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IDEALS OF BOUNDED HOLOMORPHIC FUNCTIONS

ON SIMPLE n-SHEETED DISCS

MASARU HARA

§ 1. Introduction

1.1. As usual we denote by Η°°(Κ) the Banach algebra of bounded

holomorphic functions on a Riemann surface R equipped with the su-

premum norm H-^. Consider the ideal I(fl9 •••,/w) of H°°(R) generated

by functions fl9'"9fm in H°°(R). If a function g in H°°(R) belongs to

I(f\> - - ',fm)> or equivalently, if there exist m functions hu , hm in if°°(i?)

with

Σ/Λ = 8

on R, then common zero points of fu -,/m are also zero points of g in

the following strong sense:

(ΐ.ΐ) Σ Ι / ί Γ ^ ί Ι ^
y=i

on R for a positive constant δ > 0. The generalized corona problem asks

whether the converse is valid or not. In the case g = 1 on R the problem

is referred to simply as the corona problem.

The simple corona problem was solved by L. Carleson in [Cl] in the

case where R is the open unit disc D (see, further [Κ], [G3], [Ga], [BR],

[SI], etc). Whether the result can be generalized to arbitrary plane

regions is still open, but there are many plane regions for which the

problem is in the affirmative (cf. [Stl], [Bl], [Β2], [C2], [GJ], [Gl], [Ζ], [D],

[DW], [Na], [Μ], etc). While there is an example by Β. Cole showing that

the problem is in the negative for general Riemann surfaces (cf. [G2],

[Nl]). Also there are many cases in this category where the problem is

in the positive (cf. [Al], [Α2], [St2], [St3], [Fo], [EMI], [ΕΜ2], [HI], [Η2],

[Ν2], [JM], etc).
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As for the generalized corona problem there is a result by Κ. Rao [R]

that has given a negative answer in the case R = D, the open unit disc.

We now note the following result (cf. [Ga, p. 329]) which can be reduced

to the above mentioned Carleson result by taking g = 1:

THE WOLFF THEOREM. Iff, —-,fm and g belong to H°°(D) with the

condition (1.1), then there exist hu , hm in H°°(D) such that

Thus we must reformulate the generalized corona problem as follows:

Determine the smallest positive integer w(R) for any given Riemann surface

R such that there exist hl9 , hm in H°°(R) with

(1.2) Zfjh} = gwUl)

on R where fl9 -,fm and g are arbitrary functions in H°°(R) with (1.1).

For convenience we set w(R) — οο if such an integer can not be found.

Therefore the generalized corona theorem asks whether w(R) < οο, and

the results of Wolff and Rao imply that

(1.3) 2 < w(D) < 3 .

It is still not known whether w(D) = 2 (cf. [Ha], [S2], [Ce]). For certain

subalgebras of H°°(D) the similar considerations are made by [GM] and

[Mo]. For general plane regions R it is not known whether w(R) < οο

or not, but there are many plane regions R for which w(R) < οο and

some results concerning the inequality (1.3) have been given (cf. [82]).

The Cole example mentioned above also shows the existence of general

Riemann surface R for which w(R) = οο. In the case of the simple corona

problem, we obtained in [ΗΝ] the corona theorem with bounds depending

only on the sheet number η for 72-sheeted discs possibly infinitely branched.

Our theorem completely generalizes the original Carleson theorem and,

in addition, contains earlier works on finite Riemann surfaces. Thus

finitely sheeted discs formed an important class for which the simple

corona theorem is valid, although it is invalid in general as mentioned

earlier. Therefore it is natural and important to study w(R) for finitely

sheeted discs R although w(R) = οο may be the case for general Riemann

surfaces R.

The main purpose of this paper is to establish the relation
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(1.4) 2 < w(R) < 4η - 1

for a certain class of n-sheeted discs R, which we call simple (cf. 1.3

below), possibly infinitely branched and the class trivially contains D so

that our result may be viewed as a proper generalization of the above

(1.3): Theorems of Wolff and Rao. Some more interpretation of our

result will be given in what follows.

1.2. Let (R, D, π) be an unbounded n-sheeted covering surface of the

open unit disc D = {\ζ\<1} with a covering map π when η is a positive

integer. A Riemann surface R represented as the above (R, D, π) is referred

to as an n-sheeted disc.

We are mainly interested in w(R) for n-sheeted discs R. We observe

the following inequality (cf. Appendix for a proof)

(1.5) w(R) > w(D)

for n-sheeted discs R.

If an n-sheeted disc R has finitely many branch points so that if R

is a finite Riemann surface, then we also observe (cf. Appendix for a

proof)

(1.6) w(R) == w(D).

If R is a covering surface of D of Myrberg type (cf. [SN]), i.e. H°°(R)

— H°°(D), then (1.6) is of course trivially valid.

1.3. For our purpose to study the dependence of w(R) on the sheet

number η for n-sheeted discs R, we should like to consider ιυ(ή) defined

by

(1.7) w(n) = sup w(R)
Ε

where R runs over the family of all n-sheeted discs. For a technical

reason we restrict ourselves to the following subfamily of n-sheeted discs.

An n-sheeted disc R is said to be simple or more precisely, simple with

respect to a Blaschke product Β(ζ) on Ζ), if R is the Riemann surface of

an η-valued function ζ = Β(ζ)1/η for the Blaschke product

(Ν<οο)
1 — ΖμΖ

on D whose zeros are all simple where 0/0 is understood to be 1 whenever
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it appears. In addition to w(n) we consider

(1.8) W(n) = sup w(R)
R

where R runs over the family of all simple 7i-sheeted discs.

We obviously have the inequality W(n) < w(n) by definition. For

particular cases η = 1 and 2 we have the equality

(1.9) W(n) = w(n) (η = 1, 2).

In fact, there is only one 1-sheeted disc which coincides with D and is

automatically simple. Thus (1.9) is trivial for η = 1. Actually in this

case W(l) = w(l) = w(D). Since any 2-sheeted disc R is either simple or

satisfies H°°(R) = H°°(D), in the former case we have w(R) < W(2) by the

definition of W(2), and in the latter case we have w(R) = Η (Ζ)) < W(2) by

(1.5). Hence u;(2) <W(2) which establishes (1.9) for η = 2.

