this idea to give the surface theory for Mobius differential geometry.

§ 2. Mobius surfaces and Mobius transformations

In this section we introduce some basic concepts in Mobius geometry
in terms of the concepts in Lie sphere geometry.

Let G3 be the Mobius transformation group of S\ We identify a e G3
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with the diffeomorphism af : US* -> US* defined by

(2.1) Ax, n) = gfλ .
I α<71 /

Since </' carries oriented spheres to oriented spheres, it is a Lie trans-

formation. Thus G3 can be regarded as a subgroup of the Lie transfor-

mation group of USS, and then MGZ = LGzL~ι is a subgroup of Lie

transformation group 0(4, 2) of Λ, where L is the Lie diffeomorphism.

PROPOSITION 2.1. 7/ α Lie transformation B e 0(4, 2) £α&es pomί spheres

in 0 fo pomί spheres, then B = ( ^ 1 J cmc? A e 0(4,1), where 0(4,1) is

ί/iβ orthogonal group of R5 preserving the inner product (w, w} = wl + w\

+ w\ + w\ - α J, (w1? , w,) e R5.

Proof. Let ΰ e O(4, 2) take point spheres to point spheres. We write

B = (A b\ such that A is a 5 X 5 matrix. Then for any x e S3 B([x, 1, 0])

- f(x, 1)A, (Λ, 1)6} is a point sphere in Q. Thus (x, 1)6 = 0 for all x e S3,

so 6 = 0. Since 5 e 0(4, 2) means exactly that BI2

ιB = 72, where 72 =

I1 ° °\ /7 0\0 - 1 0 = (π1 V), we know that A7/A - Vb = 0, A7/c - ε6 = 0
\0 0 - 1/ V U " X /

and c7/c — ε2 = — 1. From 6 = 0 we obtain c = 0, ε = ± 1 and A7/A

= 7lt Therefore B = ε(££ J) = ( ε ^ °) in O(4, 2) and εA e 0(4, 1). Q.E.D.

Since any Mobius transformation σ — σf e Gz carries point spheres

into point spheres, we know that La'L~x = ί ^ Λ for some A e 0(4, 1).

Conversely, given A e 0(4, 1) we can define a Mobius transformation

a: S3 -> S3 by <T(X) = (xJ3 + M)/(XI; + w\ x e S\ where (B υ) = A and B is
\ ί ί IX) J

a 4 X 4 matrix. One can easily verify that Lσ'L~ι = (Λ Λ- This gives

a easy proof of the following well-known theorem:

THEOREM 2.2. MG, = {ΓJ J) IA e 0(4,1)| c O(4, 2).

Now we want to represent the immersed surfaces in S3 by a special

class of Legendre surfaces in A.

Let x:M—> S3 be an oriented surface without umbilic point and n

the unit normal of x which gives the orientation. Let k, h be the principal

curvatures for x. Then λ = Lo(χ, n) : M-> A is a Legendre surface, and

(a, b) define by

(2.2) a = k(x, 1, 0) + (n, 0, 1), b = h(x, 1, 0) + (ra, 0, 1)
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is a curvature sphere representation for λ. The unit curvature vectors

Eu E2 corresponding to the curvature spheres ([a], [b]) are the principal

directions of x with euclidean length {k — h)~\ Let p : R6 -> R be the

projection denned by

(2.3) p(xu x2, , x6) = x%, (xu x2y , x6) e R 6 .

By (2.2) we have p(ά) — p(b) = 1. This motivates

DEFINITION 2.3. A Legendre surface λ:M->Λ is called a Mobius

surface if (i) λ is umbilic point free; and (ii) there exists a curvature

sphere representation (a, b) such that p(a) = p(b) = 1.

Note that such (a, b) is uniquely determined by the order of curvature

spheres of λ, and the corresponding unit curvature vector (El9 E2) is

uniquely determined by (1.8) up to signs. We call (α, b) the curvature

sphere representation and (Eu E2) the unit curvature vector for Mobius

surface λ.

