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Introduction

The lower central series of the absolute Galois group of a field is
obtained by iterating the process of forming the maximal central extension
of the maximal nilpotent extension of a given class, starting with the
maximal abelian extension. The purpose of this paper is to give a co-
homological description of this central series in case of an algebraic
number field. This description is based on a result of Tate which states
that the Schur multiplier of the absolute Galois group of a number field
is trivial. We are in a profinite situation throughout which requires some
functorial background especially for treating the dual of the Schur mul-
tiplier of a profinite group. In a future paper we plan to apply our
results to construct a nilpotent reciprocity map.

§1. Central extensions and Schur multipliers

Let & be an algebraic number field of finite degree over the rationals
Q, and let &* (resp. k"") be the maximal abelian (resp. nilpotent) extension
of k in the algebraic closure Q of Q. For each positive integer ¢ denote
by k“/k the maximal nilpotent extension of class (at most) ¢. Hence
R® = k*® and k™' = | o, k. For convenience we set k® = k. Put G° =
Gal (k©/k) and N°¢ = Gal (k“/k“-"); N°¢ is a closed normal subgroup of
G*¢ which is contained in the center Z(G°). Therefore we have a central
extension of Galois groups

1 >Nc+1 )Gc+1 ;Gcb_____)l.

We furnish the rational torus group T = Q/Z with the discrete topology
and consider it as a Galois module with trivial action.

ProposITION 1. For each ¢ = 1, the compact group N°*' is canonically
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isomorphic to the Pontrjagin dual of the Schur multiplier H¥(G*, T) of G°.

Proof. Put ® = Gal(Q/k) and N* = Gal(Q/k*). Then we have G* =
&/, and the exact Hochschild-Serre sequence

Hom(®, T) %% Hom (¢, T)* ——> HYG*, T) —> HX®, T),

where z¢ 1s the transgression. The last term H%®, T') vanishes by a well
known result of Tate; see e.g. [Se], §6. Therefore H*(G*, T) is isomorphic
to the cokernel of the restriction map which is naturally identified with
Hom(9t¢/[Ne, ®], T). By definition we have [R¢, @] = N°** and NN+ =
N¢+i, This shows that H¥G¢, T) is isomorphic to Hom(N¢*', 7). Taking
the dual groups we immediately obtain the proposition.

§2. The dual of the Schur multiplier

In this paper, HG, T) and its dual for a Galois group G of an in-
finite algebraic extension plays an important role. When G is finite,
H*G, T) is a finite abelian group and isomorphic to its dual although
not canonically. When G is an infinite profinite group, however, H¥G, T')
is different from its dual. So it seems worthwhile to give a brief survey
on the dual of H¥G, T) for a profinite group G.

Let G be a profinite group and suppose that we have a presentation
G = F/R with a free profinite group F and its closed normal subgroup
R which is generated by the relations in G. Associated to the exact
sequence

1—~>R——>F—’L>G—>1,

the transgression gives an exact sequence

res

Hom(F, T) =5 Hom (R, T)" —> H*G, T).
THEOREM 1. The transgression induces an isomorphism
7: Hom(RNI[F, F1/[R, F1, T) —> H¥G, T) .

Proof. 1t is easily seen that the cokernel of the restriction map can
be identified with

Hom(RNI[F, Fl/[R, F1,T).

To show that ¢ is surjective, we can slightly modify the method of
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[Ka], pp. 47-48. Let (p) be an element in H*G, T) with a 2-cocycle ¢ in
Z¥G, T). Since the image of ¢ is a compact subset of the discrete top-
logical group 7, there exists a positive integer m such that the image
of ¢ is contained in the subgroup C, = (1/m)Z/Z of T. Then ¢ belongs to
Z (G, C,) and determines a central extension of profinite groups

T

1 >C,, >H—G >1.