1.4. As was mentioned at the end of 1.2 a chief object of this paper

is to deduce the inequality (1.4) for simple ^-sheeted discs R. The first

inequality w(R) > 2 of (1.4) is a direct consequence of (1.5) : w(R) > w(D)

with the Rao result w(D) > 2. Thus the essential part is the proof of

the second inequality of (1.4) : w(R) < An — 1. Although our proof covers

the case η = 1 : W(l) < 3, since it is known as the Wolff theorem and

we can have better estimate than w(R) < An — 1 for the case η > 2, we

will restrict ourselves only to the case η > 2. In this case we have the

following sharper estimate of W(n) which we assert as the main result

of this paper:

THE MAIN THEOREM. The maximal power W(ri) for the generalized

corona problem for simple n-sheeted discs with η>2 satisfies the following

inequality

(1.10) η + 1 < W(n) < An - 2 (η > 2).

As was mentioned above our proof for (1.10) works as the proof of

(1.11) η + 1 < W(n) < 4η - 1 (η > 1)

which contains (1.3) as a special case of ra = 1. Here note that W(l)

= w{D). We also remark that our proof with a suitable modification

works as a proof for w(R)< οο for n-sheeted discs R generated by a

Blaschke product whose zeros are not necessarily simple.

The proof of the main theorem will be given in §2. The proof is



IDEALS OF BOUNDED HOLOMORPHIC FUNCTIONS 175

divided into two parts: the proof of the inequality W(n) < An — 2 and

that for W(n) > η + 1. In the proof of W(n) < An - 2 given in the first

half of § 2 three results of independent interest stated in 2.2 as Theorems

1, 2 and 3 will be made use of. The proofs of Theorems 1, 2 and 3 will

be given in § 3, § 4 and § 5, respectively. The proof of W(n) > η + 1 given

in the second half of § 2 will also be deduced from Theorem 4 stated in

2.5 which will be proved in § 6. Thus the paper consists of 6 sections.

The last but not the least the author would like to express his sincere

thanks to Professor Mitsuru Nakai for his helpful advice and guidance

and constant encouragement for many years and also to Dr. Shigeo

Segawa for his valuable comments on his work.

§ 2. Proof of the main theorem

2.1. Give an rc-sheeted disc (i?, D, π) and fu , fm, g satisfying (1.1).

In order to find solutions of (1.2), we may assume that any of fl9 -,fm,g

is not identically zero and δ = 1. There exists a sequence {rk} (0 < rk < 1)

converging to 1 such that each set π " 1 ^ 2 ! = rk}) does not meet the set

( m \

U Z(fj)J U Z(g)

where Z(f) is the set of zeros of /. If we set Dk = {|ζ| < rk} and Rk =

n~\Dk), then each covering surface (i?fc, Dk9 π) is identified with an η-

sheeted disc (R%, D, πΗ). If R is simple, then Rf is simple. We denote

by Bk a finite Blaschke product which has a simple zero at each point

of nk ({branch points of Rf}). The surface Rk is conformally a Riemann

surface which the n-valued fuuction ζ = Bk(z)1/n defines. We will give

solutions with bounds of (1.2) in (Rk, Dk, π) so that, by the normal family

argument, we will obtain solutions of (1.2) in (R, D, π).

2.2. Let (R, D, π) be an n-sheeted disc. For simplicity a function /

on the open unit disc D is identified with the function / o ^ o n the n-sheeted

disc R so that H°°(D) c H°°(R). For a function / on R we define functions

A(f) and P(f) on D by

1 η

η fc=i

and

P(f)(z) = f[ /(Ρ.)
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for any ^ ΐ η ΰ where π~ι{ζ) = {pu -,ρη}. In the above sum and product,

the multiplicity of the pk is taken into account.

By the reduction in 2.1, in order to prove Main Theorem, we only

have to find solutions with bounds of (1.2) for the τι-sheeted disc (R, D, π)

and functions fu -,/m, g in H°°(R) satisfying (1.1) and having the following

two conditions:

( a ) R has finitely many branch points;

( b ) any of fl9 -,/m,g is not identically zero and holomorphic on

R and does not vanish on dR.

We denote by H°°(R) the class of all functions holomorphic on R.

If in addition R is simple, then there exists a finite Blaschke product Β

such that the η-valued function ζ = Β(ζ)1/η defines R and hence Βί/η be-

longs to H°°(R). Under this setting we now state three theorems, which

are necessary in order to give solutions with bounds of (1.2) in this setting.

The first theorem is the following

THEOREM 1. When R is simple with respect to Β, there exist hu , hm

in H°°(R) such that

(2.1) Z
. 7 = 1

and that

(2.2) I I ^ I U < C 0* = 1, . . . , r o )

where C is some constant depending only on 2]?=III/JIU>
 m αη(^ η

The proof of this theorem will be given in § 3.

T H E O R E M 2. Let R be an n-sheeted disc. There exist hu >'-,hm in

H°°(R) such that

(2.3) tf*h, = P(gY
y=i

and that

(2.4) IIM-<C

where C is some constant depending only on XlyLill/jlU, τη and η.

In this theorem R need not be simple. The proof will be given in § 4.

THEOREM 3. When R is simple with respect to Β, there exist hu , hn^

in Η"{Κ) such that
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(2.5) g» = £ htB"»g-* + P(g)

and that

(2.6) II^-IU< C

where C is some constant depending only on \\g\\oo and η.

2.3. The inequality W(n) < An — 2 will be derived from those three

theorems mentioned in 2.2. We remark that if h e if°°(i?), then P{h)jh e

H~(R) and || P^/fty*, < \\h\\l~\ We denote by I the ideal generated by

fu ' -,fm' Firstly we will show by induction on k that

P(gyBw*g*+*-* el (k = 1, . . . , ή).

When k = 1, from η > 2, it follows that 2 + η+1-2>3. Therefore by

Theorem 1, the above for k = 1 holds. We suppose that the above holds

for 1, , k. We will show that

p(gYB(n-k-l)/ngn + k-l 6 J

Replacing g"n by the right hand side of (2.5) we see that

7 1 - 1

By the assumption of induction and Theorem 1 each term except the last

of the right hand side of the above equality boelngs to / and the last

belongs to / by Theorem 2.

Secondly we will show that

P(g)B<«-*)/»g*»+*-* e l (k = 1, ., η).

