K. Miyake and H. Opolka Nagoya Math. J. Vol. 125 (1991), 1-14

ON NILPOTENT EXTENSIONS OF ALGEBRAIC NUMBER FIELDS I

KATSUYA MIYAKE AND HANS OPOLKA

Introduction

The lower central series of the absolute Galois group of a field is obtained by iterating the process of forming the maximal central extension of the maximal nilpotent extension of a given class, starting with the maximal abelian extension. The purpose of this paper is to give a cohomological description of this central series in case of an algebraic number field. This description is based on a result of Tate which states that the Schur multiplier of the absolute Galois group of a number field is trivial. We are in a profinite situation throughout which requires some functorial background especially for treating the dual of the Schur multiplier of a profinite group. In a future paper we plan to apply our results to construct a nilpotent reciprocity map.

§1. Central extensions and Schur multipliers

Let k be an algebraic number field of finite degree over the rationals **Q**, and let k^{ab} (resp. k^{nil}) be the maximal abelian (resp. nilpotent) extension of k in the algebraic closure $\overline{\mathbf{Q}}$ of **Q**. For each positive integer c denote by $k^{(c)}/k$ the maximal nilpotent extension of class (at most) c. Hence $k^{(1)} = k^{ab}$ and $k^{nil} = \bigcup_{c=1}^{\infty} k^{(c)}$. For convenience we set $k^{(0)} = k$. Put $G^c = \text{Gal}(k^{(c)}/k)$ and $N^c = \text{Gal}(k^{(c)}/k^{(c-1)})$; N^c is a closed normal subgroup of G^c which is contained in the center $Z(G^c)$. Therefore we have a central extension of Galois groups

$$1 \longrightarrow N^{c+1} \longrightarrow G^{c+1} \longrightarrow G^c \longrightarrow 1.$$

We furnish the rational torus group $T = \mathbf{Q}/\mathbf{Z}$ with the discrete topology and consider it as a Galois module with trivial action.

PROPOSITION 1. For each $c \ge 1$, the compact group N^{e+1} is canonically Received July 6, 1988. isomorphic to the Pontrjagin dual of the Schur multiplier $H^2(G^c, T)$ of G^c .

Proof. Put $\mathfrak{G} = \operatorname{Gal}(\overline{\mathbf{Q}}/k)$ and $\mathfrak{N}^c = \operatorname{Gal}(\overline{\mathbf{Q}}/k^{(c)})$. Then we have $G^c = \mathfrak{G}/\mathfrak{N}^c$, and the exact Hochschild-Serre sequence

$$\operatorname{Hom}(\mathfrak{G},\,T) \xrightarrow{\operatorname{res}} \operatorname{Hom}(\mathfrak{N}^c,\,T)^{\mathfrak{G}} \xrightarrow{\tau^c} H^{\mathfrak{d}}(G^c,\,T) \longrightarrow H^{\mathfrak{d}}(\mathfrak{G},\,T) ,$$

where τ^{c} is the transgression. The last term $H^{2}(\mathfrak{G}, T)$ vanishes by a well known result of Tate; see e.g. [Se], § 6. Therefore $H^{2}(G^{c}, T)$ is isomorphic to the cokernel of the restriction map which is naturally identified with $\operatorname{Hom}(\mathfrak{N}^{c}/[\mathfrak{N}^{c},\mathfrak{G}], T)$. By definition we have $[\mathfrak{N}^{c},\mathfrak{G}] = \mathfrak{N}^{c+1}$ and $\mathfrak{N}^{c}/\mathfrak{N}^{c+1} =$ N^{c+1} . This shows that $H^{2}(G^{c}, T)$ is isomorphic to $\operatorname{Hom}(N^{c+1}, T)$. Taking the dual groups we immediately obtain the proposition.

§2. The dual of the Schur multiplier

In this paper, $H^2(G, T)$ and its dual for a Galois group G of an infinite algebraic extension plays an important role. When G is finite, $H^2(G, T)$ is a finite abelian group and isomorphic to its dual although not canonically. When G is an infinite profinite group, however, $H^2(G, T)$ is different from its dual. So it seems worthwhile to give a brief survey on the dual of $H^2(G, T)$ for a profinite group G.

Let G be a profinite group and suppose that we have a presentation G = F/R with a free profinite group F and its closed normal subgroup R which is generated by the relations in G. Associated to the exact sequence

 $1 \longrightarrow R \longrightarrow F \stackrel{\rho}{\longrightarrow} G \longrightarrow 1,$

the transgression gives an exact sequence

 $\operatorname{Hom}(F, T) \xrightarrow{\operatorname{res}} \operatorname{Hom}(R, T)^F \xrightarrow{\tau} H^2(G, T).$

THEOREM 1. The transgression induces an isomorphism

 $\tau: \operatorname{Hom}(R \cap [F, F]/[R, F], T) \xrightarrow{\sim} H^{2}(G, T)$.

Proof. It is easily seen that the cokernel of the restriction map can be identified with

Hom $(R \cap [F, F]/[R, F], T)$.

