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ON NILPOTENT EXTENSIONS OF ALGEBRAIC

NUMBER FIELDS I

KATSUYA MIYAKE AND HANS OPOLKA

Introduction

The lower central series of the absolute Galois group of a field is
obtained by iterating the process of forming the maximal central extension
of the maximal nilpotent extension of a given class, starting with the
maximal abelian extension. The purpose of this paper is to give a co-
homological description of this central series in case of an algebraic
number field. This description is based on a result of Tate which states
that the Schur multiplier of the absolute Galois group of a number field
is trivial. We are in a profinite situation throughout which requires some
functorial background especially for treating the dual of the Schur mul-
tiplier of a profinite group. In a future paper we plan to apply our
results to construct a nilpotent reciprocity map.

§ 1. Central extensions and Schur multipliers

Let k be an algebraic number field of finite degree over the rationals
Q, and let kΆh (resp. knil) be the maximal abelian (resp. nilpotent) extension
of k in the algebraic closure Q of Q. For each positive integer c denote
by k{c)/k the maximal nilpotent extension of class (at most) c. Hence
β(Ό = £ab a n d £nii = y-=i^(e; p o r convenience we set k(0) = k. Put Gc =

Gal(&(c)/£) and Nc = Gal^/A' 0-"); Nc is a closed normal subgroup of
Gc which is contained in the center Z(GC). Therefore we have a central
extension of Galois groups

1 > Nc+ι > Gc+1 > Gc > 1.

We furnish the rational torus group T = Q/Z with the discrete topology

and consider it as a Galois module with trivial action.

PROPOSITION 1. For each c ^ 1, the compact group Nc+1 is canonically
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isomorphic to the Pontrjagin dual of the Schur multiplier H\GC, T) of Ge.

Proof. Put © = Gal(Q/ft) and Vlc = Gal(Q/&(c)). Then we have Gc =

®/9ΐc, and the exact Hochschild-Serre sequence

γipς< γC

Hom(®, T) — > Hom(Sftc, Tf > H\Ge, T) • H\®, T),

where τc is the transgression. The last term H2(®, T) vanishes by a well

known result of Tate; see e.g. [Se], §6. Therefore H\GC> T) is isomorphic

to the cokernel of the restriction map which is naturally identified with

Hom(9ϊc/[9Ϊ% ®L T)' By definition we have [31%®] = 9tc+1 and 9ϊc/9ϊc+1 =

Nc+\ This shows that H\G\ T) is isomorphic to Hom(JVβ+1, T). Taking

the dual groups we immediately obtain the proposition.

§ 2. The dual of the Schur multiplier

In this paper, H2(G, T) and its dual for a Galois group G of an in-

finite algebraic extension plays an important role. When G is finite,

H\G, T) is a finite abelian group and isomorphic to its dual although

not canonically. When G is an infinite profinite group, however, H\G, T)

is different from its dual. So it seems worthwhile to give a brief survey

on the dual of H\G, T) for a profinite group G.

Let G be a profinite group and suppose that we have a presentation

G = F/R with a free profinite group F and its closed normal subgroup

R which is generated by the relations in G. Associated to the exact

sequence

1 > R >F-^->G >1,

the transgression gives an exact sequence

Hom(F, T) - % Horn OR, T)F > H\G, T).

THEOREM 1. The transgression induces an isomorphism

τ: Horn (EH [F, F]/[R9 F], T) - ^ > # 2(G, T).

Proof. It is easily seen that the cokernel of the restriction map can

be identified with

To show that τ is surjective, we can slightly modify the method of
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[Ka], pp. 47-48. Let (φ) be an element in H\Gy T) with a 2-cocycle φ in