Since p: F — G gives a presentation of G with a free profinite group F,
there exists a homomorphism 7 of F to H such that zoy = p. Then 5(R)
is contained in (the image of) C,. Take a continuous cross-section ¢: G
— F of p (cf. [Ko], Satz 1.16, p.8, or [Sh], Theorem 3, p.10), and put
& =nog. Then we have a 2-cocycle e Z¥G, C,) defined by

Wx, y) = &(xy)6(x)&(y), xyeq,

because & is a cross-section of n: H— G. By the choice of H, + is coho-
mologous to ¢. Therefore it belongs to the class (¢) in H¥G, T). Now
let % be the element of Hom(R, T') obtained by restricting » to R (combined
with the inclusion C,, =—> T). Then we have

W(x, ) = 7a(xy)) ' la(x)m(a(y))
= (o(xy)'a(x)a(y))
= X(a(xy)'a(x)o())

for x,ye G. Since ¢ is a cross-section of p, this shows that z(X) = (v
= (p), which proves that ¢ is surjective.

If we take another presentation G = F'/R’ with a free profinite group
F’, then we also have an isomorphism

: Hom(R'N[F’, F'}/[R, F'], T) > HYG, T)

by the theorem. It is easy to see, however, that there exists a canonical
homomorphism of F to F’ which induces a homomorphism

8: RN[F, Fl/[R, F1—> R'N[F’, F']/[R, F'].

The dual 4 satisfies the condition ¢’ = r o4 and is an isomorphism. There-
fore § is an isomorphism of compact abelian groups. This observation
allows us to define

M(G):= RN[F, Fl/IR, F].
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Then the statement of the theorem is dualized as follows:
TueoREM 1’. For a profinite group G, the Schur multiplier H¥G, T)
is canonically dual to M(G).

§3. The structure of (G) as a profinite group

Let G be a profinite group and N be its closed normal subgroup.
Then a homomorphism

r = 1% MG) —> M(G/N)

is canonically determined by the definition. The cokernel of y is also
determined; the following sequence is exact (cf. [B-E], Theorem 1.1, p. 101):

1) M(G) —> M(G/N) —> NN[G, GYJ[N, G] —> 1.
On the other hand, we have the inflation map
2= 2%: H{GIN, T) —> H¥G, T);

its kernel can be determined by the Hochschild-Serre exact sequence

(1) 1— Hom(NNIG, Gl/IN, G, T) —> H¥G|N, T) 2, H*G, T).
Using Theorem 1’ we see
ProrosiTioN 2. The exact sequence (1) is dual to (1).
Altogether this shows

ProrositioN 3. Let the notation and the assumptions be as above.
Denote the dual map of 1% by 7%, and let v, and ©4,y be the isomorphisms
given in Theorem 1 for G and for G|N, respectively. Then we have a com-
mutative diagram

Hom(M(G), T) “ » HYG, T)

2) % 2
Hom (W(G/N), T) ——> HY(GIN, T).
G/N

Now let I be the family of all open normal subgroups of G. For
U Vell, UDYV, we have a homomorphism

ro.v: PUGIV) —> UG/U)
together with
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rv: PUG) —> M(G/U),
and

v PUG) —> M(G]V) .
From the definition we see
3) To =Tvwvelv
and

Tow =Tvwvelvw

for U, V, Well, UD VDO W. Therefore we have a projective system of
finite abelian groups

4) {(M(G/U), yv,v|U, Vell, UD V}.
We have also an inductive system of Schur multipliers
(5) {H(G/U, T), 2,,,1U, Vell, UD V}
where 1, , is the inflation map
v H(G/U, T) —> HYG|/V, T),

and also a system of homomorphisms

Ay: H(G|U, T) —> H¥G, T), Uell
Since the action of G on T is trivial, we have

(6) HYG, T) = lim HYG/U, T) ,

(cf. [Sh], Corollary 1, p. 26); and then
ProposITION 4. M(G) = lim MU(G/U).
Uven

Proof. Put H = lim M(G/U). Then by (3) and the universal property
of H, we have a continuous homomorphism ¢: IM(G) — H. Because of (2),
the two systems (4) and (5) are dual to each other. By (6), therefore,
H*G, T) is the dual group of H. Then by Theorem 1’ and (2), we conclude
that ¢ is an isomorphism.

