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§ 0. Introduction

Since M. S. Baouendi and C. Goulaouic ([2], [3]) defined partial dif-

ferential operators of Fuchs type and proved theorems of Cauchy-

Kowalevskaya type and Holmgren type, many authors have investigated

operators of Fuchs type in various categories, that is, real-analytic, C°°

and so on. (Cf. [1], [4], [6], [8], [9], [11], [12], [17], [18], [19], [20], [21] etc.)

DEFINITION 0.1. A partial differential operator P is called of Fuchs

type (or Fuchsian) with weight m — k (0 < k < m), when P has the follow-

ing form:

(0.1) P =

Σ

where a3(x), ajf(X(t, x) are smooth, that is, real-analytic, C°° and so on.

(Notations are given later.)

Remark 0.2. Note that the operator P is Fuchsian with weight m — k

if and only if tm-kp is Fuchsian with weight 0.

It has become known that Fuchsian operators have various "good"

properties. Among them, we are concerned with the following unique-

ness property. (See also [17].)

THEOREM 0.3 ([2]). If P is Fuchsian with real-analytic coefficients, then

there exists a positive integer N depending on P such that the following

holds:
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If a CN function u near (0, 0) satisfies u = 0 for t < 0 α îd P& = 0

near (0, 0), ίΛera u = 0 near (0, 0).

In this article, we study whether or not non-Fuchsian operators

have such uniqueness property.

DEFINITION 0.4. A distribution u near (0, 0) is called a null-solution

for P at (0, 0), if

( i ) Pu = 0 in a neighborhood of (0, 0),

(ii) (0, 0) e supp u c {(*, x); t > 0}.

When u is of CN class near (0, 0) (0 < N < oo), it is called a CN null-

solution.

By this definition, our problem is whether P has the following prop-

erty or not.

"For any positive integer N, there exists a CN null-solution for P

at (0, 0)."

Of course, this is weaker than that there exists a C°° null-solution.

Note that if P has this property, then tpP also has this property for

any integer p. Hence, we give the following definition.

DEFINITION 0.5. A partial differential operator P is called essentially

Fuchsian if tpP is Fuchsian with weight 0 for some integer p. If P is

not essentially Fuchsian, then P is called essentially non-Fuchsian.

For many operators whose principal part is essentially non-Fuchsian,

C°° null-solutions have been constructed by many authors. (Here, we

refer only [15] and [16]. See the references of these papers.) As for the

essentially non-Fuchsian operators whose principal part is essentially

Fuchsian, there seems to be no reference. In this article, in order to

obtain rough image of such operators, we investigate the existence and

non-existence of null-solutions for operators including such operators,

assuming that the coefficients depend only on t.

We use the following notations:

R (resp. C, Z) denotes the set of the real numbers (resp. the complex

numbers, the integers);

(t, x) = (t, xu - - , xn) are the variables in Rn+1;

dt x ~~ x v Xn X}~~ dXj

max A (resp. min A) denotes the maximum (resp. minimum) of the
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elements of A;

oτdζf(ξ) denotes the order of a polynomial f(ξ) with respect to ξ;

Re τ denotes the real part of τ e C;

& (resp. $') denotes the set of the distributions (resp. the distribu-

tions with compact support);

supp u denotes the support of ue&.

In Section 1, we divide the essentially non-Fuchsian operators with

^-dependent coefficients into four types and show the existence of null-

solutions for three of the types. (Theorem A) As for first order oper-

ators, we can give another result. This is given in Section 2 as Theorem

B. We also give sufficient conditions for the non-existence of C1 null-

solutions to first order operators as Theorem C. In Section 3, we con-

sider some second order operators, which are excluded from Theorem A

and have an essentially Fuchsian principal part. Theorem D gives suffi-

cient conditions for the non-existence of CN null-solutions. In order to

prove Theorem A, we need some results on ordinary differential operators.

We review them in Section 4. In Sections 5 and 6, we prove Theorems

A, B and C. In the proof of Theorem D, an energy estimate plays an

important role. This estimate is given in Section 7. In Section 8, we

prove Theorem D. In Appendix, we show the C°° well-posedness of the

flat Cauchy problem for the operators treated in Theorems C and D.

§ 1. Existence of null-solutions

We consider the following operator on [0, T] X Rn (T> 0):

m - l

(1.1) P = p(t; dt, dx) = t'dT + Σ aj(t; 3J3/,

where A: is a positive integer and aβ\ ξ) = Σ\«\<m-J aj,*(t)ξa> aj,a € C°°[0, T].

Put am(t; ξ) = t\

For j — 0, 1, , m, we put

r(j) = max {reZ; 0 < Γ < Λ ; , d\aά (0; ξ) = 0 for 0 < i < r - 1}.

If we put άj(t; ξ) = t~rU)aό(t\ ξ)9 then the coefficients of aj also belong

to C~[0, T], Put d(j) = ord, ά/0; ξ).