When k = 1, we have 1 + 2 η + 1 - 2 > 4 . Therefore by Theorem 1, the

above for k = 1 holds. We suppose that the above holds for 1, , k.

We will show that

p/g^B{n-k-l)/ng2n+k-l ^ J

Replacing gn by the right hand side of (2.5) we see that

n-l

By the assumption of induction and Theorem 1 each term except the last
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of the right hand side of the above equality belongs to I and the last

belongs to I by the above first result.

Repeating the same argument as in the above two cases, we can

show that

J3(»-*)/»ir8» + *-2 e J ( fe = l f . . . > η ) .

Therefore we obtain gin~2 e I so that there exist hl9 , hm in H°°(R) such

that

(2 7)

and

(2.8) \\hj\U<C

where C is a constant depending on Σ?=ι II/JIU>
 m a n d ^

The proof for W(n) < 4η — 2 is herewith complete.

2.4. We turn to the proof for W(n) > η + 1 (η > 2), which works

for η = 1 as well. For the purpose we prepare the following

LEMMA 1. Let Β be a Blaschke product and (R, D, π) be a simple η-

sheeted disc which the n-valued function ζ = Β(ζ)ί/η defines, A function f

on R is represented uniquely as follows: for any point ρ in R except for

branch points

n-l

\Δ,Ό) Τ\Ρ) — / ι Ά\] JL> )\Ζ)£> \Ρ) \ft\P) — Ζ)

Moreover if feH°°(R), then there exist η functions /„, •••,/w_i in H°°(D)

uniquely such that

(2.10) f(p) =

Proof Let π~ι(ζ) = {ply ,ρη}. A linear equation

has only one solution by a property of the Vandermonde determinant.

Hence there exist functions s0, -,s«-i defined on D uniquely, except for

zeros of Β, such that

-fc/n(p)
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Let ω = βχρ(2πίΙή). Since

7 1 - 1

we obtain (2.9). When k > 1, the function A(fBk/n) vanishes at any zero

point of Β. Hence, if / belongs to #°°(Λ), then A(fBk/n)IB belongs to

H°°(D) so that we obtain (2.10).

2.5. We will show that W(ri) > η + 1. For the purpose we take the

following theorem which will be proved in § 6.

THEOREM 4. There exist Blaschke products Β and G satisfying the

following three properties:

( a ) Both Β and G have infinite zero points on the positive real axis;

( b ) Any zero of Β is simple;

( c ) Functions Β and G satisfy for any ζ in D

(2.11) \Β(ζ)\ < 4{|1 -ζ\ + \B(z)G(zY\].

We make use of Blaschke products G and Β in the above theorem

for the proof of W(ri) > η + 1.

Let R be a simple zz-sheeted disc which ζ = Β(ζ)ί/η defines. We will

show that W(R) > η + 1. Hence W(n) > η + 1. Functions (1 - ζ)ί/η and

G(z) belong to Η°°(Ό) C H°°(R) and satisfy the following inequality:

(2.12) \Β1/η\2 < 42/*{|(1 - ζ)υη\2 + \Β

Suppose that there exist / and g in H°°(R) satisfying

(2.13) (1 - z)1/nf + B1/nGg = (Β1/η)η .

By Lemma 1 we have

w - l η-1

where fk and gk belong to H°°(D). If we replace / and g in (2.13) by the

above representations of / and g then, by Lemma 1, we have the following

(2.14) (1 - z)v*U(z) + G(z)B(z)gn.l(z) = Β(ζ)

for any ζ in D. Since any zero of Β(ζ) is simple, there exists an hQ in

H°°(D) such that /0 = h0B. Hence

(1 - ζ)ν*Κ(ζ) + G(z)gn^(z) = 1.
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As ζ approaches to 1 on the zero sets of G(z) the left hand side of the

above converges to zero. This contradiction shows that (2.13) is invalid.

§ 3. Proof of Theorem 1

3.1. We will prove Theorem 1. We set

Ε = ^({branch points of R} U (Q Z(f3)\ U Z{g)\ .

Solutions hl9 , hm of (2.1) are constructed as follows. If we set

_
(3.1) Ψ ^ Λ

on R, then it holds that Σ ? - ι / ^ = 8 a n d \fa\<lonR. We set

(3.2) G%(z) = Α( Βν^ψα — ψβ (α, 0 = 1, , ro; fe = 0, , η -
V dz I

on D\E which is infinitely differentiate on D\E.

Suppose that we find solutions 6^ of the following 5-problem

(3.3) - |τ*ί,(*) = &αβ{ζ)
dz

for ζ in D\E. If we set

(3.4) όαβ = ΣοΚβΒ~*/η

and

then we obtain

(3.6) Σ / Ά = £3 a n d -4-^(^) = 0

for 0 in Z)\£r. The latter of (3.6) is shown as follows from Lemma 1 and

(3.2):

η-\

k

τ Σ Ψ,Λ - « Σ
3ar » ι ίι
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If we set

(3.7) hj = HjBin~1)/n (j = 1, , m),

then hj will be solutions of Theorem 1.

3.2. Our next task is to prove (3.3). This will be achieved by proving

subsequent five lemmas. We start with the following

LEMMA 2. Let R be an n-sheeted disc and f be any non-zero function

in H"(R). Set

Ε, = π({branch points of R} U ( ϋ £(/>)) U Z(g) U Z{f)\

and

Οαβ(ζ) = A(fgtya-—tyA (a, β = 1, . , m) .
\ dz / /

Then the following two inequalities are valid on D\Ef:

(3.8)

and

(3.9) i - G a

Proof. We will prove in the case when / = 1. If we set ω = Σ^ι |/^ | 2 ,

then we have

92 , d
— Ψρ = - 5 -

dzdz dz Idz

d ) J — go) 2 ω
dz

dz dzdz

d ^ d
dz Μ dz

d= ω

dzdz dz dzdz

Since |ψ ; | < 1, ω > \f3f and ω > \gf, we have

d
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2 Σ
dzn

and

Hence we obtain

_d_
dz dzi + Σ

3=1
4-ΑΥ'"-

dz

By the Schwarz inequality, we obtain (3.8). Similarly we have

d
dz° Ύ" dz

<2

< 2

ω
-1/2

-g jLf
dz'1

< 4
d

Σ -ίΨ^Ϊ
and

° f\\ ° e
dz I I dz ω

Hence we obtain

d

dz'
ι/,ι-ΐ/2)2

< 10(m + l)(f; A-f, il"1 +

ω

Therefore (3.9) holds.

