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§0. Introduction

Since M. S. Baouendi and C. Goulaouic ([2], [3]) defined partial dif-
ferential operators of Fuchs type and proved theorems of Cauchy-
Kowalevskaya type and Holmgren type, many authors have investigated
operators of Fuchs type in various categories, that is, real-analytic, C~
and so on. (Cf. [1], [4], [6], [8], [9], [11], [12], [17], [18], [19], [20], [21] etc.)

DerFINITION 0.1. A partial differential operator P is called of Fuchs
type (or Fuchsian) with weight m — k (0 < k < m), when P has the follow-
ing form:

0.1 P = t97 + a(x)t* 97 4 - - 4+ a (o)t
+ Z fomax (0,j+k—m+1)aj'a(t, x)aza; s
j+lalgm
j<m-1

where a,(x), a,.(l, x) are smooth, that is, real-analytic, C> and so on.
(Notations are given later.)

Remark 0.2. Note that the operator P is Fuchsian with weight m — &
if and only if "~*P is Fuchsian with weight 0.

It has become known that Fuchsian operators have various “good”
properties. Among them, we are concerned with the following unique-
ness property. (See also [17].)

TrEOREM 0.3 ([2]). If P is Fuchsian with real-analytic coefficients, then
there exists a positive integer N depending on P such that the following
holds:
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If a CY¥ function u near (0,0) satisfies u =0 for t<0 and Pu=0
near (0, 0), then u = 0 near (0, 0).

In this article, we study whether or not non-Fuchsian operators
have such uniqueness property.

DEFiNITION 0.4. A distribution w near (0, 0) is called a null-solution
for P at (0, 0), if

(i) Pu =0 in a neighborhood of (0, 0),

(i) (0,0)esuppu C {(t, x); t > O}
When u is of C¥ class near (0,0) (0 < N < o0), it is called a C¥ null-
solution.

By this definition, our problem is whether P has the following prop-
erty or not.
“For any positive integer N, there exists a C¥ null-solution for P
at (0, 0).”
Of course, this is weaker than that there exists a C* null-solution.
Note that if P has this property, then #P also has this property for
any integer p. Hence, we give the following definition.

DeFINITION 0.5. A partial differential operator P is called essentially
Fuchsian if t*P is Fuchsian with weight 0 for some integer p. If P is
not essentially Fuchsian, then P is called essentially non-Fuchsian.

For many operators whose principal part is essentially non-Fuchsian,
C= null-solutions have been constructed by many authors. (Here, we
refer only [15] and [16]. See the references of these papers.) As for the
essentially non-Fuchsian operators whose principal part is essentially
Fuchsian, there seems to be no reference. In this article, in order to
obtain rough image of such operators, we investigate the existence and
non-existence of null-solutions for operators including such operators,
assuming that the coefficients depend only on t.

We use the following notations:
R (resp. C,Z) denotes the set of the real numbers (resp. the complex
numbers, the integers);
¢ x) =, x, -+, x, are the variables in R"*!;
d )
ot 0x;
max A (resp. min A) denotes the maximum (resp. minimum) of the

at = , ax = (a.n’ Y az,.) s a.’tj =

’
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elements of A;
ord, f(¢) denotes the order of a polynomial f(§) with respect to &;
Rer denotes the real part of e C;
2’ (resp. &’) denotes the set of the distributions (resp. the distribu-
tions with compact support);
supp © denotes the support of ue 2.

In Section 1, we divide the essentially non-Fuchsian operators with
t-dependent coefficients into four types and show the existence of null-
solutions for three of the types. (Theorem A) As for first order oper-
ators, we can give another result. This is given in Section 2 as Theorem
B. We also give sufficient conditions for the non-existence of C' null-
solutions to first order operators as Theorem C. In Section 3, we con-
sider some second order operators, which are excluded from Theorem A
and have an essentially Fuchsian principal part. Theorem D gives suffi-
cient conditions for the non-existence of C¥ null-solutions. In order to
prove Theorem A, we need some results on ordinary differential operators.
We review them in Section 4. In Sections 5 and 6, we prove Theorems
A, B and C. In the proof of Theorem D, an energy estimate plays an
important role. This estimate is given in Section 7. In Section 8, we
prove Theorem D. In Appendix, we show the C~ well-posedness of the
flat Cauchy problem for the operators treated in Theorems C and D.