We draw a Newton polygon using the points (j, r(j) — j) (j = 0, 1,

• , m) as follows:

DEFINITION 1.1. The Newton polygon Δ(P) is the convex hull of the

set UΓ-o {(u, v);0<u< j , r(j) -j< υ}. (Fig. 0) Let 0 < μγ < μ2 < . < μr
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Figure 0.

be the slopes of the non-vertical sides of Δ{P) and put S = {μu , μr},

S+ = {μ e S; μ > 0}. For μe S, let L(μ) be the side with the slope μ in-

cluding the both terminals and put V(μ) = {j e Z; 0 <j < m, (j, r(j) — j)

Remarks 1.2. (1) Let (Λ+, ^ ) (resp. ( *, />*)) be the right (resp. left)

terminal of L(μk) (k = 1, , r). If μk > 0, then * e V(μk) and if μx = 0,

then ;\+ e V(0). (Note that there hold jΐ = Λ~+1 (fe = 1, . . ., Γ — 1).)

(2) The operator P is essentially Fuchsian if and only if S = {0}

and d(j) = 0 for any e

In order to clarify the meaning of our results, we first give a con-

jecture.

CONJECTURE. // the principal part Pm of P is essentially non-Fuchsian,

then there exists a C°° null-solution for P at (0, 0).

If the coefficients of P are real-analytic, then this conjecture is valid.

([16, Theorem 1.8]) In Section 2, it is shown that if P is of first order,

then this conjecture is also valid. (Theorem B) Though it is important

to prove this conjecture in full generality, our present interest mainly

lies in the complementary case when Pm is essentially Fuchsian but P is

not. Theorem A in the following has less meaning when Pm is essen-

tially non-Fuchsian, though we do not assume that Pm is essentially

Fuchsian.

Now, we divide the essentially non-Fuchsian operators into two types.

Type ( I ) ; There exist μeS+ and j e V(μ) such that d(j) > 1.

Type (II); If μ e S+, then d(j) = 0 for any j e V(μ).

(Note that if S = {0}, then P is of type (II).)

Let P be of type (II). If μeS+, then άj(O;ξ) = άj are constants
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for j e V(μ). We put fμ(τ) = ^jev(μ) άjτj for μeS+ and divide the oper-

ators of type (II) into three types:

Type (Π-a); There exist μeS+ and a root τ0 of fμ(τ) = 0 such that

Re r0 > 0.

Type (Π-b); SaO and there exists e V(0) such that d(j) > 1.

Type (II-c); Otherwise. That is, (1) if μeS+ and fμ(τ) = 0, then

Re τ < 0, (2) if e V(0), then d(j) = 0.

Note that Type (Π-a) and Type (Π-b) may have an intersection.

Now, the following is the main theorem.

THEOREM A. Let P be an essentially non-Fuchsian operator given by

(1.1).

(1) // P is of type (I) or (Π-a), then there exists a C°° null-solution

for P at (0, 0).

(2) If P is of type (Π-b), then there exists a CN null-solution for P

at (0, 0) for any positive integer N.

COROLLARY 1.3. If P = p(t; dt, dx) is essentially non-Fuchsian and

p(t;dt,O) is essentially Fuchsian, then there exists a CN null-solution for

P at (0, 0) for any positive integer N.

Remarks 1.4. (1) It is expected that there exists a C°° null-solution

also in the case of Type (Π-b). The author, however, could not prove it.

The CN null-solution constructed in the proof of the theorem is not C°°.

It is an interesting question whether or not there exists an operator

which has a CN null-solution for any positive integer N but has no C°°

null-solutions.

(2) In the case of Type (II-c), there are both possibilities that P has

a CN null-solution and that P has no CN null-solution. As is already

stated, it is expected that if the principal part of P is essentially non-

Fuchsian, then there exists a C°° null-solution. In Sections 2 and 3, we

shall show the non-existence of CN null-solutions for some operators of

type (II-c) whose principal part is essentially Fuchsian.

EXAMPLE 1.5. The simplest example of an operator of type (II-c) is

P = t2dt - trdx + b ,

where r is a positive integer and b is a non-zero constant such that
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Re 6 > 0. If r = l (, that is, the principal part is essentially non-

Fuchsian,) then P has a C°° null-solution, while if r > 1 and Re 6 > 0,

then P has no C1 null-solutions. (See the next section.)

§2. First order operators

In this section, we consider the following first order operator:

(2.1) P = t'dt + Σ ^{t)dXj + b(t),
. 7 = 1

where α, (j = 1, ,ή), be C°°[0, Γ], * e Z and * > 1. Put

s(ΐ) = max {seZ; 0 < s < Λ;, 3Jα/0) = 0 for 1 < j < n, 0 < i < s - 1},

s(0) = max {seZ; 0 < s < K, dib(O) = 0 for 0 < i < s - 1}.

Note that P is essentially Fuchsian if and only if tz — 1 < s(0) and K — 1

< 5(1). The four types given in Section 1 is as follows. (Put b(t) =

Type (I) s(l) < s(0) and s(l) < K - 1,

Type (Π-a) s(0) < s(l), s(0) < A: - 1 and Re 6(0) < 0,

Type (Π-b) 5(1) = /c - 1 < s(0),

Type (II-c) s(0) < s(l), s(0) < A: - 1 and Re 6(0) > 0.

The next theorem shows that the conjecture given in Section 1 is

valid if P is of first order.

THEOREM B. If s(ϊ) < K — 1, then there exists a C°° null-solution for

P at (0, 0).

By Theorems A and B, the only possibility that a first order oper-

ator P given by (2.1) is essentially non-Fuchsian but has no C°° null-

solutions is the case when s(ΐ) > K — 1, s(0) < K — 1 and Re 6(0) > 0. If

s(ί) > K — 1, 5(0) < A: — 1, α̂  are real-valued and Re 6(0) > 0, then we can

really show the non-existence of C1 null-solutions. More strongly, we

have the following theorem.