§4. The structure of Gal (k“*"/k®)

Let us go back to Galois groups of nilpotent extensions of an alge-
braic number field k. An open normal subgroup U of G° corresponds to a
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finite normal subextension K/k of k“/k in such a way that U = Gal (k*“/K).
Therefore we obtain from Theorem 1’ and Proposition 4

THEOREM 2. (i) For each ¢ = 1 there is a canonical isomorphism
f: MG®) —=> N¢*' = Gal (B“*V/R©),

(11) PUG®) is determined by finite normal subextensions K[|k of k“|[k
as

PUG*) = lim P(Gal (K/E)).

For a finite normal subextension K/k of k/k with U = Gal (k/K)
denote by
7 = rvt JUG?) —> D(Gal (K/k))

the natural homomorphism determined by (ii) of the theorem. We denote
the maximal central extension of K/k in Q by MC(K/k). This is a sub-
field of k¢*" because K/k is a subextension of k©/k.

In Section 6 we shall prove

THEOREM 3. For each finite normal subextension K[k of k©/[k, there
exists a canonical isomorphism

tg: Im(rz) —=> Gal (MC(K/k)-k©[k)

such that the following diagram is commutative:

M(GE) ——> N+ = Gal (ke *0/k«)
[£3 lres

Im () —> Gal (MC(K[k)- b [k).

§5. Base-change for abundant central extensions

In this section let K/k be a Galois extension of algebraic number
fields of finite degree. Put g = Gal (K/k). The maximal central extension
MC(K/R) of K|k contains K-k**, There exists a canonical isomorphism

tesit PUg) —> Gal (MC(K/k)/K - k*)

(see e.g. [Mi]). Since MC(K/k) is a finite extension of K-k**, there is a
finite central extension L of K/k such that MC(K/k) is equal to the com-
posite field L-£*. Such an L is called an abundant central extension
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of K/k. Put L* = LNK-k**. Then the isomorphism ¢, induces an iso-
morphism of M(g) onto Gal (L/L*) if L is abundant. Suppose that another
finite Galois extension K,/k, K, D K, is given, and put G = Gal (K,/k) and
N = Gal(K,/K). Then g = G/N. The homomorphism y of (1) in Section 3
gives a basic relation between M(G) and IM(g). Let K, be the maximal
central extension of K/k in K, i.e. K = K,NMC(K/k), and let KF be the
genus field, i.e. Kf = K,NK-k*®. Then by the definition we see that
Gal (KI/K ¥) is isomorphic to NNI[G, G]/[N, G], the third term of the exact
sequence (1). Now let us denote the composite field L-K, by L,, and put
L¥* = LN K,-k*. Since L, is a central extension of K,/k, Gal(L,/L¥*) is
a homomorphic image of P(G) under the map induced by the canonical
homomorphism ¢, for the Galois extension K/k.

THEOREM 4. Let the notation and the assumptions be as above. Then
L, is a central extension of K|k with the following properties:

(i) Gal(L,/L¥*) is canonically isomorphic to Gal (L/LN L¥*);

(ii) Gal(LNL¥*/L*) is canonically isomorphic to Gal (KI/K{“) ;

(iii) We have a commutative diagram with exact rows

NG —> Mg —> NNIG, GlN,Gl—>1
ll ll
Gal (L,/L¥*) —> Gal (L/L*) —> Gal (LN LF*/L*) —> 1.

Proof. Put © = Gal(L,/k) and Nt = Gal(L,/K); N is a normal subgroup
with quotient g = /M. Put U = Gal(L,/K,) and B = Gal(L,/L); then
Gal(L,/LNK)) is a direct product B XU because L, = L-K,. Let 131 be
the subfield of L, determined by the condition Gal (LI/IAQ) = [N, $]; this is
the maximal central extension of K/k in L, i.e. 131 = LN MC(K|R); it con-
tains L. Therefore we have [N, 9] CB. Since U is a normal subgroup
of § contained in M, the commutator [, $] is contained in AN [N, ];
hence we have [, §] = 1 because ANV = 1; this shows that A lies in
the center of §, which means that L, is a central extension of K,/k.