DEFINITION 2.4. Let λ\M->A and μ:N-+Λ be Mobius surfaces, λ

and μ are said to be Mobius equivalent if there are a diffeomorphism

e : M->N and A e MG3 such that μ°e — A°λ. Such β, A or (e, A) is called

a Mobius equivalence of /I and μ. Briefly, /ί and μ are Mobius equivalent

if their images in A differ only by a Mobius transformation.

By Theorem 2.2 we can easy see that

PROPOSITION 2.5. The curvature sphere representation (α, b) and the

unit curvature vector (Eu E2) mod(±l) are invariant under the Mobius

transformation group MGZ.

We know from (2.2) that any oriented surface x:M-+S* without

umbilic point defines a Mobius surface λ = L°(x, n) : M-+ Λ. Conversely

we have

THEOREM 2.6. Any Mobius surface λ \M->A is defined in this way

by an oriented surface x : M-> S3.

To prove this theorem we need the following proposition:

PROPOSITION 2.7. Let (a, b) be the curvature sphere representation for

a Mobius surface λ and (Eu E2) its unit curvature vector. Then we have

the following product table:
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(2.4)

<>>

a

b

EM
Et(b)

a

0

0

0

0

b

0

0

0

0

EM

0

0

1

0

EM

0

0

0

1

Proof. By (1.5) and (1.7) we have

(2.5) [#i(α)L [E2(b)] e

Thus (1.6) and (2.5) imply

(2.6) <£,(α), b} = - <α, E^b)} = 0 , ί = 1, 2 .

To prove Proposition 2.7 it suffices to show that <£Ί(6), E2(a)} = 0. Let

/, g be the smooth functions on M such that EίE2 — E2Eί = [Eu E2] = / ^

+ gi?2j then we get from (2.5) that

(2.7) EλE2{a) - Ca+ C'b + C"E2{a), C, σ , C7/ e C~(M).

Thus we have (E^b), E2(a)} = - <6, EίE2(a)y = 0. Q.E.D.

27ιe proof of Theorem 2.6. Let (α, 6) and (ίJ1? E2) be as in Proposition

2.7. Let (θuθ2) be the dual basis for (Eu E2). We write L~λ o ^ = (x, n),

α = (α;, A, 1) and 6 = (6/, /ι, 1). Then we have

(2.8) , l, o) = ^—A,
k — h

(n, 1, 0) -
— Kb

k - h

From (2.4) and (2.8) we know that x, n : M-+S3, dx-n = 0 and

(2.9) (dx? 0, 0) = ωa + ω76 +
k-h

( - \ + £2(α)6>2), ω, ω' e

Now if Ve ΓWM such that dx(V) = 0, we get from (2.9) and (2.4) that

Θ,{V) = Θ2(V) = 0. Thus V = 0. So x : M-> S3 is an immersion. Q.E.D.

COROLLARY 2.8. The Mόbίus geometry of immersed surfaces without

umbilic point in S3 is equivalent by the Lie diffeomorphism to the geometry

of Mδbius surfaces in A under the Mδbius transformation group MG3 for Λ.

§ 3. Mόbius invariants for Mδbius surfaces

In this section we give the Mobius invariant system for Mδbius sur-
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faces and the relations among these invariants.

Let λ:M-+Λ be a Mobius surface, (α, b) the curvature sphere rep-

resentation of λ and (Eu E2) its unit curvature vector. Let (θu θ2) be the

dual basis for (El9 E2). We know by Proposition 2.5 that (α, 6), (Eu E2)

mod(±l) and (θuθ2) mod(±l) are Mobius invariants. In particular we

have the Mobius invariant metric

(3.1) ds1 = {da, da} + {db, db) = θ\ + θ\

on M. It is the so-called Mobius metric, whose volume functional is 4

times the Willmore functional in S\

The other two important Mobius invariants are the functions

(3.2) Φ = {E2E2(a\ E2E2(a)) , Ψ = {E.E^b), E^φ)) .

We will show that Φ + Ψ = 1 and (Eu E2, Φ) forms a complete Mobius

invariant system for Mobius surfaces.