Z\G, T). Since the image of φ is a compact subset of the discrete top-

logical group T, there exists a positive integer m such that the image

of φ is contained in the subgroup Cm = (l/m)Z/Z of T. Then ψ belongs to

Z7(G, Cm) and determines a central extension of profinite groups

Since p: F-> G gives a presentation of G with a free profinite group F,

there exists a homomorphism η of F to H such that π o 9 = p. Then jy(iϊ)

is contained in (the image of) Cm. Take a continuous cross-section o\ G

-* F of p (cf. [Ko], Satz 1.16, p. 8, or [Sh], Theorem 3, p. 10), and put

ξ — η o σ. Then we have a 2-cocycle ψ e Z2(G, Cm) defined by

Ψ(*, y) = ί ί Λ y ) " 1 ^ ) ^ ) *, y € G,

because ξ is a cross-section of π: H-> G. By the choice of H, ψ is coho-

mologous to φ. Therefore it belongs to the class (φ) in H2(G, T). Now

let X be the element of Hom(JR, T) obtained by restricting ηtoR (combined

with the inclusion Cm

 c=—> T). Then we have

Ψ(x,y) = η(σ(xy)Yιη(σ(x))η(σ(y))

= X(σ(xy)-'σ(x)σ(y))

for x, j/eG. Since a is a cross-section of p, this shows that r(5C) = (ψ)

= (^), which proves that τ is surjective.

If we take another presentation G = F7-R' with a free profinite group

F', then we also have an isomorphism

τ': HomίΛ7 Π [F ;, FI/ίiR', F'], Γ) - ^ > H2(G, Γ)

by the theorem. It is easy to see, however, that there exists a canonical

homomorphism of F to F' which induces a homomorphism

θ: R Π [F, F]I[R, F] • R ΓΊ [JF1', F']/[£, F ' ] .

The dual ϋ satisfies the condition τf = τ o ^ and is an isomorphism. There-

fore θ is an isomorphism of compact abelian groups. This observation

allows us to define
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Then the statement of the theorem is dualized as follows:

THEOREM V. For a profinίte group G, the Schur multiplier H\G, T)

is canonically dual to Wl(G).

% 3. The structure of SK(G) as a profinite group

Let G be a profinite group and N be its closed normal subgroup.

Then a homomorphism

is canonically determined by the definition. The cokernel of γ is also

determined; the following sequence is exact (cf. [B-E], Theorem 1.1, p. 101):

(l) m(G) -ϊ-> m(G/N) — > N n [G, G\HN9 G] — • 1.

On the other hand, we have the inflation map

λ = λ%: HXGjN, T) • H2(G, T);

its kernel can be determined by the Hochschild-Serre exact sequence

(10 1 > Hom(iVΠ [G, G]/[N, G], T) • H\G/N, T) -i-> H\G, T).

Using Theorem V we see

PROPOSITION 2. The exact sequence (10 is dual to (1).

Altogether this shows

PROPOSITION 3. Let the notation and the assumptions be as above.

Denote the dual map of γ% by 7%, and let τG and τGlN be the isomorphisms

given in Theorem 1 for G and for G[N, respectively. Then we have a com-

mutative diagram

Hom(9K(G), T) ~^--> H\G9 T)

(2) f%\ J4
Hom(3K(G/iV), T) > H\GjN, T).

?G

Now let U be the family of all open normal subgroups of G. For

U, V e 11, U H> V, we have a homomorphism

Tuy. m{GIV) >m(GIU)

together with
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ru' 2R(G) >Wt(GIU),

and

γv: aK(G) >Wl(GIV).

From the definition we see

(3) ϊu = Tu,v ° ϊv

and

Tu,w =1 Yu,v ° Tv,w

for U, V, W e VL, U ID V z> W. Therefore we have a projective system of

finite abelian groups

(4) {mG/U), ru>v I U, V e U, U 3 V}.

We have also an inductive system of Schur multipliers

(5) {H\G/U, T), λv>u I U, V e U, C7 3 V}

where ίκ>0- is the inflation map

^ : H\GIU,T)—>W(GIV,T),

and also a system of homomorphisms

λπ: HXG/U, T) —^ H\G, T), U e U.

Since the action of G on T is trivial, we have

(6) W(G,T) = \imH\GIU,T),
U

(cf. [Sh], Corollary 1, p. 26); and then

PROPOSITION 4. Wl(G) = lim WI(G1U).
ueu

Proof. Put H = lim 2K(G/t7). Then by (3) and the universal property

of if, we have a continuous homomorphism >̂: Wl(G) -> if. Because of (2),

the two systems (4) and (5) are dual to each other. By (6), therefore,

H2(G, T) is the dual group of if. Then by Theorem V and (2), we conclude

that φ is an isomorphism.