THEOREM C. Consider the operator

(2.2) P = t% + t'Σ afa x)dXj + ri(t, x),
.7 = 1

where K, a e Z a n d άj (l<j < n), b e C~([0, Γ ] X R w )

Assume that
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(2.3) σ < a- 1,

(2.4) άj(t, x) (1 < j < ή) are real-valued ,

(2.5) Re 6(0, 0) > 0 .

If ueC'dO, T\\ &(Rn)) satisfies

(2.6) t"u(t, •) > 0 (t > + 0) in @'(Rn) for some My

(2.7) Pu = 0 in (0, To] X β0, w/iere JΓ0 > 0 α^d β0 is an open neighbor-

hood of x = 0,

then u — 0 in (0, TJ X Ωλ for some Tx > 0 ami some opezi neighborhood

Ωλ of x = 0.

Remark 2.1. Assume the same assumptions (2.3), (2.4) and (2.5). Then,

the flat Cauchy problem for P is C°° well-posed near (0, 0). (See Proposi-

tion A.I in Appendix.)

§ 3. Non-existence of null-solutions for a class of second order

operators

In this section, we show the non-existence of CN null-solutions for a

class of second order operators of type (II-c) with essentially Fuchsian

principal part. We consider the following operator in [0, ΓJ X R".

(3.1) P = r% - tpQ(t; dx) + t'b(t)dt + t«± φ)dxs + fd(t),
7 1=1

where a, β, γ9 p, q e Z and b, c5 (j = 1, , n), de C°°[0, T]. Since we can

increase β (resp. ϊ) if 6(0) = 0 (resp. d(0) = 0), we may assume that (i)

6(0) φ 0 or β > a, (ii) d(0) φ 0 or γ > a.

We assume the following five conditions:

(A-l) p > a - 2.

(A-2) Q(t; ξ) = ΣTj^i aJtk(t)ξ,ξ*> where aj)k e C~[0, T] and ajιk are real-

v a l u e d . F u r t h e r , t h e r e e x i s t s ε > 0 s u c h t h a t Q ( t ; ξ) > ε\ξ\2

for any (t;ξ)e\0,T] X Rw.

(A-3) P is essentially non-Fuchsian and of type (II).

(A-4) If μeS+ and fμ(τ) = 0, then Re τ < 0. If; e V(0), then d(j) = 0.

(A-5) 2q > p - 1 + min (0, (α + 7)12).

Remarks 3.1. (1) The condition (A-l) means that the principal part

of P is essentially Fuchsian. The condition (A-2) implies that P is

strictly hyperbolic in {t > 0}.
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(2) The conditions (A-3) and (A-4) imply that P is of type (II-c). In

fact, the difference between the conditions (A-3), (A-4) and the conditions

to be of type (II-c) is whether "Re τ < 0" or "Re τ < 0".

THEOREM D. If the above five conditions are satisfied, then there ex-

ists a positive integer N for which the following holds:

If ue C2((0, T] ^'(Rn)) satisfies that

1i) Pu = 0 in (0, To] X ΩQ, where To > 0 and QQ is an open neighbor-

hood of x = 0,

(ii) t-«u(t, •), t'N+1dtu(t, )->0 in &(Rn) (t j 0),

then u = 0 in (0, TJ X Qt for some TΊ > 0 ami some open neigh-

borhood Ωx of x = 0.

Remarks 3.2. (1) If p < a — 2 and (A-2) is satisfied, then P has a

C°° null-solution for arbitrary lower order terms. ([15])

(2) Under the same assumptions as in the theorem, the flat Cauchy

problem Pu = f is C°° well-posed in [0, Γ] x R". (See Proposition A.2 in

Appendix.)

In the rest of this section, we shall clarify the meaning of the con-

ditions (A-3) and (A-4). Put Po = tad\ + tβb(t)dt + t7d(t). Assume the con-

ditions (A-3) and (A-4). Then, there holds Δ{P) = J(PQ). There are three

possibilities about the shape of J(P0)

Case (1) a - 1 > β and r + 1 > j3. (Fig. 1)

Case (2) β - 1 > γ and a + ϊ > 2/3. (Fig. 2)

Case (3) a - 2 > r and a + T < 2/3. (Fig. 3)

(Note that Po is essentially Fuchsian if and only if/3 — 1 > a — 2 and

ϊ > a - 2.)

We can easily show the following lemma. (Cf. [13], see also the next

section.)

LEMMA 3.3. Po can be factored as

(3.2) Po = r-χtdt - Λ(t))(tdt - θ(t)),

where A and Θ have the following properties in each of the above three cases.

Case (1) Λ(t) = t"λ(t)9 where λ e Cf°°rac, ιc = a - β -1> Q and Re^(0)

<0. θeC?rac.

Here, C?r&c = {f(t) e C°°(0, Γ]; /(^) e C°°[0, T] /or some positive integer M}.

Case (2) ^(ί) = t"λ(t)y Θ(i) = Γ '0(J), w /iere ,̂ tf e Cf°°rac, K = a - β - 1

>p = β-γ-l>0, Re λ(0) < 0 and Re (9(0) < 0.
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α - 2

Figure 3.