First we come to list the relations among the Mobius invariants

Eu E2y Φ, Ψ. Let /, g be smooth functions on M such that

(3.3) dθί = fθί A 02, dθ2 = gθi A θ2.

We denote u% — E^u), i = 1, 2. Then d^ = j ^ i z ^ . By exterior differential

we get

(3.4) Mi2 = M21 + fui + gu2.

From (2.5) and the fact p(a) = p(6) = 1 we know that

(3.5) a, = Sa - Sb , b2 = - Ta + Tb

for some smooth functions S and T on M. Thus (3.4) and (3.5) imply

(3.6) α21 = (S2 + ST- fS)a - (S2 + ST - fS)b + (S - g)a2,

(3.7) 612 = - (7Ί + SΓ + £Γ)α + (7^ + ST + gT)b + (T + /)6,.

It follows from (2.4) that / = - T and g = S. Therefore, (3.3)-(3.7) can

be simplified as

/Q Q V ^J/Ί 'T7/! Λ /J >-7/3 C/3 Λ Ω

(3.4)' «„ = u2I - Tut + Su2, i.e., [Elt E2] = TE{ -

(3.6)' au = (St + 2ST)a - (S2 + 2ST)b .

(3.7)' δ12 = - (T, + 2ST)α + (7\ + 2SΓ)6.

From (3.4)' we know that S, Γ are determined by (£Ί, E2).
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Now we define

(3.8) c = a22 + —Φa , d = bn + —Ψb ,
A A

where Φ and Ψ are defined by (3.2). Using (3.4)', (3.6)' and (3.5) we obtain

(3.9) d = α221 + \φxa + \φax
A A

= α212 + Tα21 - Sa22 + —Φxa + — Φ(Sa - Sb)
A A

2 + 4S2T + 2ST, + 4SΓ2 + ΦS + — Φ,)α

) + (S2 + 2ST)a2 - Sc .

Similarly from (3.4)', (3.7)' and (3.5) we get

(3.10) d, = - (τn + 2S,T + AST, + 4S2T + —ΨT)a

4ST, + 4S2T+ FT + —
A

1 - Trf.

Since by (3.8) we have

(3.11) <c, c> = <d, d) = 0 , <c, α> = <d, 6> = - 1,

<c, α2> = <d, 6t> = 0 , <c, 6> = <d, α> = 0 ,

so (2.4), (3.9) and (3.10) imply that

(3.12) S22 + 4S2T + 2ST2 + 4ST2 + ΦS + — Φ, = 0 ,
A

(3.13) Tn + 4ST, + 2StT + 4S2T + ΨT + — Ψ2 = 0 .
A

They are two relations among the Mδbius invariants (2?!, 2?2> Φ, ̂ ) . Thus

(3.9) and (3.10) become

(3.9)' cx = λ(φS+ Φx)b + (S2 + 2ST)α2 - Sc,
Δ

(3.10)' d2 = λ(WT + Wi)a + (Γ,
A
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It follows that <c, d) = <c, 6n) = «c, &i»i — <<?!, &i> = — (<α2, &i2»i = 0.

Thus from (2.4) and (3.11) we obtain the following product table:

(3.14)

<,>

a

b

α2

δi

c

d

α

0

0

0

0

- 1

0

b

0

0

0

0

0

- 1

α2

0

0

1

0

0

0

δi

0

0

0

1

0

0

c

- 1

0

0

0

0

0

d

0

- 1

0

0

0

0

A basis (α, b, α2, bl9 c, d) for iϊ6 satisfying this product table is called

skew L i e basis. A L i e basis f o r R 6 i s a b a s i s ( e u e2, • , e 6 ) s u c h t h a t

the matrix

(3.15)

PROPOSITION 3.1. Let (a, b, a2, bu c, d) and (a', b\ a'2, bi, &, df) be two

skew Lie basis for R\ Then there exists unique A e 0(4,2) such that

(a', b', aί, 6ί, &, df) = (aA, bA, a2A, b,A, cA, dA).

PROPOSITION 3.2. A basis (α, 6, α2, bu c, d) for R6 is a skew Lie basis

if and only if

is a Lie basis.