To show that τ is surjective, we can slightly modify the method of

[Ka], pp. 47-48. Let (φ) be an element in $H^2(G, T)$ with a 2-cocycle φ in $Z^2(G, T)$. Since the image of φ is a compact subset of the discrete toplogical group T, there exists a positive integer m such that the image of φ is contained in the subgroup $C_m = (1/m)\mathbf{Z}/\mathbf{Z}$ of T. Then φ belongs to $Z^2(G, C_m)$ and determines a central extension of profinite groups

$$1 \longrightarrow C_m \longrightarrow H \xrightarrow{\pi} G \longrightarrow 1$$

Since $\rho: F \to G$ gives a presentation of G with a free profinite group F, there exists a homomorphism η of F to H such that $\pi \circ \eta = \rho$. Then $\eta(R)$ is contained in (the image of) C_m . Take a continuous cross-section $\sigma: G$ $\to F$ of ρ (cf. [Ko], Satz 1.16, p. 8, or [Sh], Theorem 3, p. 10), and put $\xi = \eta \circ \sigma$. Then we have a 2-cocycle $\psi \in Z^2(G, C_m)$ defined by

$$\psi(x, y) = \xi(xy)^{-1}\xi(x)\xi(y), \qquad x, y \in G,$$

because ξ is a cross-section of $\pi: H \to G$. By the choice of H, ψ is cohomologous to φ . Therefore it belongs to the class (φ) in $H^2(G, T)$. Now let χ be the element of Hom(R, T) obtained by restricting η to R (combined with the inclusion $C_m \longrightarrow T$). Then we have

$$\psi(x, y) = \eta(\sigma(xy))^{-1}\eta(\sigma(x))\eta(\sigma(y))$$

= $\eta(\sigma(xy)^{-1}\sigma(x)\sigma(y))$
= $\chi(\sigma(xy)^{-1}\sigma(x)\sigma(y))$

for $x, y \in G$. Since σ is a cross-section of ρ , this shows that $\tau(\chi) = (\psi) = (\varphi)$, which proves that τ is surjective.

If we take another presentation G = F'/R' with a free profinite group F', then we also have an isomorphism

$$\tau' \colon \operatorname{Hom}(R' \cap [F', F']/[R', F'], T) \xrightarrow{\sim} H^2(G, T)$$

by the theorem. It is easy to see, however, that there exists a canonical homomorphism of F to F' which induces a homomorphism

$$\theta \colon R \cap [F, F]/[R, F] \longrightarrow R' \cap [F', F']/[R, F']$$

The dual $\hat{\theta}$ satisfies the condition $\tau' = \tau \circ \hat{\theta}$ and is an isomorphism. Therefore θ is an isomorphism of compact abelian groups. This observation allows us to define

$$\mathfrak{M}(G) := R \cap [F, F]/[R, F].$$

Then the statement of the theorem is dualized as follows:

THEOREM 1'. For a profinite group G, the Schur multiplier $H^2(G, T)$ is canonically dual to $\mathfrak{M}(G)$.

§ 3. The structure of $\mathfrak{M}(G)$ as a profinite group

Let G be a profinite group and N be its closed normal subgroup. Then a homomorphism

$$\gamma = \gamma_N^G \colon \mathfrak{M}(G) \longrightarrow \mathfrak{M}(G/N)$$

is canonically determined by the definition. The cokernel of γ is also determined; the following sequence is exact (cf. [B-E], Theorem 1.1, p. 101):

(1)
$$\mathfrak{M}(G) \xrightarrow{\tau} \mathfrak{M}(G/N) \longrightarrow N \cap [G, G]/[N, G] \longrightarrow 1$$
.

On the other hand, we have the inflation map

$$\lambda = \lambda_N^G \colon H^2(G/N, T) \longrightarrow H^2(G, T);$$

its kernel can be determined by the Hochschild-Serre exact sequence

 $(1') \quad 1 \longrightarrow \operatorname{Hom}(N \cap [G, G]/[N, G], T) \longrightarrow H^2(G/N, T) \xrightarrow{\lambda} H^2(G, T).$

Using Theorem 1' we see

PROPOSITION 2. The exact sequence (1') is dual to (1).

Altogether this shows

PROPOSITION 3. Let the notation and the assumptions be as above. Denote the dual map of γ_N^G by $\hat{\tau}_N^G$, and let τ_G and $\tau_{G/N}$ be the isomorphisms given in Theorem 1 for G and for G/N, respectively. Then we have a commutative diagram

(2)
$$\begin{array}{c} \operatorname{Hom}(\mathfrak{M}(G), T) & \xrightarrow{\tau_G} H^2(G, T) \\ & \widehat{r}_N^G \bigwedge_{N \to \infty} & & & & & & \\ \operatorname{Hom}(\mathfrak{M}(G/N), T) \xrightarrow{\tau_{G/N}} H^2(G/N, T). \end{array}$$

Now let \mathfrak{U} be the family of all open normal subgroups of G. For $U, V \in \mathfrak{U}, U \supset V$, we have a homomorphism

$$\gamma_{U,V} \colon \mathfrak{M}(G/V) \longrightarrow \mathfrak{M}(G/U)$$

together with

$$\gamma_U \colon \mathfrak{M}(G) \longrightarrow \mathfrak{M}(G/U)$$
,

and

$$\gamma_{V}: \mathfrak{M}(G) \longrightarrow \mathfrak{M}(G/V)$$
.