Case (3) Λ(t) = t"λ(t), Θ(t) = ί-0(ί), w/iere Λ, 0 e C?rac, A: = (a - r - 2)/2

> 0 and Re Λ(0) < Re 0(0) < 0.

We shall use these factorization in Section 7.

§ 4. Review on ordinary differential operators with C°° coefficients

In this section, we consider an ordinary differential operator

m

(4.1) Q = ξ b}(t)d{,

where b} e C°°[0, T] and bm = V {K is a positive integer). We can define
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Λ bj(t)9 Δ(Q), S, S+, L(μ) and V(μ) in the same way as in Section 1.

We put

fμ(τ)= £ έ/OV for μeS+ and
jGV(μ)

Λ(τ)= Σ ^(0)τ(r - 1) (r - j + 1) (if 0 e S).
jev(o)

THEOREM 4.1. (1) // there exists μ e S+ and a root r0 of fμ(τ) — 0

such that Rer0 > 0, then there exists ve C°°[0, T] such that Qv = 0 and

3/u(0) = 0 for any non-negative integer j .

(2) Let N be an arbitrary positive integer. If 0 e S and there exists

a root r0 of fQ(τ) = 0 such that Rer0 > N, then there exists ve CN[0, T]

such that Qv = 0 and d{v(0) = 0 for any j < N.

Proof. First, we consider formal solutions. As is well-known, the

equation Qv = 0 has formal solutions of the form vA = eR{t)tpw(t), where

( i ) R(t) is a polynomial of t~i/M, with no constant term, for a

positive integer M,

(π) ? e C ,

(iii) w(£) is a formal power series of tι/M such that w(0) Φ 0.

(The equation may also have formal solutions with logarithmic terms,

but we do not need such solutions.)

The leading term of R(t) and the value of p when R(t) = 0 are

calculated easily from Δ(Q) as follows. (See [5], [7], [10] etc.)

(I) For any μ e S+ and any non-zero root r0 of fμ(τ) = 0, there exists

a formal solution z;Λ such that R(t) = —(τolμ)t-μ + (higher order terms).

(II) Assume that 0 e S. If τx satisfies ffa) = 0 and ffa + k) Φ 0 for

k = 1, 2, 3, , then there exists a formal solution vA such that R(t) = 0

and |0 — Γi. (As for this solution, we can take M = 1.) Thus, if 0 e S,

fo(τo) — 0 and Re r0 > N, then there exists a formal solution vA such that

JR(ί) Ξ θ a n d K e ^ > N.

By A.N. Kuznetsov [13] or B. Malgrange [14], if there exists a formal

solution vA, then there exists an actual solution v which has the formal

expansion vA. Thus, the theorem follows.

§ 5. Proof of Theorem A

In this section, we prove Theorem A. Let P be an operator given

by (1.1). We shall construct null-solutions in the form u = v(t)exp(ξ, x),

where ξ e Cn and <£, x) = J]y=i ξjXj- Thus, the equation Pu = 0 is reduced
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to the equation Qζυ = 0, where Qξ = Σ7=o#/^ ξ)d{ is an ordinary differ-

ential operator with a parameter ξ. Put

fμ(ζ;τ)= Σ ά/O fV for μeS+ and
jeV(μ)

/o(f r) = Σ ά/0; f)r(τ - 1) (r - j + 1) (if 0 e S).
i€F<0)

In the case of Type (Π-a), by Theorem 4.1-(1), there exists υe C°°[0, T]

such that Qζv = 0, d{v(0) = 0 for any j . (In this case, f can be taken

arbitrarily.) Thus, we have a C°° null-solution u = v(t) exp (ξ, x).

To prove Theorem A in the cases of Type (I) and (Π-b), we need the

following lemma.

LEMMA 5.1. Consider a polynomial F(ξ;τ) = Σ ^ o c / f V of τ, where

Cj(ξ) (j = 0,1, , h) are polynomials of ξ e Cn and ch(ξ) φ. 0. // there

exists j such that ordeCj > ordfc7i, then for any real number M, there exist

f0 e Cn and r0 e C which satisfy F(ξ0; τ0) = 0 and Reτ0 > M.

Proof. We may assume that n = 1 without loss of generality. Put

Sj = orάξ Cj ( = 0, 1, , h) and α> = m a x o ^ α . ; (^ — sΛ)/(Λ — j). By the

assumption, we have ω > 0. Put J" = {;; 0 < j < h, Sj = sh + ω(h — j)}.

Note that heJ and J\{h] Φ 0 . Putt ing r = pωσ and f = peiθ (p>0,θe R),

we have F(ξ; τ) = pSIί+ωhFp(θ; σ), where

Since s ; = ord^ c;, we can write Cj(ξ) = c°fsy + (lower order terms), where

c°j Φ 0, unless c/f) = 0. Since ss < sh + ω(h — j) and since the equality

holds if and only if j e J, we have

(5.1) F,(θ; σ) • FJβ; σ) = e '^ *+-*> Σ ^(β"'-'σ)>. (p -> oo)

Since /ιe J and J\{Λ} ^ 0, the equation Σie^ C V = 0 has a non-zero

root v. Hence, by choosing a suitable θ0 e R, we can see that there exists

<70eC which satisfies F J & σ0) = 0 and Re(7 0 >0. From (5.1) it follows

that for a sufficiently large p, there exists σp € C which satisfies î ,(#0 ^ )
= 0 and Reσ, > JReσ 0 ( > 0). Thus, for a sufficiently large p, the equa-

tion F(peiθo τ) = 0 has a root r^eC which satisfies Re τ, > J (Re tfo)^.