- Φ, <h, K (a + c)> d))

P R O P O S I T I O N 3.3. (eue2, •• ,e 6 ) is a Lie basis if and only if

0(4, 2).

PROPOSITION 3.4. A e 0(4, 2) if and only if ιA e 0(4, 2).

The proof of these propositions is left to the reader. For any

Mobius surface λ:M->Λ (or equivalently immersed surface x:M-+S3)

we have denned a moving skew Lie frame (a, b, α2, bu c, d) in R6 along M.

Thus

x 1
(eu β 2 , ., e6) = - d), α2, 61?

c), _L



SURFACES IN MOBIUS GEOMETRY 63

is a Lie frame along M. By Propositions 3.3 and 3.4 we know that

:M->0(4,2) and ιA = :Λf-+0(4, 2). Since p(a)=p(b) = l,

p(c) = and p(d) = λψ (see (3.8)), then et = (p(e1),p(e2), ,p(e6))

_ A<Λ
2 / V 2

Thus from <ef, e,*) =

(3.16)

_ l r ) , o, o, i (i + λφ), i (i + l
2 / V 2 \ 2 / VT\ 2

- 1 we obtain

Φ + r = 1.

Now we compare the Mόbius invariants for the immersed surface
x : M —> <S3 with the euclidean invariants. Let /?, Λ be the two principal
curvatures for x corresponding to the unit curvature vector fields eu e2

respectively. We denote by ut the directional derivative e,(u) and dx1 the
induced euclidean metric for x. Then we have

(3.17) £, = - ! ' &
k — h

(3.18) ds2 = ( k - h)*da*

(3.19) S = kl

k — h

(k - Λ)
T= -

(k-

(3.20)
k\ h2+

(k - hy (k -

(3.21) ¥ = +
- hf ( k -

(k - hf (k-hf\k-hh'

fez + l + 2 ( h> \
(k - hf (k- hf\k- / ι/ . '

Let V be the area functional with respect to the Mδbius metric.
The critical points of V are called the Mδbius minimal surfaces or the
Wίllmore surfaces, which can be defined by the Euler-Lagrange equation

(3.22) 2(S, - T2) + 4(S2 - T) + 1 - 2Φ = 0,

where Si = E,(S) and T2 = JE2(T). We will see in the last section that
the Clifford torus is the Mδbius minimal surface corresponding to the
Mδbius invariants S = T = 0 and Φ = 1/2.

§ 4. Fundamental theorems for the Mδbius surfaces

For any Mδbius surface we have defined in § 3 a moving skew Lie
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frame (α, b, α2, bu c, d) along the surface. In this section we use the theory
of Partial Differential Equations (PDE) to establish the fundamental
theorems for Mόbius surfaces. For this purpose we need to calculate the
differentials of (a, b, a2, bu c, d).

By (3.14) we know that for any u : M—> R6 we have the formula

(4.1) u = — (μ, c}a — (μ, d)b + (μ, a2)a2 + (μ, b^b^ — (μ, a)c — (μ, b)d .

Using (3.14), (3.10)7, (3.7)r and (3.5) we obtain

<(c2, c) = 0 , <c2, d} = — (c, d2} = -

<c2) α2> = - <c, α22> = - i - φ , <c2, 6,> = - <c, 612> = - (Γ, + 2ST),

<c2, o> = - <c, α2> = 0 , <c2) 6> = - <c, 62> = - T ,

which imply that

(4.2) c2 = - i ( r T + f 2)6 - i-φo, - (T, + 2SΓ)6, + Γd .

Similarly from (3.14), (3.9)', (3.6)' and (3.5) we get

(4.3) d1 = - \(ΦS + ΦJa - (St + 2ST)a2 - λψbt + Sc.