From the definition we see

(3)

$$\gamma_{U} = \gamma_{U,V} \circ \gamma_{V}$$

and

$$\gamma_{U,W} = \gamma_{U,V} \circ \gamma_{V,W}$$

for $U, V, W \in \mathfrak{U}, U \supset V \supset W$. Therefore we have a projective system of finite abelian groups

(4)
$$\{\mathfrak{M}(G/U), \gamma_{U,V} \mid U, V \in \mathfrak{U}, U \supset V\}.$$

We have also an inductive system of Schur multipliers

(5)
$$\{H^2(G/U, T), \lambda_{V,U} \mid U, V \in \mathfrak{U}, U \supset V\}$$

where $\lambda_{V,U}$ is the inflation map

 $\lambda_{V,U}: H^2(G/U, T) \longrightarrow H^2(G/V, T),$

and also a system of homomorphisms

$$\lambda_{\scriptscriptstyle U}\colon\, H^{\scriptscriptstyle 2}(G/U,\,T) \longrightarrow H^{\scriptscriptstyle 2}(G,\,T)\,,\qquad U\in{\mathfrak U}.$$

Since the action of G on T is trivial, we have

(6)
$$H^{2}(G, T) = \varinjlim H^{2}(G/U, T),$$

(cf. [Sh], Corollary 1, p. 26); and then

Proposition 4. $\mathfrak{M}(G) = \lim_{U \in \mathfrak{u}} \mathfrak{M}(G/U)$.

Proof. Put $H = \underline{\lim} \mathfrak{M}(G/U)$. Then by (3) and the universal property of H, we have a continuous homomorphism $\varphi \colon \mathfrak{M}(G) \to H$. Because of (2), the two systems (4) and (5) are dual to each other. By (6), therefore, $H^2(G, T)$ is the dual group of H. Then by Theorem 1' and (2), we conclude that φ is an isomorphism.

§4. The structure of $\operatorname{Gal}(k^{(c+1)}/k^{(c)})$

Let us go back to Galois groups of nilpotent extensions of an algebraic number field k. An open normal subgroup U of G^{e} corresponds to a finite normal subextension K/k of $k^{(c)}/k$ in such a way that $U = \text{Gal}(k^{(c)}/K)$. Therefore we obtain from Theorem 1' and Proposition 4

THEOREM 2. (i) For each $c \ge 1$ there is a canonical isomorphism

 $\iota^{\mathfrak{c}} \colon \mathfrak{M}(G^{\mathfrak{c}}) \xrightarrow{\sim} N^{\mathfrak{c}+1} = \operatorname{Gal}\left(k^{(\mathfrak{c}+1)}/k^{(\mathfrak{c})}\right).$

(ii) $\mathfrak{M}(G^{\mathfrak{c}})$ is determined by finite normal subextensions K/k of $k^{(\mathfrak{c})}/k$ as

$$\mathfrak{M}(G^{\mathfrak{c}}) = \varprojlim_{\kappa} \mathfrak{M}(\operatorname{Gal}(K/k)).$$

For a finite normal subextension K/k of $k^{(c)}/k$ with $U = \text{Gal}(k^{(c)}/K)$ denote by

$$\gamma_{\scriptscriptstyle K} = \gamma_{\scriptscriptstyle U} \colon \mathfrak{M}(G^{\circ}) \longrightarrow \mathfrak{M}(\operatorname{Gal}\left(K/k\right))$$

the natural homomorphism determined by (ii) of the theorem. We denote the maximal central extension of K/k in $\overline{\mathbf{Q}}$ by MC(K/k). This is a subfield of $k^{(c+1)}$ because K/k is a subextension of $k^{(c)}/k$.

In Section 6 we shall prove

THEOREM 3. For each finite normal subextension K/k of $k^{(c)}/k$, there exists a canonical isomorphism

$$\iota_{\kappa} \colon \operatorname{Im}(\gamma_{\kappa}) \xrightarrow{\sim} \operatorname{Gal}(MC(K/k) \cdot k^{(c)}/k^{(c)})$$

such that the following diagram is commutative:

§ 5. Base-change for abundant central extensions

In this section let K/k be a Galois extension of algebraic number fields of finite degree. Put g = Gal(K/k). The maximal central extension MC(K/k) of K/k contains $K \cdot k^{ab}$. There exists a canonical isomorphism

$$\iota_{K/k}: \mathfrak{M}(\mathfrak{g}) \xrightarrow{\sim} \operatorname{Gal}\left(MC(K/k)/K \cdot k^{\mathrm{ab}}\right)$$

(see e.g. [Mi]). Since MC(K/k) is a finite extension of $K \cdot k^{ab}$, there is a finite central extension L of K/k such that MC(K/k) is equal to the composite field $L \cdot k^{ab}$. Such an L is called an abundant central extension

of K/k. Put $L^* = L \cap K \cdot k^{ab}$. Then the isomorphism $\iota_{K/k}$ induces an isomorphism of $\mathfrak{M}(\mathfrak{g})$ onto $\operatorname{Gal}(L/L^*)$ if L is abundant. Suppose that another finite Galois extension K_1/k , $K_1 \supset K$, is given, and put $G = \operatorname{Gal}(K_1/k)$ and $N = \operatorname{Gal}(K_1/K)$. Then $\mathfrak{g} = G/N$. The homomorphism γ of (1) in Section 3 gives a basic relation between $\mathfrak{M}(G)$ and $\mathfrak{M}(\mathfrak{g})$. Let \hat{K}_1 be the maximal central extension of K/k in K_1 , i.e. $\hat{K}_1 = K_1 \cap MC(K/k)$, and let K_1^* be the genus field, i.e. $K_1^* = K_1 \cap K \cdot k^{ab}$. Then by the definition we see that $\operatorname{Gal}(\hat{K}_1/K_1^*)$ is isomorphic to $N \cap [G, G]/[N, G]$, the third term of the exact sequence (1). Now let us denote the composite field $L \cdot K_1$ by L_1 , and put $L_1^{**} = L_1 \cap K_1 \cdot k^{ab}$. Since L_1 is a central extension of K_1/k , $\operatorname{Gal}(L_1/L_1^{**})$ is a homomorphic image of $\mathfrak{M}(G)$ under the map induced by the canonical homomorphism $\iota_{K_1/k}$ for the Galois extension K_1/k .