§4. The structure of Gal(£(c+17/2(c))

Let us go back to Galois groups of nilpotent extensions of an alge-

braic number field k. An open normal subgroup U of Gc corresponds to a
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finite normal subextension K/k of kic)/k in such a way that U = Gal(k(c)IK).

Therefore we obtain from Theorem Γ and Proposition 4

THEOREM 2. (i) For each c J> 1 ί/iβrβ is α canonical isomorphism

cc: Tt(Gc) - ^ > Nc+ί = Gal(/2(c+1)//e(c)).

(ii) 9K(GC) is determined by finite normal subextensions K\k of k{c)jk

as

Tl(Gc) = Jim 2R(Gal (ΛΓ/fe)).
K

For a finite normal subextension Kjk of &(c)/& with U = Gal(A(c)/UL)

denote by

the natural homomorphism determined by (ii) of the theorem. We denote

the maximal central extension of K\k in Q by MC{Kjk). This is a sub-

field of &(c + 1) because K/k is a subextension of k(c)/k.

In Section 6 we shall prove

THEOREM 3. For each finite normal subextension Kjk of k{c)lk, there

exists a canonical isomorphism

cκ: Im (γκ) -^-> Gal (MC(K/k) £(c)/£(c))

such that the following diagram is commutative:

m(Gc) —>iv c + i =
ΪK res

y y

Im (γκ) • Gal (MC(K/k) • kMjkM).

§ 5. Base-change for abundant central extensions

In this section let Kjk be a Galois extension of algebraic number

fields of finite degree. Put g = Gal (Kjk). The maximal central extension

MC{Kjk) of Kjk contains K-k*h. There exists a canonical isomorphism

'*/*: SJl(δ) - ^ > Gal (MC(Kjk)IK kΆh)

(see e.g. [Mi]). Since MC(K/k) is a finite extension of K k*-h, there is a

finite central extension L of Kjk such that MC(Kjk) is equal to the com-

posite field L-k&b. Such an L is called an abundant central extension
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of K/k. Put L* = LPiK k3-10. Then the isomorphism cκ/li induces an iso-

morphism of 2R(g) onto Gal (LjL*) if L is abundant. Suppose that another

finite Galois extension Kjk, Kx z> if, is given, and put G = Gal (Kjk) and

iV = Gal (KJK). Then g = G/ΛΓ. The homomorphism γ of (1) in Section 3

gives a basic relation between 3Jl(G) and 27t(g). Let i^ be the maximal

central extension of Kjk in Ku i.e. i^ = KxΓ\MC(Kjk), and let i ί* be the

genus field, i.e. Kf = i^ (Ίif £ab. Then by the definition we see that

Gal (ίtjK*) is isomorphic to Nf][G, G]/[N, G], the third term of the exact

sequence (1). Now let us denote the composite field LK, by Ll5 and put

L** = LiΠiίi ^ab. Since Lx is a central extension of Kjk, Gal(LJLf*) is

a homomorphic image of 3Jl(G) under the map induced by the canonical

homomorphism cKl/k for the Galois extension Kjk.

THEOREM 4. Let the notation and the assumptions be as above. Then

L, is a central extension of Kjk with the following properties:

( i ) Gal (LJL**) is canonically isomorphic to Gal (LjL ΠL**);

(ii) Gal(LΠL**/L*) is canonically isomorphic to Gal (KJK*);

(in) We have a commutative diagram with exact rows

> SK(g) > NO [G, G]/[N, G] > 1

I1 I1

Gal (LJLΐ*) • Gal (L/L*) • Gal (L Π Lf*jL*) > 1.