So we have the following structure equations for the Mόbius surface
λ:M-+Λ:

(4.4)

= Sa - Sb, E2(a) = α2,

E,{b) = 6,, Et(b) = -Ta+Tb,

= (St + 2ST)a - (S, + 2ST)b , ίJ2(α2) = c - λφa ,

= d-±(l-Φ)b,
A

2ST)a + (Γ, + 2ST)b ,

= ±.(ΦS + Φdb + (S2 + 2ST)α2 - Sc,

= --(T -ΦT- Φ2)b - i-Φα2 - (ϊ\ + +

= - — (ΦS
Z

,)α - (S2

= λ(T -ΦT- Φ2)α + (Γ, + 2ST)6, -

Sc ,
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where S, T are defined by

(4.5) [El9 E2] = TE, - SE2.

Therefore, the structure equations (4.4) is completely determined by the

Mobius invariants (EUE2,Φ). By (3.12), (3.13) and (3.16) we have the

following relations among (EUE2,Φ):

(4.6) S22 + 4S2T + 2ST2 + AST + ΦS + λφί = θ,
Δ

(4.7) Tn + AST, + 2S,T + 4S2T + (1 - Φ)T - —Φt = 0 .

PROPOSITION 4.1. (4.6) and (4.7) are exactly the integrability conditions

for PDE (4.4).

Proof. As well-known the integrability conditions for (4.4) are given

by the equations

(4.8) EXEW) = EtEι(xi) + TEW) - SEW), l<i<6 ,

(cf. (4.5)), where (x\ x\ , xQ) — (α, b, α2, 6^ c, d). It is straightforward to

check from (4.4) that (4.8) is equivalent to (4.6) and (4.7). Q.E.D.

Now let M be a simply connected surface, (Eu E2) a basis for TM,

(S, T) the smooth functions defined by (4.5) and Φ 6 C°°(M).

DEFINITION 4.2. (Eu E2, Φ) is called a Mobius invariant system on M

if it satisfies (4.6) and (4.7). We denote by Y(M) the space of all Mobius

invariant systems on M.

For any y = (El9 E29 Φ) e Y{M) we can define by (4.4) a linear PDE

system. By the basic theory of PDE we know that given any point

me M and / = (xj, x\, , xl), xι

Q e ϋ 6 , there exists the unique solution

(α, b) (or equivalently (α, 6, α2, bu c, d)) for the PDE (4.4) with respect to

y such that

(4.9) (α, 6,α2, 6i,c,d)(/w) = J .

This solution is global because M is simply connected.

PROPOSITION 4.3. If I = (xl) = (xj, xl , jcg) is α skew Lie basis for

R\ then the solution (a, 6, α2, bu c, d) is a moving skew Lie frame along M.

Proof. We denote (xι) = (x\ x\ , x6) = (α, 6, α2, ku c, d). Using (4.4)

we can obtain a linear PDE for <V, x j), 1 < i, j < 6, by calculating
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Ex((x\ xj}) and E2((x\ xj}). It is straightforward to check that this PDE

is also satisfied by <xj, x(} if I = (XQ) is a skew Lie basis (cf. (3.14)). Since

(x\ xj}(m) = <xj, x%y, by the uniqueness theorem of linear PDE we know

that <x\ xj} = (x\, xiy, i.e., (α, b, α2, bl9 c, d) is a moving skew Lie frame

along M. Q.E.D.

In particular, we have <α, α) = <α, 6) = <6, 6) = 0 and {da, 6) = 0.

We define λy(m, I) = span(α, b) : M-> A. One can easily see that λy(m, I)

is a Legendre surface. But in general it is not a Mobius surface. In

order to obtain by this way a Mobius surface we have to put more

restriction on the initial value (m, I).

DEFINITION 4.4. Let y = (Eί9 E2, Φ) e Y(M). A pair (m, I) is called a

Mδbίus initial value of y if me M and I = (xj) is a skew Lie basis for R6

such that

(4.10) p(I) = (p(xl),p(xl), - .,/>(*») - (l, 1, 0, 0, lφ(τn), 1 ( 1 - Φ(m))) .

PROPOSITION 4.5. For any y e Y(M) there exists Mobius initial values.