THEOREM 4. Let the notation and the assumptions be as above. Then L_1 is a central extension of K_1/k with the following properties:

- (i) Gal (L_1/L_1^{**}) is canonically isomorphic to Gal $(L/L \cap L_1^{**})$;
- (ii) Gal $(L \cap L_1^{**}/L^*)$ is canonically isomorphic to Gal (\hat{K}_1/K_1^*) ;
- (iii) We have a commutative diagram with exact rows

Proof. Put $\mathfrak{F} = \operatorname{Gal}(L_1/k)$ and $\mathfrak{N} = \operatorname{Gal}(L_1/K)$; \mathfrak{N} is a normal subgroup with quotient $\mathfrak{g} = \mathfrak{F}/\mathfrak{N}$. Put $\mathfrak{A} = \operatorname{Gal}(L_1/K_1)$ and $\mathfrak{B} = \operatorname{Gal}(L_1/L)$; then $\operatorname{Gal}(L_1/L \cap K_1)$ is a direct product $\mathfrak{B} \times \mathfrak{A}$ because $L_1 = L \cdot K_1$. Let \hat{L}_1 be the subfield of L_1 determined by the condition $\operatorname{Gal}(L_1/\hat{L}_1) = [\mathfrak{N}, \mathfrak{F}]$; this is the maximal central extension of K/k in L_1 , i.e. $\hat{L}_1 = L_1 \cap MC(K/k)$; it contains L. Therefore we have $[\mathfrak{N}, \mathfrak{F}] \subset \mathfrak{B}$. Since \mathfrak{A} is a normal subgroup of \mathfrak{F} contained in \mathfrak{N} , the commutator $[\mathfrak{A}, \mathfrak{F}]$ is contained in $\mathfrak{A} \cap [\mathfrak{N}, \mathfrak{F}]$; hence we have $[\mathfrak{A}, \mathfrak{F}] = 1$ because $\mathfrak{A} \cap \mathfrak{B} = 1$; this shows that \mathfrak{A} lies in the center of \mathfrak{F} , which means that L_1 is a central extension of K_1/k .

Now let us see (i). We have $\operatorname{Gal}(L_1/L_1^{**}) = \mathfrak{A} \cap [\mathfrak{H}, \mathfrak{H}]$ because $L_1^{**} = L_1 \cap K_1 \cdot k^{\operatorname{ab}} = K_1 \cdot (L_1 \cap k^{\operatorname{ab}})$ and $\operatorname{Gal}(L_1/L_1 \cap k^{\operatorname{ab}}) = [\mathfrak{H}, \mathfrak{H}]$. Therefore $\operatorname{Gal}(L_1/L_1 \cap k^{\operatorname{ab}}) = [\mathfrak{H}, \mathfrak{H}]$. Therefore $\operatorname{Gal}(L_1/L_1^{**}) = \mathfrak{H} \times \operatorname{Gal}(L_1/L_1^{**})$ because $\operatorname{Gal}(L_1/L \cap K_1) = \mathfrak{H} \times \mathfrak{A}$. Hence it is obvious that the projection of $\operatorname{Gal}(L_1/L \cap L_1^{**})$ onto $\operatorname{Gal}(L/L \cap L_1^{**})$ maps $\operatorname{Gal}(L_1/L_1^{**})$ isomorphically onto $\operatorname{Gal}(L/L \cap L_1^{**})$. This proves (i). Note that $\operatorname{Gal}(L_1/L_1^{**})$ is a homomorphic image of $\mathfrak{M}(G)$ because L_1^{**} is the genus field of the central extension L_1 of K_1/k . Put $L_1^* = L_1 \cap K \cdot k^{\operatorname{ab}}$; this

Diagram

is the genus field of the central extension $\hat{L}_1 = L_1 \cap MC(K/k)$ of K/k. Since $L_1^* = K \cdot (L_1 \cap k^{ab})$, we have $\operatorname{Gal}(L_1/L_1^*) = \mathfrak{N} \cap [\mathfrak{H}, \mathfrak{H}]$. By the assumption, L is an abundant central extension of K/k. Therefore \hat{L}_1 is contained in $L \cdot k^{ab}$ and hence equal to $L \cdot L_1^*$. Then $\operatorname{Gal}(\hat{L}_1/L_1^*)$ is naturally isomorphic to $\operatorname{Gal}(L/L^*)$ because $L \cap L_1^* = L \cap K \cdot k^{ab} = L^*$. Under this isomorphism the intermediate field $L \cap L_1^{**}$ of L/L^* corresponds to $(L \cap L_1^{**}) \cdot L_1^*$. Furthermore, we also have natural isomorphisms

$$\operatorname{Gal}(L_1/L) \cong \operatorname{Gal}((L \cap L_1^{**}) \cdot L_1^*/L \cap L_1^{**}) \cong \operatorname{Gal}(L_1^*/L^*)$$