§1. Existence of null-solutions
We consider the following operator on [0, T'] X R* (T > 0):
m—1
(1.1) P = p(t;6,,0,) = 07 + 3, a,(t;0.)0!,
=0
where ¢ is a positive integer and a,(t; &) = 3 41<m-j @;5,.()& @;,€ C=[0, T].
Put a,(t; &) = ¢
For j=0,1, .-, m, we put
r(j)=max{reZ; 0<r<¢, dia, (0;§) =0for 0 <i<r—1}.
If we put @,(t; &) = t77Pa,(¢; &), then the coefficients of &; also belong
to C=[0, T]. Put d(j) = ord, 4,0; &).
We draw a Newton polygon using the points (j,r(j) —j) (j =0,1,
..., m) as follows:

DerFiNITION 1.1. The Newton polygon 4(P) is the convex hull of the
set U7Lo{(w,0); 0<u<j, r() —j<v) (Fig. 0) Let 0 <yt <y < - < gy
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Figure 0.
be the slopes of the non-vertical sides of 4(P) and put S = {m, - -, 1t,},

S, ={reS; p>0}. For peS, let L(y) be the side with the slope x in-
cluding the both terminals and put V(u) = {jeZ; 0 <j < m, (j, r(j) —j)
e L(w)}.

Remarks 1.2. (1) Let (ji, px) (resp. (ji, pi)) be the right (resp. left)
terminal of L) (k=1,---,r). If g, >0, then jfe V() and if p = 0,
then ji e V(0). (Note that there hold ji =ji, (=1, --,r —1).)

(2) The operator P is essentially Fuchsian if and only if S = {0}
and d(j) = 0 for any je V(0).

In order to clarify the meaning of our results, we first give a con-
jecture.

CoNJECTURE. If the principal part P, of P is essentially non-Fuchsian,
then there exists a C> null-solution for P at (0, 0).

If the coefficients of P are real-analytic, then this conjecture is valid.
([16, Theorem 1.8]) In Section 2, it is shown that if P is of first order,
then this conjecture is also valid. (Theorem B) Though it is important
to prove this conjecture in full generality, our present interest mainly
lies in the complementary case when P, is essentially Fuchsian but P is
not. Theorem A in the following has less meaning when P, is essen-
tially non-Fuchsian, though we do not assume that P, is essentially
Fuchsian.

Now, we divide the essentially non-Fuchsian operators into two types.

Type (I); There exist xe S, and je V(r) such that d(j) > 1.

Type AD); If pe S,, then d(j) = 0 for any je V(p).

(Note that if S = {0}, then P is of type (II).)
Let P be of type (II). If peS,, then G,0;¢) = &, are constants
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for je V(n). We put f(c) = Djcv @7’ for pe S, and divide the oper-
ators of type (II) into three types:
Type (II-a); There exist e S, and a root 7, of f,(zr) = 0 such that
Rer, > 0.
Type (II-b); S20 and there exists je V(0) such that d(j) > 1.
Type (II-c); Otherwise. That is, (1) if e S, and f(c) =0, then
Rer <0, (2) if je V(0), then d(j) = 0.
Note that Type (II-a) and Type (II-b) may have an intersection.

Now, the following is the main theorem.

TueEoREM A. Let P be an essentially non-Fuchsian operator given by
(1.1).

(1) If Pis of type (I) or (II-a), then there exists a C= null-solution
for P at (0, 0).

(2) If P is of type (II-b), then there exists a C* null-solution for P
at (0, 0) for any positive integer N.

CororLrLARY 1.3. If P = p(t;9,,0,) is essentially non-Fuchsian and
p(t; 3,, 0) is essentially Fuchsian, then there exists a C¥ null-solution for
P at (0, 0) for any positive integer N.

Remarks 1.4. (1) It is expected that there exists a C* null-solution
also in the case of Type (II-b). The author, however, could not prove it.
The CV null-solution constructed in the proof of the theorem is not C=.
It is an interesting question whether or not there exists an operator
which has a C¥ null-solution for any positive integer N but has no C=
null-solutions.

(2) In the case of Type (II-c), there are both possibilities that P has
a C¥ null-solution and that P has no C¥ null-solution. As is already
stated, it is expected that if the principal part of P is essentially non-
Fuchsian, then there exists a C* null-solution. In Sections 2 and 3, we
shall show the non-existence of C¥ null-solutions for some operators of
type (II-c) whose principal part is essentially Fuchsian.

ExamMpLE 1.5. The simplest example of an operator of type (Il-¢) is
P=1¢3, —to,+ b,

where r is a positive integer and b is a non-zero constant such that
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Reb>0. If r=1 (, that is, the principal part is essentially non-
Fuchsian,) then P has a C* null-solution, while if r > 1 and Re b > 0,
then P has no C' null-solutions. (See the next section.)