Proof. Let meM, we define

then ty = — 1. We can extend ef to a Lie basis (ef, ef, • • •, ef) for

JRβ. Since A =

P(e2),

e 0(4, 2), then £A = e 0(4, 2) and e* = (p(e,),

= (

,p(eβ)). We define

(e + e ) 3, e 4 , ^ = ^

then I is a skew Lie basis such that (4.10) holds. Thus (m, I) is a

Mobius initial value of y. Q.E.D.

PROPOSITION 4.6. If (m, I) and (m, Γ) are two Mobius initial values

of y e Y(M), then there exists a Mδbίus transformation B e MGZ such that

IB = Γ, where I - (x\ x\ , x6) and IB = (xλB, x2B, , x*B).
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Proof. Since / and Γ are skew Lie basis, we can find B e 0(4, 2)

such that IB = Γ. We write xι = 04p(* 4)), 1 < i < 6, and B = (A Λ,

weR. By (4.10) we have p(I) = P(Γ) = P(IB), which implies that x\-v

+ (w - l)p(x*) = 0, 1 < i < 6. But I = (a1, x\ , x6) is a basis for R\

we know that v = 0 and it; = 1. Then w = 0 follows from the fact that

B e 0(4, 2), so we have £ e MG3. Q.E.D.

Now we can state the fundamental theorems for Mδbius surfaces in Λ.

THEOREM 4.7. Let y=(Eu E2i Φ) e Y(M) be any Mδbίus invariant system

on M. Let (a, b) be the solution of (4.4) defined by y and a Mδbius initial

value (m, I) of y. Then λy(m, I) — span(α, b): M-+Λ is a Mδbίus surface

with (α, b) as its curvature sphere representation, (Eu E2) as its unit curvature

vector and Φ the Mδbίus invariant for λy(m, I) defined by (3.2).

THEOREM 4.8. The Mδbίus equivalent class λy of λy(m, I) is independent

of the choices of the Mδbίus initial value (m, I) of y.

COROLLARY 4.9. (Eu E2, Φ) is a complete Mδbius invariant system for

the Mδbius surfaces in A (umbilίc-point-free immersed surfaces in S3). These

invariants are related by (4.6) and (4.7).

The proof of Theorem 4.7. From (4.4) we have [E^a)] 6 span(α, b) and

[E2(b)] e span(α, 6), and by Proposition 4.3 we have <α2> #2> = (bu bx} = 1.

So to prove the theorem it suffices to show that p(a) = p(b) = 1. Since

(α, fe, α2, &i, c, d) is the solution for PDE (4.4) with respect to y and (m, /),

then (p(a),p(b),p(a2)1p(bι),p(c),p(d)) is the solution for PDE (4.4) with

the initial value (m,p(I)). But we can directly verify from (4.4) that

ί 1, 1, 0, 0, — Φ, — (1 — Φ)j is also the solution of (4.4) with the same initial

value (m,p(I)) (cf. (4.10)). By the uniqueness theorem of linear PDE

system we have

(4.11) (pialpibXpia^pib^piclpid)) = (l, 1, 0, 0, l φ , 1(1 - φή ,

in particular, p(a) = p(b) — 1. Q.E.D.

The proof of Theorem 4.8. We have to show that if (m\ Γ) is another

Mόbius initial value of y, then λy(m\ Γ) is Mδbius equivalent to λy{m, I).

Let (a\ bf) be the solution of (4.4) with respect to y and (m\ /')> then by

the same reason as (4.11) we have (p(af), p(b'), p(aζ),p(b{)}p(c'), p{df)) =
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(l, 1, 0, 0, i-Φ, — (1 - Φ)\ Thus the Mobius initial value (m, /*) of y,

where 7* = (p(α'), p(δ'), p(aQ, P(b& p(c'), p(d'))(m), satisfies λy(m', Γ) =

span(α', 60 = /^(m, /*). By Proposition 4.6 we can find B e MG% such that

IB = I*. Thus (α', 60 and (α£, bB) are two solutions for (4.4) with the

same initial value (m, 7*) = (m, IB). Therefore (a\ 60 = (aB, bB) and

Jv(ro, I*) = span(α', 60 = span(αB, bB) = Boχy(m, I). Q.E.D.