This implies the lemma.

Now, we return to the proof of Theorem A. First, we consider the

case of Type (I). By the condition of Type (I), we can define
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μ~ = max {μ e S+ d(j) > 1 for some j e V(μ)}.

Let fμ~(ξ; τ) = Σ?=o c/fV, where ch(ξ) Ξ£ 0. By the following lemma, we

see that ck(ξ) is a constant.

LEMMA 5.2. ord^ cΛ = 0.

Proof. Note that /ι = max V(μ~). If Λ = m, then ordξ cΛ = d(m) = 0.

If h<m, then, by Remark 1.2-(1), there exists μeS+ such that μ> μ~

and Λ e V(μ). Hence, by the definition of μ~, we have ord^ ch — 0.

Since there exists j such that ord^ c5 > 1 by the definition of μ~, we

can use Lemma 5.1, and hence there exist ξQ e Cn and r0 e C which satisfy

fμ-iξol To) = 0 and Reτ0 > 0. Hence, by Theorem 4.1-(1), there exists ve

C°°[0, T] such that Qξoυ = 0 and d{v(0) = 0 for any j . Thus, we have a

C°° null-solution w = ι (ί) exp <f0, x>.

Next, we consider the case of Type (Π-b). Let /0(f;r) = Σy- 0 ^(fV,

where ch(ξ) ^ 0 . By a similar argument to the proof of Lemma 5.2, we can

easily show that orde ch = 0, using the condition of Type (II). Further,

by the condition of Type (Π-b), there exists j such that ordf c, > 1. By

Lemma 5.1, for an arbitrary positive integer N, there exists ξN e Cn and

r ^ e C which satisfy /0(f ̂  τ^) = 0 and Re τN > N. Hence, by Theorem

4.1-(2), there exists υN e CN[0, T] such that QξNvN = 0 and 3^(0) = 0 for

any j < N. Thus, we have a CN null-solution u = vN(t) exp (ξN, x).

§ 6. Proof of Theorems B and C

In this section, we prove Theorems B and C. First we give an easy

lemma, without proof, which gives solutions to first order equations on

(0, T] X R.

LEMMA 6.1. Let n = 1 and consider P = 3t + A(t)dx + B(i), where

A, Be C~(0, T]. Let s/(t), 0(t) e C~(0, T] satisfy (d/dt)^ = A and (d/dt)a

= B. Assume that Ω is a neighborhood of x = 0 and that a domain W

of C satisfies W 3 {x - s/(t); t e (0, T], x e Ω}. If F(z) is holomorphic on

W, then u(t, x) = exp{ — @(t)}F{x — s/(t)) is a solution of Pu = 0 on (0, T]

XΩ.

Now, we prove Theorem B.

Proof of Theorem B. By considering solutions of the form u(t, x) =

u~(t, x3) for a suitable y, we may assume that n = 1. First, we consider
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the case when s(l) = K — 1. In this case,

where α, b e C°°[0, Γ], Λ e Z and α(0) =£ 0. We can take ^(t), @(t) e C°°(0, Γ]

which satisfy (djdt)s/(t) = t-ιa(t) and (djdt)@(t) = rΛ6(ί), in the form

= α(0) log t + Λ(ί), #(*) = t-h+lB,(t) + B2 log t,

where Aly ^ e C°°[0, T], A(0) = 0 and B2 is a constant. Note that

x _ ^{t) = ^α(O) log
α(0)

If Ω is a sufficiently small neighborhood of x = 0 and To is a sufficiently

small positive number, then

z = ί exp ( - Γ ^ y 4 ^ (*> *) e (0. T»] X fl) C Wo

eC; |2:| < 1, | a r g z | < - |

Hence, by Lemma 6.1, if G(z) is holomorphic on WQ, then

ι/ = t-* exp (-t-^BMG (t exp

is a solution of Pi/ = 0on (0, Γo] X fi. If we choose a suitable G(z), then

3/w(ί, •) -> 0 (ί -> +0) in C°°(β) for any 7 and (0, 0) 6 supp u, hence u is a

C°° null-solution at (0, 0).

Next, we consider the case when s(ί) < K — 1, that is,

where α, 6 e C°°[0, Γ], α(0) ^ 0, ε, /ι € Z and ε > 0. By an argument similar

to the above case, we have a solution of Pu = 0 in the form

u = r* 2 exp { - ί ^ ^ B ^ l G ί e x p t - ί - + A,(ί) log t + xA2(t)}),

where Al9 A29 Bt e C°°[0, T] and B2 is a constant. By choosing a suitable

G(-ε), we also obtain a C°° null-solution for P at (0, 0).

Next, we prove Theorem C.

Proof of Theorem C. Let P be an operator given by (2.2) and assume

(2.3), (2.4) and (2.5). Dividing P by t% we may assume that K = 0 and

hence σ — — 1 — ε for some positive integer ε.
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We can solve the system of ordinary differential equations

dx
dt

= ά(t, x), x(0) = y near (0, 0).