Proof. Put § = Gal(Li/£) and 5Ϊ = Gal(Li/ϋO; 9? is a normal subgroup

with quotient g = φ/9ί. Put SI = Gal (L,/^,) and SB = Gal (LJL); then

Gal (LJL (Ί-Ki) is a direct product 35x21 because Lλ =LKι. Let Li be

the subfield of Lλ determined by the condition Gal (LJL,) = [31, £>] this is

the maximal central extension of Kjk in Ll9 i.e. Lx = LλΓ\MC(Klk); it con-

tains L. Therefore we have [31, £>] C 93. Since 21 is a normal subgroup

of φ contained in 9ΐ, the commutator [21, ξ)] is contained in 21Π [3Ϊ, φ];

hence we have [21, ξ>] = 1 because 21 (Ί S3 = 1 this shows that 21 lies in

the center of φ, which means that Lx is a central extension of JEΊ/A.

Now let us see (i). We have Gal (LJL**) = STΠ[©,©] because Lf* =

Lj ΓΊ iξ ^a b = K, (Lt (Ί ^ab) and Gal (LJL, Π ^ab) = [& φ]. Therefore Gal (LJ

LΠL**) = S3 X Gal (LJL**) because Gal (LJL ΠK,) = S3χ2ί. Hence it is ob-

vious that the projection of Gal (LJL ΠL**) onto Gal (LjL (ΊL**) maps

Gal (LJL**) isomorphically onto Gal (L/L ΠL**). This proves (i). Note

that Gal (LJL**) is a homomorphic image of 3Jl(G) because L** is the

genus field of the central extension Lλ of Kjk. Put L* = LifΊif /^; this
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Diagram

k I

is the genus field of the central extension Lx = Lλ Π MC(Kjk) of if/&. Since
Lx* = if ί ^ Π ^ ) , we have Gal (Lx/Lf) = 5RΠ [©,$]. By the assumption,
L is an abundant central extension of K/k. Therefore Lx is contained in
L-kΆh and hence equal to L Lf. Then Gal (LJLf) is naturally isomorphic
to Gal (L/L*) because LΠLf = Lf]K-kΆh = L*. Under this isomorphism
the intermediate field LΠL** of LIL* corresponds to (LΠLi*) L*. Fur-
thermore, we also have natural isomorphisms

Gal (LJL) s Gal ((L Π if*) Lf/L Π Lf*) s Gal (Lx*/L*).

Since there is a natural isomorphism of Gal (LJL) onto Gal(Lf*/LΠL**),
we conclude that the intermediate field (LίΊL* *) Lf coincides with LiΠL**.
Therefore Gal(LΠIf*/L*) is naturally isomorphic to Gal (L, ΠLf*/Lf).
Next let us look at the extension L?*/Kf. By definition we easily see
L* Π lξ = iff. Hence Gal (^/if*) = (91Γ) [§, ©]) Si because Gal (LJL*) =

&,φ] and GalίLj/ίΓO = SI. Therefore we obtain
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Gal {LfjKf) = (91Π [$, $]) St/(SR Π [&

= Gal (Lf */£,).

In particular we have [Lf*: iϊΓ,] = [Lf: Kf). It is clear that Lf* contains

LfK,. Since [Lf-K,: £,] = [Lf: LfnίΓ,] = [if: # ? ] = [Lf*: Kx\ we con-

clude Lf* = Lf-K,. This implies that GalίAπLfVLf) is naturally iso-

morphic to Gal (KxIKf) because j ^ = (L^DLf*)!"!.^. Combining this with

the result obtained above, we have shown that Gal (LΠLf */L*) is naturally

isomorphic to Gal (ULJ/UL f) as is claimed in (ii).

The last Galois group is isomorphic to

GeKKJK^IGaliKJK,) = iVΠ [G, G]/[iV, G].

Since all the isomorphisms of Galois groups discussed above are natural

and group-theoretic, (iii) is also clear.