Now let us see (i). We have Gal (L,/L¥*) = AN[H, H] because Li* =
LNK, -k = K,-(L,Nk*) and Gal(L,/L;NE>*) = [, H]. Therefore Gal(L,/
LN L) = BxGal (L,/L¥*) because Gal (L,/LNK,) = BX Y. Hence it is ob-
vious that the projection of Gal(L;,/LNL¥*) onto Gal(L/LNL¥*) maps
Gal (L,/L¥*) isomorphically onto Gal(L/LNL{*). This proves (i). Note
that Gal (L,/L{*) is a homomorphic image of I(G) because L{* is the
genus field of the central extension L, of K /k. Put L¥ = L,N K-k*; this
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Diagram

L=L.-K.=L,K,

L-Lik::i;
L ,/
1

LnLy*
:L;,('K‘

LmL;k* ‘/

‘LNK, .

/\.:’/ LikzLxﬂK‘kabz-‘filmK'k“b

: Ki=LNK,=L:NK
1

Li*=LNK, k=LK,

K,

LONL¥{=L**

LNK{=L*NK,
K

k

is the genus field of the central extension L =Ln MC(K|k) of K/k. Since
L} = K-(L,Nk*™), we have Gal (L,/L¥) = NN[H, $]. By the assumption,
L is an abundant central extension of K/k. Therefore E, 1s contained in
L-k*® and hence equal to L-L¥. Then Gal(L,/L¥) is naturally isomorphic
to Gal(L/L*) because LNL} = LNK-k* = L*. Under this isomorphism
the intermediate field LN L¥* of L/L* corresponds to (LNL¥*)-L¥. Fur-
thermore, we also have natural isomorphisms

Gal (L,/L) = Gal (LN L#*)- L¥/LN L) = Gal (L¥/L¥) .

Since there is a natural isomorphism of Gal (L,/L) onto Gal (L{*/L N L¥*),
we conclude that the intermediate field (L N L{*)- L} coincides with LN L#*,
Therefore Gal (LNL¥*/L*) is naturally isomorphic to Gal(L,NL¥*/L¥).
Next let us look at the extension L¥*/K¥. By definition we easily see
L¥NK, = K¥. Hence Gal(L,/K}) = MN[H, P])-A because Gal(L,/L}) =
NN[D, 9] and Gal(L,/K,)) = U. Therefore we obtain
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Gal(L¥/KT) = RN D, D - AR N[O, OD
= WANN[D, 9D
= AWANI[H, O]
= Gal (L¥*/K,) .

In particular we have [L¥*: K|] = [L¥: K¥]. It is clear that L¥* contains
L¥-K,. Since [L}-K,: K|] = [L¥: L¥NK,] = [L¥: K¥] = [L¥*: K], we con-
clude Lf* = L¥-K,. This implies that Gal (I:lﬂLl**/L;“) is naturally iso-
morphic to Gal (I%L/K ) because Iﬁ = (lilﬂL{"*)ﬂKl. Combining this with
the result obtained above, we have shown that Gal (LN L#*/L*) is naturally
isomorphic to Gal (KI/K ¥) as is claimed in (ii).

The last Galois group is isomorphic to

Gal (K,/K ¥)/Gal (K,/K,) = NN [G, G]/[N, G].

Since all the isomorphisms of Galois groups discussed above are natural
and group-theoretic, (ii1) is also clear.