Since there is a natural isomorphism of $\operatorname{Gal}(L_1/L)$ onto $\operatorname{Gal}(L_1^{**}/L \cap L_1^{**})$, we conclude that the intermediate field $(L \cap L_1^{**}) \cdot L_1^{*}$ coincides with $\hat{L}_1 \cap L_1^{**}$. Therefore $\operatorname{Gal}(L \cap L_1^{**}/L^*)$ is naturally isomorphic to $\operatorname{Gal}(\hat{L}_1 \cap L_1^{**}/L_1^*)$. Next let us look at the extension L_1^{**}/K_1^* . By definition we easily see $L_1^* \cap K_1 = K_1^*$. Hence $\operatorname{Gal}(L_1/K_1^*) = (\mathfrak{N} \cap [\mathfrak{G}, \mathfrak{G}]) \cdot \mathfrak{A}$ because $\operatorname{Gal}(L_1/L_1^*) = \mathfrak{N} \cap [\mathfrak{G}, \mathfrak{G}]$ and $\operatorname{Gal}(L_1/K_1) = \mathfrak{A}$. Therefore we obtain

$$\begin{split} \operatorname{Gal}\left(L_{1}^{*}/K_{1}^{*}\right) &= \left(\mathfrak{N} \cap [\mathfrak{H}, \mathfrak{H}]\right) \cdot \mathfrak{A}/(\mathfrak{N} \cap [\mathfrak{H}, \mathfrak{H}]) \\ &\cong \mathfrak{A}/\mathfrak{A} \cap (\mathfrak{N} \cap [\mathfrak{H}, \mathfrak{H}]) \\ &= \mathfrak{A}/\mathfrak{A} \cap [\mathfrak{H}, \mathfrak{H}] \\ &= \operatorname{Gal}\left(L_{1}^{**}/K_{1}\right). \end{split}$$

In particular we have $[L_1^{**}: K_1] = [L_1^*: K_1^*]$. It is clear that L_1^{**} contains $L_1^* \cdot K_1$. Since $[L_1^* \cdot K_1: K_1] = [L_1^*: L_1^* \cap K_1] = [L_1^*: K_1^*] = [L_1^{**}: K_1]$, we conclude $L_1^{**} = L_1^* \cdot K_1$. This implies that $\operatorname{Gal}(\hat{L}_1 \cap L_1^{**}/L_1^*)$ is naturally isomorphic to $\operatorname{Gal}(\hat{K}_1/K_1^*)$ because $\hat{K}_1 = (\hat{L}_1 \cap L_1^{**}) \cap K_1$. Combining this with the result obtained above, we have shown that $\operatorname{Gal}(L \cap L_1^{**}/L^*)$ is naturally isomorphic to $\operatorname{Gal}(\hat{K}_1/K_1^*)$ as is claimed in (ii).

The last Galois group is isomorphic to

$$\operatorname{Gal}\left(K_{1}/K_{1}^{*}\right)/\operatorname{Gal}\left(K_{1}/K_{1}\right)=N\cap\left[G,\,G\right]/\left[N,\,G\right].$$

Since all the isomorphisms of Galois groups discussed above are natural and group-theoretic, (iii) is also clear.

§6. The proof of Theorem 3

We use the same notation as in Section 4. Let K/k be a finite normal subextension of $k^{(c)}/k$, $c \ge 1$; its Galois group is denoted by $\mathfrak{g} =$ $\operatorname{Gal}(K/k)$; $U = \operatorname{Gal}(k^{(c)}/K)$ is an open normal subgroup of G^c . We fix an abundant central extension L of K/k; $MC(K/k) \cdot k^{(c)}$ is equal to $L \cdot k^{(c)}$. Put $K_0 = L \cap k^{(c)}$; then $\operatorname{Gal}(L/K_0)$ is canonically isomorphic to $\operatorname{Gal}(MC(K/k) \cdot k^{(c)})/k^{(c)}$. Put $\tilde{U} = \operatorname{Gal}(k^{(c)}/K_0)$, $G = \operatorname{Gal}(K_0/k)$ and $N = \operatorname{Gal}(K_0/K)$. We use Theorem 4 for L/K/k and $K_1 = K_0$; in this case we have $L \supset K_1 \supset L^*$; N lies in the center of G, and [N, G] = 1; therefore $K_1 = \hat{K}_1, K_1^* = L^*$; moreover we have $L_1 = L, L_1^* = L^*$ and $L_1^{**} = K_1 = L \cap L_1^{**}$; hence the image of the homomorphism

$$\gamma_N^G \colon \mathfrak{M}(G) \longrightarrow \mathfrak{M}(\mathfrak{g})$$

is mapped isomorphically onto $\operatorname{Gal}(L/K_0)$ by the isomorphism

$$\operatorname{res} \circ \iota_{K/k} \colon \mathfrak{M}(\mathfrak{g}) \xrightarrow{\sim} \operatorname{Gal} \left(MC(K/k)/K \cdot k^{\mathrm{ab}} \right) \xrightarrow{\sim} \operatorname{Gal} \left(L/L^* \right).$$