§ 6. The proof of Theorem 3

We use the same notation as in Section 4. Let Kjk be a finite

normal subextension of k{c)jk, c ^ 1; its Galois group is denoted by Q =

Gal(Klk); U = Gs\.(k{c)jK) is an open normal subgroup of Gc. We fix an

abundant central extension L of K/k; MC(Klk)-k{c) is equal to L-k{C). Put

Ko = Lf]k(c); then Gal(L/KQ) is canonically isomorphic to G&\{MC(Kik)-k{c)

Ik™). Put U = Gal(&(c)/#o), G = Gal(#0//e) and iV = Gal (^0/^) We use

Theorem 4 for LjKjk and JKΊ = if0 in this case we have LZD KXZD L*\

N lies in the center of G, and [N, G] = 1; therefore K, = Ku K? = L*;

moreover we have Lx = L, Lf = L* and Lf* = ^ = LΠLf*; hence the

image of the homomorphism

is mapped isomorphically onto Gal (L/KQ) by the isomorphism

res o cκ/k: 2K(g) -=^> Gal (MC(Kjk)!K k*b) ̂ -> Gal (L/L*).

Let us express this using U and U; we have 3K(G) = 3W(Gc/?7), 2W(g) =

Wl(GcjU) and ^ = ^,& in the notation of Section 3; furthermore, the

image of γUyϋ, Im(Yu,u), is mapped isomorphically onto the subgroup of

GdL\(MC(Klk)IK'kΆh) by tKΠt which is canonically isomorphic to Gal (L/if0)

and hence also to Gal(MC(Klk)-k(c)lk(c)). Next let V be an open normal
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subgroup of Gc contained in U; put V = V ΓϊU; then we have

Tu,v = Tu,v°Yv,v = Yu,ϋ°Yϋ,v',

hence, in order to show Imγu = I m ^ t f ) for jv( = γκ) = limFcC/?v,F, it is

sufficient to prove that \m{γu>Ϋ) in 3K(g) is mapped isomorphically onto

Gal(L/ίΓ0) by reso^ / f c. This time we use Theorem 4 for L\K\k and the

extension KJk determined by the condition Gal(i£Ί/£) = GCIV. We have

Kx 3 KG by the choice of V; since Kx is a subfield of kic\ we also have

L Π iξ = KQ and hence L* c L Π iξ. For c ^ 1, Lf* = LfK, is contained

in β(c) because kic) => iΓ/eab and Lf - L.ΠK-k^; therefore LΠLf* c LΠ^ ( C )

= if0; conversely, it is clear that L Π Lf * Z) ϋΓ0 = L Π -KΊ; thus we have

L Π L** = KQ. It now follows from Theorem 4 that the image of the

homomorphism

γUtΫ: m(GcIV) >m(GcIU)

is isomorphically mapped onto Gal (L/Ko) by reso^ / f c. This proves that

Imft;, Yu == YK, coincides with Im(^ ( ί ;) and also that there exists a ca-

nonical isomorphism

cκ: Im γκ > Gal (MC(K/k) kic)/k^).

The rest of Theorem 3 will easily be seen in a straightforward way by

dualizing the diagram of Theorem 4.

§ 7. The canonical 2-cohomology classes

We fix an algebraic number field k of finite degree. Let K be a finite

Galois extension of k, K^ be the idele group of K, K*+ be the connected

component of the identity element of the Archimedian part of K£ and K*

be the closure of KXK*+ in K\. We have the Artin map of K,

aκ: KlIK* • Gal (K*h/K),

which is a topological isomorphism, and the natural exact sequence

E(K/k): 1 > Kl/K* > Gal (K*h/k) > Gal (K/k) > 1.

The structure of Gal (K^lk) is then determined by the canonical 2-coho-

mology class ξκ/lc of Gal (KIk) with values in K\IK*. More specifically,

the cohomology group ίf2(Gal {Kjk), K\jK*) is a cyclic group generated

by ζK/k\ its order is either \-[K\ k] if there exists a ramified real Archi-

median prime in Kjk or [K: k] otherwise (cf. Katayama [Kt] and also
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Iyanaga [Iy]). In this sense Gal(i£ab/£) is determined by Kjk.

Let F/k, F D K, be another finite Galois extension, F£/F# be as above

for F and

*NF/K: F*JF* —+KIIK*

be the norm map of FjK. Then we have a commutative diagram

restriction

Gal (KΆh/K).

Therefore NF/K and the homomorphisms defined by restricting automor-

phisms of F a b or of F to Kab or to ϋC, respectively, give a homomorphism

of the exact sequence E(F/k) to E{Kjk).