We next consider the case when / may not be 1. Observe that
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is independent of /. Based upon this fact the above proof for / = 1 also

works for the general /. Namely, we may replace f3 and g by ffj and fg

in (3.8) and (3.9) established for / = 1. •

3.3. Our second lemma is the following which will be used in the

proof of our third lemma: Lemma 4:

LEMMA 3. Let R be an n-sheeted disc. For any f in H°°(R) and any

a in D, there exists a constant c such that, in some neighborhood of a

except for a in D,

(3.10)

and

(3.11)

Proof We may assume that a = 0. There exists a positive number

ρ satisfying the following three properties:

( a ) components {Rt} of π~\{\ζ\< ρ}) are mutually disjoint;

( b ) each component Rt contains at most one branch point above 0;

( c ) in each component JR* the function f does not vanish except for

a point above 0.
The function / in the component Rt is represented as follows:

(3.12) f(z) = Σ -
k>0

where ν is the sheet number of ί?έ. We suppose that c f e =

and ck Φ 0. We obtain

(3.13) 4
αζ

We consider in the case when /(0) Φ 0. For some neighborhood of 0

we have

and

dz

d f(z) 2

< C\z\*»-1

dz
-' < C\zf iK'-n
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We consider in the case when /(0) = 0. For some neighborhood of 0

we have

d
'dz''

< Ο\ζ κ'"-'

and

d

dz
1/(2) I'1 < < C\z\l'n-'1.

Therefore we obtain (3.10) and (3.11). •
3.4. Our third lemma is the following which will be used in Lemma

6 below (cf. [Ga, ρ . 327]).

LEMMA 4. Let R be an n-sheeted disc. For a non-zero f in H"(R)

which does not vanishes on dR the measure

(3.14)

is a Carleson measure on D with Carleson norm at most K\\f\\w9 where Κ

is some absolute constant.

Proof. Since

we have

Let

^({branch points of R) U Z(fj) U {0} = {α0 = 0, ο,,

Δ, = {\ζ - as\ < ε) (j = 0, • , Ν) and Όε = D\{j Δ,.
Ν

U
.7=0

For sufficiently small ε > 0, it holds that zf0, , ΔΝ are mutually disjoint

and each Δ} is contained in D. By Green's formula,

ίί JA(\f\)log-L-dxdy = ί flog-L. J-AQ/D - A(|/|)J-logJL)de.
JJD* \ζ\ JdDs I \ζ\ dn dn \ζ\)

From Lemma 3 and |3/9η|/|| < \(dldz)f\ it follows that
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JA(|/|)log-L < C\z - o,|"-*log-L

on Aj and

on ddj. By making ε—>0, we obtain

(3.15) ff JA(\f\)log-Ldxdy = f {Α(|/|) - A(\f\)(O)}ds .

Hence we have

(3.16) if A(M^!_)lo gl^<2,||/|U.
JJn \ I/) / \Ζ\

Let S = {reie\ I - h < r < 1,\θ - θο\< h} in D. We may assume t h a t

h < 1/2. Let

ζ0 = (1 - h)eie° and w; = w(z) = (ζ - ζο)/(1 - ζοζ).

We set ̂  = u + /ΐλ For any ζ in S we have

and

]og-i- < 2(1 - I*|2) = 2(1 -

< 2eh(l - \wf) < (2ch)log-^—
\w\

where c is some absolute constant. By the linear transformation w = w(z),

the n-sheeted disc (R, D, π) is transformed into an n-sheeted disc (i?0, D, ττ0).

Let

fo(w) = f((w + 2b)/(l + zow)).

The function fQ is holomorphic on i?0 and satisfies \\fo\\o. — \\f\\oo- By (3.16),

we have

ff A(M^fL)logJ_dxdy= ff
JJs \ I/I / |ζ| JJ

) l o g d x d y f f A ( ) l o g
I/I / |ζ| JJ«<« V |/ol / \ζ\

2ch[\ A(M^pL)logJ-dudv<4nch\\f0\U
JJD \ \ft\ ) \w\

D
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3.5. The following lemma will be also used in the final Lemma 6.

We denote as usually by C^(fi) the class of all infinitely differentiable

functions on the region Ω with compact supports in Ω. Let φ satisfy the

following properties: φ e CQ(D), φ>0 and (pdxdy 1. Let ψε = ε~2φ(ε~1ζ).

We denote by * the convolution operation.

LEMMA 5. Let G = Gaj3 in Lemma 2 and ρ be in C%(D).

(1) The following relation holds:

(3.17) -^-((Gp) * φ) =
Ζdz ι \dz

(2) If ε tends to zero, then the following two integrals converge to

zero:

(3.18) f f \((Gp) * Ψεγ - (GpY\log-Ldxdy
JJD \Ζ\

and

(3.19) 11 I—(Gp) ι * φε — —(Gp) log—dxdy .

Proof By Lemmas 2 and 3 we see that functions Gp and d/dz(Gp)

are integrable on C. Hence two functions of (3.17) are infinitely differ-

entiable on C. Give any τ in Cj°(C). By virtue of integration by parts

and the Fubini theorem we have

ff —((Gp)*cp)rdxdy= - ff ((Gp) * (p)^-zdxdy
JJC dz J J C dz

(3.20)

We note that supp(G<o( •)?"(• + ζ)) c D. We make use of the proof of

Lemma 4 for Ε, = {α0, , αΝ}. By Green's formula we have

(3.21)

f (GP)(z)z(z + Qds = ff -%-(βρ){ζ)τ{ζ + Qdz A dz
J dD£ JjDe dZ

+ if (GP)(z)-H-t(z + Qdz Λ dz .

By Lemmas 2 and 3, if ε tends to zero, then the left hand side of (3.21)

converges to zero. Hence by tracing identities of (3.20) reversely we see
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ίίο
Therefore (1) holds.

Let Δ(α; δ) = {ζ e C: \ζ - α\ < δ}. For ζ e C, let

4 = {ζζΔ(0;δ):\ζ\<\ζ-ζ\} and Α2 = {ze Δ(0;δ):\ζ\> \z - ζ\}.

Since Gp is square integrable over C by Lemma 3, if we fix δ and make

ε tend to zero, then the integral of (3.18) over Ό\Δ(0;δ) converges to zero.