Let us express this using U and \tilde{U} ; we have $\mathfrak{M}(G) = \mathfrak{M}(G^c/\tilde{U}), \mathfrak{M}(\mathfrak{g}) = \mathfrak{M}(G^c/U)$ and $\gamma_N^G = \gamma_{U,\tilde{U}}$ in the notation of Section 3; furthermore, the image of $\gamma_{U,\tilde{U}}$, $\operatorname{Im}(\gamma_{U,\tilde{U}})$, is mapped isomorphically onto the subgroup of $\operatorname{Gal}(MC(K/k)/K \cdot k^{\operatorname{ab}})$ by $\iota_{K/k}$ which is canonically isomorphic to $\operatorname{Gal}(L/K_0)$ and hence also to $\operatorname{Gal}(MC(K/k) \cdot k^{(c)}/k^{(c)})$. Next let V be an open normal

subgroup of G° contained in U; put $\tilde{V} = V \cap \tilde{U}$; then we have

$$\gamma_{U,\tilde{v}} = \gamma_{U,v} \circ \gamma_{V,\tilde{v}} = \gamma_{U,\tilde{U}} \circ \gamma_{\tilde{U},\tilde{v}};$$

hence, in order to show $\operatorname{Im} \gamma_U = \operatorname{Im} (\gamma_{U,\tilde{U}})$ for $\gamma_U (= \gamma_K) = \lim_{V \subset U} \gamma_{U,V}$, it is sufficient to prove that $\operatorname{Im} (\gamma_{U,\tilde{V}})$ in $\mathfrak{M}(\mathfrak{g})$ is mapped isomorphically onto $\operatorname{Gal}(L/K_0)$ by $\operatorname{res} \circ \iota_{K/k}$. This time we use Theorem 4 for L/K/k and the extension K_1/k determined by the condition $\operatorname{Gal}(K_1/k) = G^c/\tilde{V}$. We have $K_1 \supset K_0$ by the choice of V; since K_1 is a subfield of $k^{(c)}$, we also have $L \cap K_1 = K_0$ and hence $L^* \subset L \cap K_1$. For $c \geq 1$, $L_1^{**} = L_1^* \cdot K_1$ is contained in $k^{(c)}$ because $k^{(c)} \supset K \cdot k^{ab}$ and $L_1^* = L_1 \cap K \cdot k^{ab}$; therefore $L \cap L_1^{**} \subset L \cap k^{(c)}$ $= K_0$; conversely, it is clear that $L \cap L_1^{**} \supset K_0 = L \cap K_1$; thus we have $L \cap L_1^{**} = K_0$. It now follows from Theorem 4 that the image of the homomorphism

$$\gamma_{U, \tilde{V}} \colon \mathfrak{M}(G^{c}/\tilde{V}) \longrightarrow \mathfrak{M}(G^{c}/U)$$

is isomorphically mapped onto $\operatorname{Gal}(L/K_0)$ by $\operatorname{res} \circ \iota_{K/k}$. This proves that $\operatorname{Im} \gamma_U$, $\gamma_U = \gamma_K$, coincides with $\operatorname{Im}(\gamma_{U,\bar{U}})$ and also that there exists a canonical isomorphism

$$\iota_{\kappa} \colon \operatorname{Im} \gamma_{\kappa} \longrightarrow \operatorname{Gal} \left(MC(K/k) \cdot k^{(c)}/k^{(c)} \right).$$

The rest of Theorem 3 will easily be seen in a straightforward way by dualizing the diagram of Theorem 4.

§7. The canonical 2-cohomology classes

We fix an algebraic number field k of finite degree. Let K be a finite Galois extension of k, K_A^{\times} be the idele group of K, $K_{\infty^+}^{\times}$ be the connected component of the identity element of the Archimedian part of K_A^{\times} and K^* be the closure of $K^{\times} \cdot K_{\infty^+}^{\times}$ in K_A^{\times} . We have the Artin map of K,

$$\alpha_{\kappa} \colon K_{\mathbf{A}}^{\times}/K^{*} \longrightarrow \operatorname{Gal}\left(K^{\mathrm{ab}}/K\right),$$

which is a topological isomorphism, and the natural exact sequence

$$E(K/k): \quad 1 \longrightarrow K_{A}^{\times}/K^{*} \longrightarrow \operatorname{Gal}(K^{ab}/k) \longrightarrow \operatorname{Gal}(K/k) \longrightarrow 1.$$

The structure of Gal (K^{ab}/k) is then determined by the canonical 2-cohomology class $\bar{\xi}_{K/k}$ of Gal (K/k) with values in K_A^{\times}/K^* . More specifically, the cohomology group $H^2(\text{Gal}(K/k), K_A^{\times}/K^*)$ is a cyclic group generated by $\bar{\xi}_{K/k}$; its order is either $\frac{1}{2} \cdot [K:k]$ if there exists a ramified real Archimedian prime in K/k or [K:k] otherwise (cf. Katayama [Kt] and also Iyanaga [Iy]). In this sense Gal (K^{ab}/k) is determined by K/k.