§ 6. The proof of Theorem 3

We use the same notation as in Section 4. Let K/k be a finite
normal subextension of k'[k, ¢ = 1; its Galois group is denoted by g =
Gal(K/k); U = Gal (k“'/K) is an open normal subgroup of G°. We fix an
abundant central extension L of K/k; MC(K/k)-k® is equal to L-k*“. Put
K, = LNk@; then Gal (L/K,) is canonically isomorphic to Gal(MC(K/k) -k
[R©). Put U = Gal (k©/K,), G = Gal (K,/k) and N = Gal(K,/K). We use
Theorem 4 for L/K/k and K, = K,; in this case we have L D K, D L*;
N lies in the center of G, and [N, G] = 1; therefore K, = KI, ¥ = L*;
moreover we have L, = L, L¥ = L* and Lf* = K, = LN L#*; hence the

image of the homomorphism
v MG —> M(g)
is mapped isomorphically onto Gal (L/K,) by the isomorphism
res oy M(g) —> Gal (MC(K/R)/K - k**) —> Gal (L/L*).

Let us express this using U and U; we have UG) = M(G¢/U), M(g) =
M(G°/U) and 7% = yy,p in the notation of Section 3; furthermore, the
image of 7y, Im(yy,p), is mapped isomorphically onto the subgroup of
Gal (MC(K/k)/K - k™) by ¢y, which is canonically isomorphic to Gal(L/K,)
and hence also to Gal (MC(K/k)-k“[k®). Next let V be an open normal
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subgroup of G° contained in U; put V=Vn l7; then we have

Yo, v = Yuv°¥v,y = Yu,0°70,7;

hence, in order to show Imy, = Im(yy,5) for yu(=7x) = lim,cyyu,p, it is
sufficient to prove that Im(y,,») in M(g) is mapped isomorphically onto
Gal (L/K,) by resotg,. This time we use Theorem 4 for L/K/k and the
extension K,/k determined by the condition Gal(K,/k) = G°/V. We have
K, D K, by the choice of V; since K, is a subfield of £, we also have
LNK, =K, and hence L* C LN K,. For ¢ =1, L¥* = L¥-K, is contained
in k© because £® D K-k* and L¥ = L,N K k**; therefore LN L¥* C LNk
= K,; conversely, it is clear that LN Lf* D K, = LN K,; thus we have
LNL{* = K, It now follows from Theorem 4 that the image of the
homomorphism

to.9t UG V) —> MUG*|U)

is isomorphically mapped onto Gal(L/K,) by reso¢s,. This proves that
Imyy, yv = rx, coincides with Im(y,,5;) and also that there exists a ca-
nonical isomorphism

te: Im g —> Gal (MC(K[kR)-E©[R©) .

The rest of Theorem 3 will easily be seen in a straightforward way by
dualizing the diagram of Theorem 4.

§ 7. The canonical 2-cohomology classes

We fix an algebraic number field % of finite degree. Let K be a finite
Galois extension of k, K be the idele group of K, K, be the connected
component of the identity element of the Archimedian part of K} and K*
be the closure of K*. KX, in K%. We have the Artin map of K,

ax: Ki/K*¥ —> Gal (K*[K),
which is a topological isomorphism, and the natural exact sequence
E(K|k): 1—> KX|K*—> Gal(K*[k) —> Gal (K/k) —> 1.

The structure of Gal (K®**/k) is then determined by the canonical 2-coho-
mology class &g, of Gal(K/k) with values in K}/K* More specifically,
the cohomology group H*Gal (K/k), K%/K* is a cyclic group generated
by &x/; its order is either %-[K: k] if there exists a ramified real Archi-

median prime in K/k or [K: k] otherwise (cf. Katayama [Kt] and also
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Iyanaga [Iy]). In this sense Gal (K*/k) is determined by KJk.
Let F/k, F D K, be another finite Galois extension, FX/F* be as above
for F and

Ny FX|F*—> K%|K*
be the norm map of F/K. Then we have a commutative diagram
F%[F* —22 5 Gal (F*[F)

Nr/x i restriction

KX/K* —> Gal (K**/K).