We have \z - ζ\2/η~2 < \z\2/n~2 for ζ in Δ, c J(0; δ). Also we have I*)-1 <

\ζ - ζΙ"1 for ζ in zf2 c Λ(ζ; 3). Hence

(3.22) ί ί \ζ - ζ\2/η~2 log — dxdy < 2 ί ί |^|2^-2 log —dxrf^ .
JJj(O;<5) |2J| JJj(O;S) |2|

We will prove that if D is replaced by Δ(Ο;δ) in the integral of (3.18),

then it can be made arbitrarily small uniformly with respect to e > 0 by

making δ—>0. We have

if \((Gp) * φ)2 - (Gp)2\log-±-dxdy < f f \(Gp) * cp£\
2log-*-dxdy

+ ff \Gpflog±-dxdy.
JJj(0;d) \Ζ\

We will evaluate the first term on the right hand side of the above.

The second term will be evaluated similarly and actually more easily.

By the Schwarz inequality we have

if iff \(GP)(z - Q\v>t(Qdtdv}\og^Ldxdy
JJj(0;5) UJC J \Ζ\

< if {ff \(GP)(z - ζ)\1φΧζ)άξάν)ΐο§-\άχάγ

< ff {ff \(GP)(z - Qtlog-Ldxdy}9t(Q<%dv.

By using Lemmas 2, 3 and (3.22), consequently, the last term of the above

can be made arbitrarily small by making δ —• 0. This completes the proof

for the assertion concerning (3.18). The assertion concerning (3.19) can

be proved similarly. •

3.6. We are now in the stage to give solutions of the 3-problem (3.5).

We state this in Lemma 6.
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LEMMA 6. Let R be an n-sheeted disc. For a non-zero f in H°°(R)

which does not vanish on dR let G •= Ga^ in Lemma 2.

(1) The measures \G\2log(l/\z\)dxdy and \dG/dz\log(ll\z\)dxdy are

Craleson measures on D with Carleson norm Ci.

(2) There exists a function b continuous on D and smooth on D\Ef

such that

(3.22) A f t = G
αΖ

on D\Ef and that

(3.24) lim \b(z)\ < C2.

Here C = max(Cj, C2) is some constant depending only on Σ™=ι II/30IL and m.

Proof. By Lemmas 2 and 4 we obtain (1). We denote by ct some con-

stant depending only on Σ?α1 11/50IL and m. Take a number 0 < s < 1 such

that Ef C {\ζ\ < s}. Let rk = s + (*/8)(1 - s) (A = 1, , 7). We define ρ in

CO°°([O, οο)) such that 0 < ρ < 1, ρ(0 = 1 (0 < t < r0), /ο(ί) = 0 (r3 < t < οο)

and \{dldt)p\ < 16(1 - s)"1. We set ρ(ζ) = (̂1̂ 1) for any 2 in C. For

ε < (1/8) (1 - s) we set

(3.25) Ge = (Gp) * φε + G(l - ρ),

where ?̂e is defined in 3.5. Hence G£ e C^iD). We will prove that if G

is replaced by Gs and is sufficiently small, then Ge satisfies (1). Let

S = {rei<?: 1 - h < r < 1, \θ - θο\ < h}

and denote h by l(S). We have

ff \G,\Hog-]-dxdy<2\\ KGp)*«>.piog-l-dxrfy

+ 2ff |G(l-^) | 2 log-A-rf^.
JJs \ζ\

Since (Ĝ o) * φε — 0 on {|«| > r5}, we may suppose that l(S) > 1 — r5. From

Lemma 5 it follows that, for sufficiently small ε > 0,

\\(Gp) * ωε\
2 — \Gpf\log—dxdy < 1 — r5.

^ ο \Ζ\

Therefore
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if \(Gp) * ̂ e|
2log-Ldxdy < f f \Gp?log-±-dxdy + 1 - r5

JJs \ζ\ JJs \ζ\

< CJ(S) + l(S) < (Q + l)l(S).

Next we will estimate each term on the right hand side of the following

expression:

dz dz dz

From the definition of ρ it follows that

\og-Ldxdy < 2l(S)
dz

d
\og{llt)dt

Jol dt

< 4 162(1 - s)-2l(S) Γ (1 - t)dt = 88/(S).

By (1) and the Schwarz inequality, we have

(3.26)
dz'

log—dxdy < cJ(S).

From Lemma 5 (1), (1) and (3.26) it follows that for sufficiently small ε > 0

1
(3.27)

dz
log—dxdy < c2l(S).

\ζ\

Consequently, if G is replaced by G£ and ε is sufficiently small, then two

measures of (1) are Carleson measures whose Carleson norms are dominated

by c3. By Wolffs Theorem ([Ga, p. 322]), there exists a function be con-

tinuous on D and smooth on D such that

(3.28)

on D and

(3.29)

Let

— 6. = Ge

dz

||6.|| = sup|6.

όε(ζ) = 1 f f ΙΆάξάη
π JJD Γ — ζ

. i f f οω-iw,.
7Γ JJz> ζ — Ζ

From Lemma 3 it follows that Ge and G are continuous on C and G£

converges to G uniformly on the boundary 3D = {\ζ\ = 1} as ε tends to
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zero because for any ζ in dD we have

\GXz) - G(z)\ < 1 ί ί \(PG) * φε - PG\ l άξάη
π JJD | ζ — ζ\

8 CC
< — ( 1 — s)" 1 \(pG) * <ρε — ρΰ\άξάη .

π JJD

By the generalized Cauchy formula we have the following representation:

b£ = Ge + hs

where h£ is continuous on D and holomorphic on D. Take ε0 > 0 such

that \G — GJ < 1 on dD for 0 < ε < ε0. Since

we have

\h£ - hso\ < 2c, + 2

on 3D and hence on D by the maximum principle. Since a set of

{he: ε0 > ε > 0} is uniformly bounded on £>, by the normal family argu-

ment, some subsequence of {hUn} converges to some holomorphic function

hQ on D uniformly on any compact subset of D. If we set

b = G + h0,

then 6 is continuous on D and smooth on D\E such that

(3.30) -?-b^G
dz

on D\£J. Furthermore since

b = bso + G - G.e + Λο - Λεο,

we have

(3.31) Ifm 16(0) I < 3c4 + 3 . Π

3.7. Having finished the long preparation we now prove Theorem 1.

By Lemma 6, there exist functions 6^ (<*, β = 1, , m; A = 1, , ra — 1)

continuous on D and smooth on Z)\l? such that

(3.32) J U a % = G%
dz

on D\£J and
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(3.33) ma\b%(z)\ < Q
z-*dD

where Cx is some constant depending only on 27=III/JIU
 a n ( i m- If w e s e ^

Hj = gHs + Σ (bJt - bf,)f,

and

Η, = Β<-η"Ή, 0" = 1. ••-,»»),

then each /ij is bounded on R, holomorphic on ϋ\π~ι(Ε) and satisfies

(3.34) Um\hj(p)\<C

where C is some constant depending only on 2]7=I | | /JIU
 m a n ( * ^ An

isolated singular point is removable for bounded holomorphic functions.