Let F/k, $F \supset K$, be another finite Galois extension, F_A^{\times}/F^* be as above for F and

$$N_{F/K} \colon F_{\mathbf{A}}^{\times}/F^{*} \longrightarrow K_{\mathbf{A}}^{\times}/K^{*}$$

be the norm map of F/K. Then we have a commutative diagram

$$F_{\mathbf{A}}^{\times}/F^{*} \xrightarrow{\alpha_{F}} \operatorname{Gal}\left(F^{\operatorname{ab}}/F\right)$$

 $N_{F/K} \downarrow \qquad \qquad \downarrow \text{ restriction}$
 $K_{\mathbf{A}}^{\times}/K^{*} \xrightarrow{\alpha_{K}} \operatorname{Gal}\left(K^{\operatorname{ab}}/K\right).$

Therefore $N_{F/K}$ and the homomorphisms defined by restricting automorphisms of F^{ab} or of F to K^{ab} or to K, respectively, give a homomorphism of the exact sequence E(F/k) to E(K/k).

Now suppose that an infinite Galois extension \tilde{k}/k is given. Put $G = \operatorname{Gal}(\tilde{k}/k)$. If we make K/k run over all finite Galois subextensions of \tilde{k}/k , we have projective systems $\{K_{\mathbf{A}}^{\times}/K^{*}, N_{F/K}\}$, $\{\operatorname{Gal}(K^{\mathrm{ab}}/K)\}$, $\{\operatorname{Gal}(K^{\mathrm{ab}}/k)\}$, $\{\operatorname{Gal}(K/k)\}$ and $\{E(K/k)\}$, and also

$$egin{aligned} \mathrm{Gal}\,(ilde{k}^{\mathrm{ab}}\!/k) &= ert \min_{K} \mathrm{Gal}\,(K^{\mathrm{ab}}\!/k)\,, \ \mathrm{Gal}\,(ilde{k}^{\mathrm{ab}}\!/ ilde{k}) &= ert \min_{K} \mathrm{Gal}\,(K^{\mathrm{ab}}\!/K)\,, \ G &= \mathrm{Gal}\,(ilde{k}\!/k) &= ert \min_{K} \mathrm{Gal}\,(K\!/k)\,. \end{aligned}$$

We put

$$\mathfrak{A}(\tilde{k}) = \lim_{K \to K} K_{\mathbf{A}}^{\times}/K^*.$$

It is clear that $\mathfrak{A}(\tilde{k})$ depends only on \tilde{k} . Each K_{A}^{\times}/K^{*} is naturally considered as a *G*-module. Therefore $\mathfrak{A}(\tilde{k})$ has a *G*-module structure. Through inner automorphisms of Gal (\tilde{k}^{ab}/k) , Gal $(\tilde{k}^{ab}/\tilde{k})$ becomes a *G*-module.

PROPOSITION 5. Let the notation and the assumptions be as above. The Artin maps α_{κ} for finite Galois subextensions K/k of \tilde{k}/k give a G-isomorphism

$$\alpha_{\check{k}} = \lim_{\kappa} \alpha_{\kappa} \colon \mathfrak{A}(\check{k}) \longrightarrow \operatorname{Gal}(\check{k}^{\mathrm{ab}}/\check{k}).$$

The exact sequence

$$E(\tilde{k}/k): \quad 1 \longrightarrow \mathfrak{A}(\tilde{k}) \longrightarrow \operatorname{Gal}(\tilde{k}^{\mathrm{ab}}/k) \longrightarrow \operatorname{Gal}(\tilde{k}/k) \longrightarrow 1$$

determined naturally by $\alpha_{\bar{k}}$ is the projective limit of $\{E(K/k)\}$. Therefore the canonical classes $\bar{\xi}_{K/k}$ determine the canonical 2-cohomology class $\bar{\xi}_{\bar{k}/k}$ in $H^2(G, \mathfrak{A}(\bar{k}))$ which gives the extension $\operatorname{Gal}(\bar{k}^{ab}/k)$ of $\operatorname{Gal}(\bar{k}/k)$ by $\mathfrak{A}(\bar{k})$.

The proof is almost obvious because <u>lim</u> is an exact functor in the category of compact groups (e.g. [E-S], Theorem 5.6, p. 226, or [Ko], Satz 1.9, p. 6).

COROLLARY. Let $MC(\tilde{k}/k)$ be the maximal central extension of \tilde{k}/k . Then we have

$$\operatorname{Gal}\left(MC(\tilde{k}/k)/\tilde{k}
ight)=\mathfrak{A}(\tilde{k})/\mathfrak{A}(\tilde{k})^{\scriptscriptstyle AG}$$

where

$$\mathfrak{A}(ilde{k})^{\scriptscriptstyle 4G} = \langle x^{ ext{1-}\sigma} \, | \, x \in \mathfrak{A}(ilde{k}), \, \, \sigma \in G
angle$$

(the right-hand side means the topologically generated closed subgroup).