Let Wlό(M) denote the set of Mobius equivalent classes of all Mobius

surfaces from M to A (or S3). By Theorems 4.7 and 4.8 we have a sur-

jective mapping λ: Y(M)-+ίΰlό(M) defined by λ(y) = λv.

PROPOSITION 4,10. Let y = (Eu E2, Φ) e Y(M). Then (i) y* = {ε,Eu ε2E2,

Φ) e Y(M), et = ± 1; (ii) e*y = (e^Eu e^E^Φoe) e Y(M) for any diffeomor-

phίsm e: M->M; (iii) ε(y) = (E2, Eu 1 - Φ) e Y(M).

This proposition follows immediately from (4.6) and (4.7). Now we

introduce a relation ^ on Y(M) by letting (El9 E2, Φ) ̂  (E'u E'2, Φ') if there

exists a diffeomorphism β : M-+M such that (£(, E'29 Φ
f) = (ε1e^1Eu ε^E^

φoe), et = ± 1. It is clear that = is an equivalent relation in Y(M).

THEOREM 4.11. λ(y)=λ(y') in SKδ(M) if and only if yf ^ y or yf ^ ε(y)

in Y(M).

Proof. Let (a, b) be the solution for (4.4) with respect to y and its

Mobius initial value (m, /) = (ra, x$). Then (α, 6) (resp. (a o e, boe); (6, a)) is

the solution for (4.4) with respect to y* (resp. e*y; ε(y)) and its Mobius ini-

tial value (m, /*) (resp. (e'\m), I); (m, e(I))), where 7* = (xj, x2

0, ε2xl εγxt, x%9 x$)

and ε(7) = (x%, xj, xj, Xo, Xo, ̂ o) (cf. Proposition 4.10). Thus we have λy*(m, 7*)

= span(α, 6) = λy(m, I), λe*y(e~ι(m), I) = span(α o e, b © e) = λy(m, I)oe and

λε{y)(m, ε(7)) = span(6, a) = span(α, 6) = λv(m, I). Therefore, λ(y) = λ{yf) if

y'ς^y or / ^ε(y). Conversely, if y = (JS,, E2, Φ) and / = (£?ί, E'2, Φ
f) in

Y(M) such that λ(y) = ^(y), then we have a Mobius equivalence (β, A)

with A o λy(m, I) = λye(m\ Γ) c e, where (m, 7) and (m\ Γ) is the Mobius

initial value of y and yf respectively. Let (α, 6) (resp. (a\ 60) be the

solution for (4.4) with respect to y and (m, 7) (resp. yf and (m', 70). Since

both (α', 60 and (aoe~ιA, boe~ιA) are the curvature sphere representation

for λv,{m\Γ), we have either (i) (α/, 60 = (aoe-'A, boe-
ιA) or (ii) (&', α')

= (αoe^A, 6oe-JΛ). As (E{, Eζ) and (e*Eue*E2) are the unit curvature

vector for λv.{m',I')> Case (i) implies (JEJ, £ 0 = feβ^, ε2e*E2), εt = ± 1

and ΦΌe = Φ; Case (ii) implies (2?£, JE{) = ( ε ^ ^ , ε2β;iί£J2) and Φ' °e = 1 — Φ
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(cf. (3.2)). Thus y'gty or / ^ £(y). Q.E.D.

We know from Theorem 4.11 that λ: Y(Af)->3fto(M), induces a

mapping λ: Y(M)/^ —>Wlό(M), which is a 2-sheet covering with the

nontrivial covering transformation ε induced by (iii) of Proposition 4.10.

§ 5. Classification of Dupin surfaces in Ez under the conformal

transformation group

A surface M in S3 or Ez is called a Dupin surface if each principal

curvature of M is constant along its curvature leaves. As well known,

the only Dupin surface in £ 3 are spheres, planes and the so-called cyclides

of Dupin.

The cyclides of Dupin are described in the book of Cecil and Ryan

([4], p. 151-166). These descriptions depend on the classical theorem: two

focal surfaces for Dupin surfaces without umbilic point in Ez are a pair

of focal conies defined by Eisenhart ([5], p. 226).