Hence each ha is holomorphic on R. By the maximum principle, from

(3.34) it follows that \\hj\U < C. Since

we have
m

§ 4. Proof of Theorem 2

4.1. We will give two lemmas before proving Theorem 2. Let Cn be

the n-dimensional complex Cartesian space, (Ζ, W) the inner product on

Cn and | |Ζ|| = V(Z, Ζ). Our first lemma is only elementary which will be

used in the second essential lemma given later:

LEMMA 7. There exists a finite set (Zu -,Zt} in Cn such that \\Zt\\

= 1 (ί = 1, , t) and that

(4.1) Co = i n f \ ± f] (Wt, Zk)
 2: ||Wt\\ = 1 (i = 1, , ή)\ > 0.

Proo/. For W in Cn, we let

ΡΓ^ = {Ze CM;(Z, W) = 0}.

For each (Wu , VFJ which is not the origin of (Cn)n, take a point Ζ in
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Cn such that | |Ζ|| = 1 and Ζ does not belong to [J^.Wf. If we fix Ζ,

then there exists a neighborhood U of (Wl9 , Wn) such that

Π ( ζ , Ο = £ 0

for any (&. ., ζη) in [7. Since

{(Wl9 , Ww) e (C»)"; \\Wj\\ = 1 (/ = 1, , *)}

is compact, we can select a required {Zl9 , ZJ. Π

4.2. We will prove the following lemma which reduces an argument

for an τι-sheeted disc to that for the unit disc.

LEMMA 8. For any F19 '-',Fm (m>ri) in H°°(R), there exist 6tj in

H°°(D) and zt in H°°(R) (ί = 1, , Τ; j = 1, , m) such that

(4.2) | | Μ ~ < α and \\Ti\l < C, (i = 1, , Τ; j = 1, , m)

and that

νι Τ m Τ / m

(4.3) Σ Σ faiFj = ΣΣ\^f > £«Ρ(Σ\Ρ}\

where Τ is a positive integer depending only on m and η, CQ a constant

depending only on η and C1 a constant depending only on η and 2?=ι IIF̂ IU-

Proof. Take Zfc = (zkU , zkn) (k = 1, , t) for which Lemma 7 holds.

We get the following inequality: for any Wl9 , Wn in Cn

(4.4) I

Let (R, π9 D) be an n-sheeted disc. For any / in H°°(R) we have P(f) e

H°°(D) and P(f)lfe H^iR). Let jl9 -,jn be an increasing sequence defined

by terms belonging to {1, , ή\. We set

and

If we set
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then we have

Σ π (wt,
i l

Ζ-Λ ΔΛ '

From

it follows that

(4.5)

Σ ll^ll2 =
i l

? 1 A l

COP (± \Fj) .

Functions ^^ and r4 (i = 1, , Γ; j = 1, , m) can be defined as follows.
There is a positive integer Γ depending on m and ft such that there exists
a bijection ν of

Ρ , J) : 1 < k < t, 1 < Λ < < j n < m)

onto {1, , Τ}. Set

For any (ij) (ί = 1, , Τ; j = 1, , τη) there exists a unique (&, J) such
that / = v(k, J). If the integer j does not belong to J, then we set

eiS = ο .

If the integer j belongs to J, that is 7 = j^, then we set

Hence we have

m ϊ'

Σ Σ
j l ί 1

( 4 6 )

= ΣΣΣ
t

= Σ Σ Σ
j k i j j

j = Σ
J

= ΣΣΣ
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By the similar argument and \\Zk\\ = 1 (k = 1, , t) we obtain

(4.7) Σ t \0? = Σ Σ ΣΣΣΣ

The relation (4.5) with the aid of (4.6), (4.7) and

< Σ

implies (4.2) and (4.3). Π

4.3. We are now in the position to prove Theorem 2. We may assume

that m> η. If not, then we set fm+l = = fn = fm. For Fj = f} (j = 1,

• ., m) we take θίό in H°°(D) and vt in Η°°(Ε) (i = 1, , T;j = 1, , m)

determined in Lemma 8. Since

if we set

_ \dijf a n d -ψ1^ = d,L

1 J=l ^

then

and

ψ4ί is smooth on D and \ψυ\ < C0~
1/2.

By the proof of Theorem 2.3 of [Ga, p. 329], there exist functions bijiaP

(i, a = 1, , Τ; j , β = 1, , m) continuous on D and smooth on D such

that

(4.8) 1 ^ , ( ?)ψ

οζ οζ

and

(4.9) II&^U = sup{|&ij)e,(2)|: |* | - 1} < C

where C is some constant depending on m and η. If we set

(4.10) hts = Pigffv + Σ Σ (6ii,.^ - ..^.ϋ)τ.Λ ,
l β 1
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then

and

Α Λ ί ί = ο
dz

except for branch points. Since any hi3 is smooth all over R, htj is holo-

morphic on R. The functions

τ
hj = ΣΛ^τ* 0" = 1, ,/η)

i = l

are the required. Π

§ 5. Proof of Theorem 3

5.1. In this section we prove Theorem 3. The function g satisfies

the following equation:

(5.1) g* + axg"-1 + + an_xg + αη = 0 ,

where each ak belongs to H°°(D). Let

(5.2) Φ(Χ) = Χη + α,(ζ)Χ^ + + αη_,(ζ)Χ + αη(«).

If π~ι{ζ) = {ρ,ρ1? .,ρη_!}, then we have

Φ(Χ) = (X - g(p))(X - g(Pi))- "(X- g(pn-d).