Let us apply these results to the case where \tilde{k}/k is the nilpotent extension $k^{(c)}/k$, $c \geq 1$, and $G = G^c$. Then since $k^{(c+1)} = MC(k^{(c)}/k)$ we obtain from Theorem 2 the following result:

THEOREM 5. (i) For each $c \geq 1$, there exists a surjective homomorphism $\alpha^c \colon \mathfrak{A}(k^{(c)}) \to \mathfrak{M}(G^c)$ with Ker $\alpha^c = \mathfrak{A}(k^{(c)})^{\mathcal{A}G^c}$ such that the homomorphism

$$\iota^{c} \circ \alpha^{c} \colon \mathfrak{A}(k^{(c)}) \longrightarrow N^{c+1} = \operatorname{Gal}(k^{(c+1)}/k^{(c)})$$

coincides with the homomorphism induced naturally from the Artin map

 $\alpha_{k^{(c)}}: \mathfrak{A}(k^{(c)}) \longrightarrow \operatorname{Gal}(k^{(c), \operatorname{ab}}/k^{(c)}).$

(ii) The group extension

 $1 \longrightarrow \mathfrak{M}(G^{\mathfrak{c}}) \xrightarrow{\iota^{\mathfrak{c}}} G^{\mathfrak{c}+1} \longrightarrow G^{\mathfrak{c}} \longrightarrow 1$

determined by $\iota^c \colon \mathfrak{M}(G^c) \to \operatorname{Gal}(k^{(c+1)}/k^{(c)})$ corresponds to the image of the canonical class $\overline{\xi}_{k^{(c)}/k}$ under the induced homomorphism

$$(\alpha^{c})^{*} \colon H^{2}(G^{c}, \mathfrak{A}(k^{(c)})) \longrightarrow H^{2}(G^{c}, \mathfrak{M}(G^{c})).$$

Remark. For g and $h \in G^c$, take \tilde{g} and $\tilde{h} \in G^{c+1}$ over g and h, respectively. Then the commutator $[\tilde{g}, \tilde{h}]$ depends only on g and h because the group extension of Theorem 5, (ii), is central. Hence from the definition we obtain an epimorphism

$$\varphi^c \colon N^c \otimes G^c \longrightarrow \mathfrak{M}(G^c)$$

such that

$$\iota^{c}(\varphi(n,g)) = [\tilde{n},\tilde{g}]$$

for $n \in N^c$ and $g \in G^c$. Let f be a 2-cocycle which belongs to the cohomology class $(\alpha^c)^*(\bar{\xi}_{k^{(c)}/k}) \in H^2(G^c, \mathfrak{M}(G^c))$. Then it is easily seen that for $n \in N^c$ and $g \in G^c$ we have

$$\varphi(n,g) = f(n,g) \cdot f(g,n)^{-1}$$

because N^{c} lies in the center of G^{c} . For a finite abelian extension K/k with G = N = Gal(K/k), a detailed analysis of the analogous map is given by Furuta [Fu].

Remark. The main body of our present results relies on two facts; one of them is that Schur multipliers of profinite groups and their duals have good functorial properties; the other is a result of Tate, $H^2(\mathfrak{G}, \mathbf{Q}/\mathbf{Z}) = 0$ for $\mathfrak{G} = \operatorname{Gal}(\overline{\mathbf{Q}}/k)$, from which we not only deduce Proposition 1 but also the existence of abundant central extensions of a finite Galois subextension of $\overline{\mathbf{Q}}/k$. It is, therefore, easy to see that parallel results also hold for a local number field k_v and its algebraic closure \overline{k}_v , and for an algebraic number field k and its maximal p-ramified p-extension $\tilde{k}^{(p)}$ when the Leopoldt conjecture holds for k and p, because we have $H^2(\mathfrak{G}, \mathbf{Q}/\mathbf{Z})$ = 0 for $\mathfrak{G} = \operatorname{Gal}(\overline{k}_v/k_v)$ and for $\mathfrak{G} = \operatorname{Gal}(\overline{k}^{(p)}/k)$, e.g. [He] or [Ng] for the latter case.

References

- [B-E] N. Blackburn and L. Evens, Schur multipliers of p-groups, J. reine angew Math., 309 (1979), 100-113.
- [E-S] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton U.P., Princeton, 1952.
- [Fu] Y. Furuta, A norm residue map for central extensions of an algebraic number field, Nagoya Math. J., 93 (1984), 61-69.
- [He] F.-P. Heider, Zahlentheoretische Knoten unendlicher Erweiterungen, Arch. Math., 37 (1981), 341–352.
- [Iy] S. Iyanaga (ed.), The Theory of Numbers, North-Holland, Amsterdam-Oxford, and Amer. Elsevier, New York, 1975.
- [Ka] G. Karpilovsky, The Schur Multiplier, Clarendon Press, Oxford, 1987.
- [Kt] S. Katayama, On the Galois cohomology groups of C_k/D_k , Japan. J. Math., 8 (1982), 407-415.
- [Ko] H. Koch, Galoissche Theorie der p-Erweiterungen, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

- [Mi] K. Miyake, Central extensions and Schur's multiplicators of Galois groups, Nagoya Math. J., 90 (1983), 137-144.
- [Ng] T. Nguyen-Quang-Do, Sur la structure galoisienne des corps locaux et la theorie d'Iwasawa, Compos. Math., 46 (1982), 85-119.
- [Se] J. P. Serre, Modular forms of weight one and Galois representations, in: Algebraic number fields, ed. by A. Fröhlich, Ac. Press, London, 1977.
- [Sh] S. S. Shatz, Profinite Groups, Arithmetic, and Geometry, Princeton U.P., Princeton, 1972.

Katsuya Miyake Department of Mathematics College of General Education Nagoya University Nagoya, 464-01 Japan

Hans Opolka Mathematisches Institut Universität Göttingen Bunsenstrasse 3-5 D-3400 Göttingen B.R.D.

Present address: Institut für Algebra und Zahlentheorie Technische Universität Braunschweig Pockelsstraße 14 D-W-3300 Braunschweig B.R.D.