Let the solution be x — X(t, y). Note that if t is sufficiently small positive

number, then y -> X(t, y) = x is a diffeomorphism between a neighborhood

of y = 0 and a neighborhood of x = 0. By the coordinate transformation

t = s, x = X(s, 3>), we have 3t + 2y=o &j(t9 oc)dXj = 3β. Since the conditions

for P and u are invariant under this coordinate transformation, we may

assume that άά(t9 x) = 0 (jf = 1, , n), without loss of generality. We

may also assume that Re 6(0, x) > 0 on R*.

Now, assume that u e 0^(0, T] 9'(Rn)) satisfies (2.6) and (2.7). Put

By the equation

we have

hence there exists F(x) e ^'(Rn) such that u(t, x) exp (^(ί, x)) = F(x) near

Λ: = 0 for any ί e (0, To]. Note that

, x) = - έ ( 0 ? x ) t- + B&, x)t-+* + B2(x) log t,

where B, e C°°([0, Γ] X Rn) and B2 e C~(RW). Since Re 6(0, x) > 0 on Rw,

we have

t-» exp(^(ί, •)) >0 (ί-> +0) in C~(Rn) for any M.

Hence, by (2.6), we obtain

u(t, •) e x p (0(t, -)) > 0 (t -> +0) in ^ ( R n ) ,

which implies that F(x) = 0 near x = 0. Thus, there exist ϊ\ > 0 and a

neighborhood βj of x = 0 such that w = 0 in (0, ΓJ X β t.

§ 7. Basic estimate

In this section, we shall show a basic energy estimate for the operator

P given by (3.1). We use the same notations as in Section 3. Assume
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the conditions (A-2)-(A-5).

By Lemma 3.3, we have the factorization (3.2) of P o . Put

G(t) = f ~Θ(σ)dσ, af - K + 1, p ' = p - a + « : + l

and

(7.1) £ * ( M ; 0 = m ! ^ , •) + G'(t)u(t9 .) | | ;

- t*-(Q(t;dx)u(t, •), w(ί,.». + Mί, o i e r ,

for u e C2((0, T]; £P+ 2) Here, wt - dtu and ( , )s (resp. || ||.) denotes the

inner product (resp. the norm) of the Sobolev space Hs of order s on R71.

Remark 7.1. By the condition (A-2), we have (Qu, u)s < 0 and hence

E* is well-defined.

The following energy estimate is vital to the proof of Theorem D.

PROPOSITION 7.2. Assume the conditions (A-2)-(A-5). Then, there exist

positive constants N, TQ and C for which the following inequality holds:

(7.2) E*(u; t) < C{£ τ-*\\Pu(τ, <)\\sdτ + Z»E*(u; ί,)} (0 < U < t < Tΰ)

for any u e C2((0, Γo]; Hs+2).

To prove this proposition, we transform P using G(t).

If we put u — e~G{t)v, then the equation Pu = f is transformed to

P,v = βG(ί)rα+Λ+1/, where

(7.3) Px - r'd\ + b(t)dt - tp'Q(t; dx)

Here, q'^q-a + tc+l and b(ί) = tκ(l - Λ(t) + Θ(t)) e C?r{ιc.

LEMMA 7.3. The condition (A-5) implies 2qr >p' — \.

Proof. Consider the three cases given in Section 3. In Cases (1)

and (2), there holds 2/3 < a + ΐ, hence the condition (A-5) is "2q > p — 1

+ /3". Since tc = a — β — 1, we have 2g' > p ' — 1. In Case (3), there

holds 2β > a + T, hence the condition (A-5) is "2q > p — 1 + (a + r)/2".

Since tc = (α — r — 2)/2, we also have 2g' > p ; — 1.

Now, we shall give an energy estimate for Px. Put

(7.4) E s ( υ ; t) = { ί α ' \\vt(U ) l l ί -
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for veC\(0,T];Hs+2).

Remarks 7.4. (1) By the condition (A-2), we have

(7.5) t*>'\\vx(t,-)\\l<C{Es(v;t)Y

for some constant C.

(2) Note that Ef(u; t) = \e-Git)\Es(eG{t)u; t).

LEMMA 7.5. Consider the operator Pί given by (7.3). Assume that

a' > 1, 2q' > pf - 1 and the condition (A-2). If Re 6(0) > -ε 0 (e0 > 0), then

we have the following estimate for some positive constants N', To and C:

(7.6) e^Es(v; t) < c { £ τ-N'e™\\Pxυ(τ, )\\sdτ + t;N'e+^Es(v; t,)}

(0 < U < t < To)

for any ve C2((0, To]; Hs+2), where ψ(ί) = εj(a' - l ) r β # f l .

Proof. We can take TQ > 0 and 6X > — ε0 such that

(7.7) Re b(t) > bλ on [0, TQ].

In this proof, C denotes an unspecified constant whose value may

be different each time it appears.

We shalJ estimate

2Re(Pίv(t9 .), υ£t, •)). = &«' Re(vtt, vt)s - W Re(Qv, vt)s + 2Re(bvt, vt)s

+ 2V Re (jr Cjvxp vt) ,

by means of Es(v; t) as follows.