Therefore we have

(5.3) *.0(g(p)) = C(n, k) Σ nf(giP)-g(Pi>))
dX* i< <i * 1

where C(n, k) is some constant depending only on η and k. Since any

zero of the Blaschke product Β(ζ) is simple, Β(ζ) is univalent about each

zero point. Since the surface R is defined by ζ = Β(ζ)ί/η, for any branch

point ρ0 there exist a chart {£/, ψ) such that <p(U) = {|w| < 1}, Βι/η οφ-\ιυ)

= w, φ(Ρο) = 0 and (^(p)n = ^ ( A ) W (i = 1, , η - 1) if ΤΓ"1^) C ?7. A

function gcxp-^w) is bounded holomorphic on {|Μ>|< 1}. By the Schwarz

lemma, there exists a constant Cx such that

\go9-\w) -gocp-\G)\< C,\w\.
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Hence we have, for ρ and pi on π'\ζ) C U,

\g(p) ~ g(Pi)\ < \Β°ψ

Since f u n c t i o n s of (5.3) b e l o n g t o Η~(Κ), t h e r e exist slt •••,«„_! in i?~(i?)

s u c h t h a t

dXk
= s. R<«-*>/» (k = 1, - , η - 1 ) .

Hence we have

(5.4: 71! (n-j)\

By the maximum principle, each sh satisfies (2.6). By induction we will

prove the following equations:

(5.5 : k)

fa - *>» r + τ? ( l t " 1 " / ) 1 g - ^
(rc — A)! i=i (η — k —j)\

( - l)\k - 1)!ο,,

where sw_ >̂fc are elements of Η°°(Κ). When k — 1, by (5.1) we see that

(5.5 :1) holds. Suppose that (5.5 : k) holds. By (5.4 : k) and (5.5 : A), we

have (5.5 : A + 1). Consequently we have

(5.5 : ή) (η — l ) !g n = 2 sn-j,n-igjBin~3)/n + (— l)w(ft — l)!^ w

Since αη = (— 1)ηΡ(^"), Theorem 3 follows. ϋ

§ 6. Proof of Theorem 4

6.1. For the proof of Theorem 4 we need the following key lemma:

LEMMA 9. There exists a positive integer valued function m = m(a)

defined on the open interval (0, 1) such that

(6.1)

on D and that

(6.2)

ζ — a

1 — αζ
I*

lim am = 1 .

2 — α

1 — αζ
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Proof. Let

(6.3) Κα = {2\(ζ - α)/(1 - αζ)\*

On D\Ka the inequality appearing in (6.1) holds for any positive integer

m. Take a number c such that a < c < 1 and (c — a) 1(1 — ac) = 2~1/η.

We have

1 - a = (1 - c) < 2(1 - 2~1/η)-1(1 - c).

Since

on Κα, if we select λ — λ(ά) such that

(6.4)

and

(6.5)

then we have, on

ζ — a

2"' < (1/2)(1 - 2-1'η)(1 - α)

lim arU = 1,
a-l

(6.6)

We set

where d =

1 -
- a) < 1 - c < |1 - ζ\.

λ = 1 + integral part of — ( d log(l — a) + C2)

)" ! and C2 = (Iog2)-1log(2"1(l - 2-1/71)). Since

lim(log(l - a))(log a) = 0 ,

the function Λ = ^(α) satisfies (6.4) and (6.5) so that m = ηλ(α) satisfies

(6.1) and (6.2). •

6.2. We now prove Theorem 4. Since Κα of (6.3) is a compact subset

of D, for any a, 0 < a < 1, by Lemma 9, there exist finite Blaschke

products Βα and Ga satisfying the following three properties:

( 1 ) Ga has a single simple zero at a

( 2 ) any zero of Βα is simple and contained in a sufficiently small

neighborhood of a;

( 3 ) £ α and Ga satisfy
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(6.7) IΒα(ζ) I < 3{| 1 - ζ| + | Βα(ζ) Ga(z)n 1}

on D and

(6.8) lim ΒΜ = lim Go(0) = 1.
α-»1 α-»1

By induction we will select a positive increasing sequence {αΝ} con-

verging to 1 such that if we set

(6.9) ΒΝ = Π Bak and G* = ft <?α*,
fc = l fc = l

then J5JV and GJV satisfy the following two properties:

(a) Any zero of ΒΝ is simple;

( β) JB^ and G^ satisfy

(6.10) | Β ^ ) | < (4 - l/iV){|l - ζ\ + \BN(z)GN(z)n\

on D and

(6.11) | ^ ( 0 ) | > 1/2,

We choose an arbitrary αχ in (0., 1) such that |Βαι(0)|, |G^(0)| > 1/2. This

determines Β1 and Gu Suppose that GN^ and BN_t are constructed. We

set c = 3(4 - 1/iV)"1. Let

Since ΚΌ{0} is a compact subset of D, by (6.8), if a is sufficiently close

to 1, then Ba(z)Ga(z) is close to 1 uniformly on ΚU{0}. Since max(|l — ζ|;

zeK}> 0, we can select α in (0,1) such that if we set

ΒΜ = ΒΝ_,(ζ)Βα{ζ) and GN(z) = G^^GM ,

then the inequality (6.10) holds on Κ and (6.11) and (a) are satisfied. For

any ζ in D\Κ we have

|Β*(*)| = \ΒΝΛζ)Βα(ζ)\ < \Βα(ζ)\ <

< (4 - l/iV){|l - ζ\ + \BN(z)GN{zr\},

since \BN(z)GN(z)n\ > c\Ba(z)Ga{z)n\. If we set

Β(ζ) = lim J3tf(2:) and G^) = lim GN(z),

then Β and G are exactly what we required. •
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Appendix

A.I. We will prove (1.5). Suppose w(R) < οο, otherwise the assertion

is trivial. Take an arbitrary /i, - - -,fm and g in ί/°°(Ζ)) with (1.1). Viewing

these as in Η~(Κ) there exist m functions hu , hm in H°°(R) with

2-ι
. 7 = 1

on R. By taking the means of the above for η points pk in π~\ζ) we

obtain

on JD where A(hx), , A(/?,m) belong to H°°(D). Hence we deduce (1.5). •

Α.2. We will prove (1.6). Take an arbitrary fu •••,/m and g in

H°°(R) with (1.1). Let (D, R, τ) be the universal covering surface of R.