Now suppose that an infinite Galois extension k\k is given. Put

G = Gal (k/k). If we make ϋΓ/£ run over all finite Galois subextensions of

k/k, we have projective systems {KlJK*, NF/K}, {Gal(#ab/ίQ}, {Gal (Ka

and {E(K/k)}, and also

Gal (̂ ab/Â ) = lim Gal (K *

Gal (^ab/^) = lim Gal (K Ά

G = Gal (k/k) = lim Gal

We put

St(iί) =

It is clear that 2I(&) depends only on ^. Each K^jK* is naturally con-

sidered as a G-module. Therefore %(k) has a G-module structure. Through

inner automorphisms of Gal(A:ab/&), Gal(^ab/^) becomes a G-module.

PROPOSITION 5. Let the notation and the assumptions be as above.

The Artin maps aκ for finite Galois subextensions K\k of k\k give a G-

isomorphism

ak = l im aκ: H(jfe) > Gal (k^/k).
K

The exact sequence

E(klk): 1 > 3t(jfe) — > Gal (̂ ab//fe) > Gal (jfe/ife)
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determined naturally by a^ is the projective limit of {E{Kjk)}. Therefore

the canonical classes ξKΠc determine the canonical 2-cohomology class ξR/k

in # 2(G, 2l(&)) which gives the extension Gal(βa7&) of Gal(£/£) by §T(&).

The proof is almost obvious because Km is an exact functor in the

category of compact groups (e.g. [E-S], Theorem 5.6, p. 226, or [Ko], Satz

1.9, p. 6).

COROLLARY. Let MC(k/k) be the maximal central extension of k/k.

Then we have

where

%{kyG = <y-1 x e «(*), σ e G>

(the right-hand side means the topologically generated closed subgroup).

Let us apply these results to the case where kjk is the nilpotent

extension kM/k, c ^ 1, and G = Gc. Then since kic+1) = MC(k(c)lk) we

obtain from Theorem 2 the following result:

THEOREM 5. ( i ) For each c 1Ξ> 1, there exists a surjectίυe homomor-

phism ac: %(k{c)) -> 3K(GC) with Keτ ac = 2I(^(C))JGC such that the homomor-

phism

coincides with the homomorphism induced naturally from the Artin map

«*«,,: ST(^(C)) > G a l (& ( c ) ' a b / A ( c ) ) .

(ii) The group extension

- ^ > G c + 1 • G c • 1

determined by cc: M(GC) -> Gal(/?(c + υ/^(c)) corresponds to the image of the

canonical class |fcrc)/fc under the induced homomorphism

(ac)*: 272(GC, 2t(fe(c))) > #2(GC, 3K(GC)).

Remark. For g and Λ€ Gc, take g and he Gc+1 over g and Λ, respec-

tively. Then the commutator [g, h] depends only on g and h because

the group extension of Theorem 5, (ii), is central. Hence from the defini-

tion we obtain an epimorphism
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such that

cc(φ(n, g)) = [n, g]

for ne Nc and geGc. Let / b e a 2-cocycle which belongs to the coho-

mology class (αc)*(f *<*>/*) 6 H2(Ge, Wl(Gc)). Then it is easily seen that for

ne Nc and g e Gc we have

because iVc lies in the center of Gc. For a finite abelian extension Kjk

with G = N = Gal (K/k), a detailed analysis of the analogous map is given

by Furuta [Fu].

Remark. The main body of our present results relies on two facts;

one of them is that Schur multipliers of profinite groups and their duals

have good functorial properties; the other is a result of Tate, H2(Qό, Q/Z)

= 0 for ® — Gal (Q,lk), from which we not only deduce Proposition 1 but

also the existence of abundant central extensions of a finite Galois sub-

extension of Oik. It is, therefore, easy to see that parallel results also

hold for a local number field kv and its algebraic closure kΌ, and for an

algebraic number field k and its maximal p-ramified p-extension k(p) when

the Leopoldt conjecture holds for k and p, because we have H\®, Q/Z)

= 0 for © = Gal(kjkv) and for © = Gsl(k(p)lk), e.g. [He] or [Ng] for the

latter case.
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