(a) d ^ Ί N I s } = α'ί '-ΊIVillϊ +

Hence, we have

(b) dt{-

v, v)s - t*'(Qtυ, v)s - t»'(Qυt, v)s - P'(Qu, i;,).

v, v)s - t*'(Qtυ, v)s - ί*'2Re(Q(;, vt)s,

where Q, = (dtQ)(t; dx). By Remark 7.4, there holds
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Hence, we obtain

-W Re(Qv9 υt), > dt{-t>XQυ9 v)s} + ^-t*\Qυ, v)s - C{Esf

(c) 2 Re (bυt, υt). = 2 Re 6(ί)||ϋ(||; > 261||ι/<||!.

(d) 2t<!'-Re(£cjvXJ,v^> -O«'||i;,|U|ut||,

- β i i i f . i i :

for an arbitrary si > 0, by 2q' > p' — 1 and Remark 7.4.

(e) 3,{||ι;||;} = 2Rβ(ι;, i;t), < 2||u| | s ||y( | |8

for an arbitrary ε2 > 0.

From these estimates (a)-(e), we obtain

2 Re (i>u, υt), > dt{t°'\\vt\\*} - ^-{Esf + dt{-t>'(Qv, v\)

f (26, - β , - e O l l w . H Ϊ .
ί

If we take εl5 ε2 as εi + «2 < 26, + 2ε0, then we have

dt{Esf - — {Ss}
2 - 2εo\\vt\\2

s <2Re(Pίv, vt), < 2t-"'/ϊ\\Pιv\\

and hence

t

Dividing by 2ES, we have

dtEs -~ES- εot

From this, we obtain

dt{t-ce^>Es(v; t)} <
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and hence, we obtain

t-cennEs(v; t) < Γ τ-^-'/2e*(r)| |P i ϋ(T ) . ) | | s r f r + %ce+™E,(υ; tx)
J ί l

for 0 < U < t < To.

(Note that ψ '(ί) = -ε o r α ' . )

Thus, we obtain the estimate (7.6).

Now, we prove Proposition 7.2.

Proof of Proposition 7.2. Note that if we put υ = eG{t)u, then we have

Ptυ = eG(t)t-a+κ+1Pu and E,(υ; t) = \eG^\E*(u; t). From (7.6), we obtain the

following estimate for some constant N".

r, Oil A

+ tϊN"\e+™+0™\E*(u; t,)\ (0 < U < t < Γo)

Comparing to (7.2), we have only to show that

(7.8) |e-*<o-σ<oe*(r)+ff(o| < C r - 3 / (0 < τ < ί < Γo)

for some constant M.

By Lemma 3.3, we can prove (7.8) as follows.

In Case (1), we have Re 6(0) = — ReΛ(O) > 0, hence we can take

so = 0, that is, ψ(t) = 0. Further, we have eGit) = t~θmψ(t) for some φe

Cf°°rac. Thus, we obtain (7.8).

In Case (2), we also have Re 6(0) = —ReΛ(O) > 0, hence we can take

ε0 = 0 and ψ.(t) =0. Further, Re G(t) is increasing near t = 0, since

Re G'(t) = -(lit) Re Θ(t) > 0 near t = 0. Hence, we obtain (7.8) with

Af = 0 .

In Case (3), we have Re 6(0) = — Re^(0) + Re 0(0) > 0. Further, there

holds

-ψ(t) - G(t) + ψ(r) + G(τ) = £ {θ(σ) + φ'"'dσ.

Since we can take ε0 as 0 < ε0 < —Reθ(t) near t = 0, we obtain (7.8)

with M == 0.

§ 8. Proof of Theorem D

In this section, we shall prove Theorem D. Consider the operator

P given by (3.1) and assume the conditions (A-l)-(A-δ).
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Before the proof, we give two lemmas. The first lemma shall make

it possible to use the Sobolev norm.

LEMMA 8.1. Assume that ueC\(0, T]; @'(Rn)) (T> 0) satisfies

supp u(t, •) c K for any te(Q, T], where K is a compact set in R\ //

u(t, •) is bounded in $'(Rn) (resp. u(t, )-*0, in @'(Rn)) as t-++0, then

there exists an integer s such that u e C°((0, T]; Hs) and \\u(t, )'\\sίs bounded

(resp. \\u(t, )IL->0) as t-

Proof. If we put Se = {u(t, )e&(Rn); 0 < t < T}, then its closure

2 is bounded in ^(Rn), and hence compact. By the structure theorem

of $f(Rn), there exists an integer s such that 2 d Hs and that the topol-

ogies on S induced from ^(R n) and from Hs coincide. This implies the

results.

The second lemma shows the existence of "good" dependence domains

for the Cauchy problem in {t > 0}.

LEMMA 8.2. Assume the conditions (A-l) and (A-2). For tx e (0, T],

consider the Cauchy problem with the initial surface t = tλ\

(CP)tl

For any To > 0 and any neighborhood Qo of x = 0 in Rw, there exists

a compact set D c [0, TQ] X ΩQ which satisfies the following:

(i) There exist T[ > 0 and a neighborhood Ω'o of x = 0 such that

D Z) [0, Γ0 X flί.

(ii) For any tx e (0, To), if f = 0 in Df){t> ί j and φ, = ψ2 = 0 ô -

β solution u of (CP)tl satisfies u — 0 in DΓ\{t> tx).

It is the point of this lemma that D is independent of tx.

Proof. Let v be a positive integer such that v > 2/(p — a + 2) (> 0).