Then /jor, . . . , / w o r and ^ ο Γ belong to H°°(D) with (1.1). Hence there

exist m functions Λ1? , hm in H°°(D) with

on D. Take the Forelli projection «F: ii°°(D) -> jf/°°(jR) (see [Fo], [F]) of the

both sides of the above using the additivity and the if°°(l?)-homogeneity

of J5". Then we obtain

on i? where ^(ΛΟ, -^(hj belong to #~(#). Hence we see that w(R)

< w(D). This with (1.5) implies (1.6). D

REFERENCES

[Al] Ailing, Ν., A proof of the corona conjecture for finite open Riemann surfaces,
Bull. Amer. Math. Soc, 70 (1964), 110-112.

[Α2] , Extensions of meromorphic function rings over non-compact Riemann sur-
faces. I, Math. Ζ., 89 (1965), 273-299.

[Bl] Behrens, Μ., The corona conjecture for a class of infinitely connected domains,
Bull. Amer. Math. Soc, 76 (1970), 387-391.

[Β2] , The maximal ideal space of algebras of bounded analytic functions on
infinitely connected domains, Trans. Amer. Math. Soc, 161 (1971), 359-379.

[BR] Berndtsson, Β. and Τ. Ransford, Analytic multifunctions, the 9-equation and a
proof of the corona theorem, Pacific J. Math., 124 (1986), 57-72.



200 MASARU HARA

[Cl] Carleson, L., Interpolations by bounded analytic functions and the corona prob-
lem, Ann. of Math., 76 (1962), 547-559.

[C2] , On Η°° in multiply connected domains, Conference on harmonic analysis
in honor of Antoni Zygmund, Vol II, Beckner W., et al, Wadsworth, 1983, 349-
372.

[Ce] Cegrell, U., A generalization of the corona theorem in the unit disc, Math. Ζ.,
203 (1990), 255-261.

[D] Deeb, W., A class of infinitely connected domains and the corona, Trans. Amer.
Math. Soc, 231 (1977), 101-106.

[DW1 Deeb, W. and D. Wilken, J-domains and the corona, Trans. Amer. Math. Soc,
231 (1977), 107-115.

[EMI] Earle, C. and A. Marden, Projections to automorphic functions, Proc. Amer.
Math. Soc, 19 (1968), 274-278.

[ΕΜ2] , On Poincare series with application to Η? spaces on bordered Riemann
surfaces, Illinois J. Math., 13 (1969), 202-219.

[F] Fisher, S., Function Theory on Planar Domains, Wiley-Interscience, 1983.
[Fo] Forelli, F., Bounded holomorphic functions and projections, Illinois J. Math.,

10 (1966), 367-380.
[Gl] Gamelin, Τ., Localization of the corona problem, Pacific J. Math., 34 (1970),

73-81.
[G2] , Uniform Algebras and Jensen Measures, London Math. Soc Lecture Note

Series, 32, 1978.
[G3] , Wolff's proof of the corona problem, Israel J. Math., 37 (1980), 113-119.
[Ga] Garnett, J., Bounded Analytic Functions, Academic Press, 1981.
[GJ1 Garnett, J. and P. Jones, The corona theorem for Denjoy domains, Acta Math.,

155 (1985), 27-40.
[GM] Gorkin, P. and R. Mortini, F-ideals in QAB J. London Math. Soc, (2) 37 (1988),

509-519.
[HI] Hara, Μ., The corona problem on 2-sheeted disks, Proc. Japan Acad., 58 (1982),

256-257.
[Η2] , On Camelin constants, Pacific J. Math., 110 (1984), 77-81.
[ΗΝ] Hara, Μ. and Μ. Nakai, Corona theorem with bounds for finitely sheeted disks,

Tohoku Math. J., 37 (1985), 225-240.
[Ha] Hatori, Ο., On Τ. Wolff's problem (in Japanese), The Scientific Researches Math.

(The School of Education, Waseda Univ.), 33 (1984), 41-49.
[JM] Jones, P. and D. Marshall, Critical points of Green's function, harmonic mea-

sures, and the corona problem, Ark. Math., 23 (1985), 281-314.
[Κ] Koosis, P., Introduction to HP Spaces, London Math. Soc, Lecture Note Series

40, 1980.
[Μ] Moore, C, The corona theorem for domains whose boundary lies in a smooth

curve, Proc Amer. Math. Soc, 100 (1987), 266-270.
[Mo] Mortini, R., Corona theorems for subalgebras of Η°° Michigan Math. J., 36

(1989), 193-202.
[Nl] Nakai, Μ., Corona problem for Riemann surfaces of Parreau-Widom type, Pa-

cific J. Math., 103 (1982), 103-109.
[Ν2] , The corona problem on finitely sheeted covering surfaces, Nagoya Math. J.,

92 (1983), 163-173.
[Na] Narita, J., A remark on the corona problem for plane domains, J. Math. Kyoto

Univ., 25 (1985), 293-298.
[R] Rao, Κ., On a generalized corona problem, J. Analyse Math., 18 (1967), 277-278.
[SN] Sario, L. and Μ. Nakai, Classification Theory of Riemann Surfaces, Berlin-



IDEALS OP BOUNDED HOLOMORPHIC FUNCTIONS 201

Heidelberg-New York: Springer, 1970.
[SI] Slodkowski, Ζ., An analytic set-valued selection and its applications to the corona

theorem, to polynomical hulls and joint spectra, Trans. Amer. Math. Soc, 294
(1986), 367-377.

[S2] , On bounded analytic functions in finitely connected domains, Trans. Amer.
Math. Soc, 300 (1987), 721-736.

[Stl] Stout, Ε., Two theorems concerning functions holomorphic on multiply connected
domains, Bull. Amer. Math. Soc, 69 (1963), 527-530.

[St2] , Some theorems on bounded holomorphic functions, Bull. Amer. Math. Soc,
70 (1964), 419-421.

[St3] , Bounded holomorphic functions on finite Riemann surfaces, Trans. Amer.
Math. Soc, 120 (1965), 255-285.

[Ζ] Zalcman, L., Bounded analytic functions on domains of infinite connectivity,
Trans. Amer. Math. Soc, 144 (1969), 241-269.

Department of Mathematics
Meijo University
Shiogamaguchi, Tenpaku, Nagoya Jf68
Japan