Therefore Ny,x and the homomorphisms defined by restricting automor-
phisms of F* or of F' to K* or to K, respectively, give a homomorphism
of the exact sequence E(F/k) to E(K]/k).
Now suppose that an infinite Galois extension k/k is given. Put
G = Gal(k/k). If we make K/k run over all finite Galois subextensions of
k/k, we have projective systems {K3/K* Ngi}, {Gal (K*/K)}, {Gal (K*/k)},
{Gal (K/R)} and {E(K/k)}, and also
Gal (k*/k) = lim Gal (K*/k),
K
Gal (B*/k) = lim Gal (K*/K),
K

G = Gal(k/k) = LiKm Gal (K/k).

We put
A(k) = lim K/K*.
K
It is clear that (%) depends only on £ Each K%/K* is naturally con-

sidered as a G-module. Therefore (%) has a G-module structure. Through
inner automorphisms of Gal (*/k), Gal (k**/k) becomes a G-module.

PropPOSITION 5. Let the notation and the assumptions be as above.
The Artin maps a, for finite Galois subextensions K|k of k|k give a G-
isomorphism

a; = lim ay: A(k) —> Gal (B*[k).
K

The exact sequence

E(k[k): 1—> A(Ek) —> Gal (B*°/k) —> Gal (k/k) —> 1
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determined naturally by «; is the projective limit of {E(K/k)}. Therefore
the canonical classes &y, determine the canonical 2-cohomology class &g
in HYG, A(k)) which gives the extension Gal (k*[k) of Gal(k[k) by (k).

The proof is almost obvious because lim is an exact functor in the
category of compact groups (e.g. [E-S], Theorem 5.6, p. 226, or [Ko], Satz
1.9, p. 6).

COROLLARY. Let MC(E/E) be the maximal central extension of Fkjk.
Then we have

Gal (MC(k[k)[k) = U(k)/A(R)*
where
A(k)* = (x| x e AR), o€ G
(the right-hand side means the topologically generated closed subgroup).

Let us apply these results to the case where k/k is the nilpotent
extension k“/k, ¢=1, and G = G°. Then since R“*" = MC(k“[k) we
obtain from Theorem 2 the following result:

THEOREM 5. (i) For each ¢ = 1, there exists a surjective homomor-
phism a: k) — M(G) with Ker at = (k) such that the homomor-
phism

cCoat: AR®) —> N = Gal (R€*V k)
coincides with the homomorphism induced naturally from the Artin map
Ao s U(RC) ——> Gal (B 2[R,

(1) The group extension

1—— MG ——> G+ —> G* —> 1

determined by ¢: UG) — Gal (kY [k®) corresponds to the image of the
canonical class &,.,,;, under the induced homomorphism

(a)*: HYG®, U(R®)) —> HYG®, M(G®)) .

Remark. For g and he G, take § and Ae G°*' over g and h, respec-
tively. Then the commutator [g, A] depends only on g and A because
the group extension of Theorem 5, (ii), is central. Hence from the defini-
tion we obtain an epimorphism
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¢ N°®Q G* —> MUG®)
such that
“(p(n, 8)) = [#, &]

for ne N° and ge G°. Let f be a 2-cocycle which belongs to the coho-
mology class (a®)*(Eies) € HY(G®, PUG®)). Then it is easily seen that for
ne N°¢ and ge G° we have

o(n, g) = f(n, 8)-f(g, n)"

because N¢ lies in the center of G¢. For a finite abelian extension K/k
with G = N = Gal (K/k), a detailed analysis of the analogous map is given
by Furuta [Ful].

Remark. The main body of our present results relies on two facts;
one of them is that Schur multipliers of profinite groups and their duals
have good functorial properties; the other is a result of Tate, H*®, Q/Z)
= 0 for & = Gal (Q/k), from which we not only deduce Proposition 1 but
also the existence of abundant central extensions of a finite Galois sub-
extension of Q/k. It is, therefore, easy to see that parallel results also
hold for a local number field %, and its algebraic closure %, and for an
algebraic number field & and its maximal p-ramified p-extension 2® when
the Leopoldt conjecture holds for k£ and p, because we have H¥®, Q/Z)
=0 for ® = Gal (k,/k,) and for & = Gal (k®/k), e.z. [He] or [Ng] for the
latter case.
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