Let P~ be the operator transformed from P by ί1/v = s. By 3t = (l/v)s1~vds,

we have

p - = (llv2)sav+2-2vd2

s - spvQ(sv; dx) + l.o.t. [lower order terms]

= (l/v2)sΛV+2"2υ(^ - Λ ( ί 3-β + 2 )-2Q(sv; 3J) + l.o.t.

Since (p — a + 2)v — 2 > 0, the operator P~ satisfies that
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(i) P~ is strictly hyperbolic in (0, T1/v] X Rn,

(ii) the characteristic roots a = ±λ(s;ξ) of P~ is bounded as s—> +0.

That is, there exists a constant M such that \λ(s; ξ)\ < M\ξ\ for

any (s f)e(O, Tx'v] X Rw.

By the well-known result for strictly hyperbolic operators, the Cauchy

problem for P~ with the initial surface s = sx (> 0) has dependence

domains D~ of the form

J3~ = {(«, x); sί < s < s0, I* — xo| < ^($0 — s)}.

Note that M does not depend on Sj.

Thus, taking x0 = 0 and a sufficiently small tΌ > 0, we see that the

compact set

D = {(ί, Λ); 0 < t < ίo, |x| < M ( C - ί1^)}

satisfies the required properties.

Now, we shall prove Theorem D.

Proof of Theorem D. Assume that u e C2((0, T]; @'(Rn)) satisfies the

conditions (i) and (ii) in Theorem D for sufficiently large N. By cutting

off and by Lemma 8.1, we may assume that

(8.1) supp u(t, •) c K for t e (0, Γ], where if is a compact set in R",

(8.2) u e C2((0, Γ]; Hs+i) for some integer s,

(8.3) t~Nu(t, .), t~N+1ut(t, )->0 ( ί | 0 ) in £TS+2.

Fix an arbitrary ^ e (0, T). Since P is strictly hyperbolic on fc, T]

X Rπ, we can take the solution w[U] e C\[tu T]; Hs+2) of the Cauchy

problem

'Pw[U\ = 0 on [tu T] X R n ,

(8.4)

Applying the estimate (7.2) to w[tx], we obtain

= Ctϊ*E*(u; O for t,<t<T,.

Note that this constant C does not depend on ^. By (8.3), we have

tϊ*E*(u; tt) —> 0 (^ —> +0), if iV is sufficiently large. Hence, we obtain

(8.5) w[tt](t, •) > 0 it, I 0) in i ί s for any t e (0, T o].
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Now, take D in Lemma 8.2. Since P(w[U\ — u) = 0 in Df]{t > tx}, and

fo] — u)\t==tl = dt(w[tx] - M ) | ί = ί l = 0 o n ΰ Π { ί = ίi}, we have w[Q = u in

> M Hence, by (8.5), we obtain u = 0 in Zλ

Appendix. C°° well-posedness of the flat Cauchy problem

for some non-Fuchsian operators

In this appendix, we show C°° well-posedness of some flat Cauchy

problems as is stated in Remark 2.1 and Remarks 3.2-(2). First, we shall

give the precise statements.

For an open set U in Rn+\ put U+ = Uf]{t>0} and ^°°(C7+) =

{ue C°°(U+); 3{u\t=Q = 0 for any y > 0}.

PROPOSITION A.I. Consider the operator P given by (2.2). Assume

that conditions (2.3), (2.4) and (2.5). Then, there exists an open neighbor-

hood Ω of (0,0) such that for any /eJΓ°°(β+), there exists a unique ue

JΓ°°(β+) which satisfies Pu = f on Ω + .

PROPOSITION A.2. Consider the operator P given by (3.1) and assume

that conditions (A-l)-(A-5) in Section 3. Then, for any fe ^~([0, T] X Rn),

there exists a unique u e έF°°([0, T] x ~Rn) which satisfies Pu = f on [0, T]

X Rw.

Since the proof of Proposition A.I is similar to that of Theorem C,

we shall prove only Proposition A.2.

Proof of Proposition A.2. Put H°° = ΠUeR#s and ^ ( [ 0 , Γ]; H~) =

{fe C°°([0, T]); H00); d{f\t=Q = 0 for any j > 0}. Since there exist bounded

dependence domains (Lemma 8.2), we have only to show the following:

For any / e ^ t f O , ϊ 7 ] ; # " ) , there exists u e ^~([0, T] £P°) swc/i that

Pu = f on [0, Γ] X Rn.

Let /e ^-([0, Γ]; H~). For any j > 1, put

Since P is strictly hyperbolic in {t > 0}, we can solve the Cauchy problem;

(Pv = /, in [1/i, Π x E ,

(CP), 1
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Let the solution be υ3(t, x) and put

Applying the energy estimate (7.2) to u3 — uk for any s, we can show

that u — lim^oo u5 exists in C *(((), T]; H°°). This u satisfies Pu = / in

(0, T] X Rn and Ef(u, t) < C Γ τ-*\\f(τ, -)\\tdτ for any s. It is easy to show
Jo

that t-χu(t, •), * ~ ^ Λ ) - > 0 ( ί | 0 ) in if00 for any M. Hence, by Pu = /,

we obtain M e ^°°([0, T] H~).

Remark A.3. Since the condition (A-l) is used only to show the

existence of bounded dependence domains (Lemma 8.2), we can show the

H°° well-posedness of the flat Cauchy problem for P under the assump-

tions (A-2)-(A.5) without assuming (A-l).
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