Since Dupin surfaces are Mόbius invariant, we can use the techniques

in Mobius geometry to classify them under the Mδbius transformation

group. Let x: M-+Sz be a surface without umbilic point. We may

assume the M is simply connected. As in § 2 we identify x with the

Mδbius surface λ = L°(x, ή) : M-+A. From (3.19), (4.6) and (4.7) we have

PROPOSITION 5.1. x is a Dupin surface if and only if its Mδbius

invariant system (El9 E2, Φ) satisfies [Eu E2] = 0 and Φ = constant.

Thus for any Dupin surface x we can find a global coordinates (u, υ)

for M defined on a domain of R2 such that Eγ = d/du, E2 = d/dυ. So

λ\M->A is a part of the Mobius surface λ\ΊR}->Λ with the Mobius

invariant system (d/du, 3/3 y, Φ) with Φ = constant.

PROPOSITION 5.2. λ(d/du, djdv, Φ) = λ(d/du9 d/dv, Φ') in 2ftό(R2) if and

only if Φ = 1 — Φ'.

The proof is left to the reader. Thus there is a 1-1 correspondence

between the Mobius equivalent classes of Dupin surfaces and the real

numbers 1/2 < Φ < + oo. Now we come to determine λ(Φ) = λ(djdu9 d/dυ, Φ).

Since S = T = 0 and Φ = constant, by (4.4) we have

(5.1) -d± = lb- = 0;
du dυ
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(5.2) *± = c - λφa, ^ = d - 1 ( 1 - Φ)b;

(5.3) i l = i i ί L M l i *
3

φ > ( i φ ) .
3u 2 9ϋ 3w 2 9ω

Thus a is a function of v and 6 is a function of u satisfying

(5.4) ^+φd± = 0, ^ + ( 1 - 0 ) ^ = 0.

w dv du3 du

Furthermore, our solution (a, b) should satisfy

(5.5) <α, α> = (a, b) = (b, b) = 0 , {da, b} = 0 .

From these equations we can easily obtain an adapted solution (a, b) in

the following three cases:

Case I. i - < Φ < 1.
2 ~~

β = (0, 0, - ^

Then by (2.8) we obtain the Dupin surface x : R2 -> *S3,

(5.6) x = (V

, Λ/1 — Φ si

The image x(R2) is the isoparametric torus in S3. The Clifford torus is

the torus with Φ = 1/2. By the stereographic projection from (0, 0, 0, 1)

e S3 we get the revolution torus in EB (see Figure 1):

(5.7) x = - L . (V Φ cos(Vl - Φu),
1 + Vl — ΦsmW Φv)

— Φu), Vl —

Case II. Φ = 1. a = (cos ϋ, sin u, 0, — 1, 1, 1),

O, ^ , ( u 2 ) , y ^

We get the Dupin surface x : R 2 -> S3,

(5.8) x = (2 cos u, 2 sin υ, 2uy - u2).
u2 + 2
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The image of x(R2) under the stereographic projection from (0, 0, 0, 1) of

S3 is the circular cylinder in E3 (see Figure 2)

(5.9) x = (cos υ, sin υ, u).

Case III. 1 < Φ < + oo .

. cos (v Φ υ), —-= si
v Φ V Φ

λ, 0, 0, l) ,

We obtain the Dupin surface x : R2 -> *S3,

1
(5.10) x =

cosh(VΦ

Φ - 1 .

Φ

y? VΦ" /

The image of x(R2) under the stereographic projection from (0, 0, 0, 1) of

S3 is the circular cone in E* (see Figure 3)

(5.11) x = Φ-f
Φ

r = 1

Fig. 1. Fig. 2.

= arctg(VΦ - 1)
Fig. 3.

We note that the surfaces in Figures 1, 2 and 3 are complete with respect

to its Mδbius metric.

Thus we have the following classification theorem:

THEOREM 5.3. Let M be a Dupin surface in E\ Then up to conformal

transformations in E3 it is a part of a revolution tcrus, a circular cylinder

or a circular cone.
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