§2. First order operators

In this section, we consider the following first order operator:
2.1) P =19, + 3, a,00., + b,
=

where a; (j =1, ---,n), be C*[0,T], kxeZ and ¢« > 1. Put

s(1) =max{seZ; 0<s<k 0ag;0)=0for 1<j<n 0<i<s—1},
s(0) = max{seZ; 0 <s <« 3:b(0) =0 for 0< i < s — 1}

Note that P is essentially Fuchsian if and only if ¥ — 1 < s(0) and « — 1
< 5(1). The four types given in Section 1 is as follows. (Put b(t) =
1= Ob(t).)

Type (I) s(1) < s(0) and s(1) < £ — 1,

Type (II-a) s(0) < s(1), s(0) < ¥ — 1 and Re b(0) < 0,

Type (II-b) s(1) =« — 1 < s(0),

Type (II-c) s(0) < s(1), s(0) < £ — 1 and Re 5(0) > 0.

The next theorem shows that the conjecture given in Section 1 is
valid if P is of first order.

TaEOREM B. If s(1) < k — 1, then there exists a C* null-solution for
P at (0, 0).

By Theorems A and B, the only possibility that a first order oper-
ator P given by (2.1) is essentially non-Fuchsian but has no C> null-
solutions is the case when s(1) >« — 1, s(0) < # — 1 and Re b(0) > 0. If
s(1) >k — 1, s(0) < x — 1, a; are real-valued and Re I;(O) > 0, then we can
really show the non-existence of C' null-solutions. More strongly, we
have the following theorem.

TueoreEMm C. Consider the operator
2.2) P=td, + t3 4t 09, + b(t, %),
j=1

where k, 6 Z and &, (1 <j < n), be C=([0, T] x R").
Assume that
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23) o<rk-—1,

(2.4) a4t x) 1 <j<n) are real-valued ,

(2.5) Re b(0,0)>0.

If ue CY(0, T1; 2'(R™) satisfies

(2.6) t*u(t, -) —> 0 (t —> + 0) in 2'(R™) for some M,

(27 Pu=0 in (0, T}] X £y, where T, >0 and 2, is an open neighbor-
hood of x =0,

then u =20 in (0, T] X 2, for some T, > 0 and some open neighborhood
0, of x =0.

Remark 2.1. Assume the same assumptions (2.3), (2.4) and (2.5). Then,
the flat Cauchy problem for P is C> well-posed near (0, 0). (See Proposi-
tion A.1 in Appendix.)

§3. Non-existence of null-solutions for a class of second order
operators

In this section, we show the non-existence of C¥ null-solutions for a
class of second order operators of type (II-c) with essentially Fuchsian
principal part. We consider the following operator in [0, T'] X R".

n

(3.1) P = t:3} — £?Q(¢; 3,) + °b(2)3, + t* 3, c,(8)d,, + T'd(?),

7=1

where «, 8,7, p,qeZ and b,¢; (j =1, ---,n), de C[0, T]. Since we can
increase B (resp. 7) if b(0) = 0 (resp. d(0) = 0), we may assume that (i)
b0) #+0 or B> a, (ii) d(0) 0 or 1 > a.
We assume the following five conditions:
(A-l) p>a—2
(A-2) Q&) = D741 (0,6, where g, € C~[0, T] and a;,, are real-
valued. Further, there exists ¢ > 0 such that Q(¢; &) > ¢|¢&f
for any (¢; &) e [0, T] X R™.
(A-3) P is essentially non-Fuchsian and of type (II).
(A-4) If pe S, and f.(c) = 0, then Rer < 0. If j e V(0), then d(j) = 0.
(A-5) 29 >p — 1+ min(B, (« + 7)/2).
Remarks 3.1. (1) The condition (A-1) means that the principal part

of P is essentially Fuchsian. The condition (A-2) implies that P is
strictly hyperbolic in {t > 0}.
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(2) The conditions (A-3) and (A-4) imply that P is of type (II-c). In
fact, the difference between the conditions (A-3), (A-4) and the conditions
to be of type (Il-¢c) is whether “Rez < 0” or “Rez < 0.

THEOREM D. If the above five conditions are satisfied, then there ex-
ists a positive integer N for which the following holds:

If ue C¥(0, T1; 2'(R™) satisfies that

(i) Pu=0in (0, T)] X 2, where T, > 0 and 2, is an open neighbor-
hood of x = 0,

(i) tYult, -), ¥ P,ult, ) -0 in P’R™) (t]0),
then u =0 in (0, T\] X 2, for some T, >0 and some open neigh-
borhood 2, of x = 0.

Remarks 3.2. (1) If p<a — 2 and (A-2) is satisfied, then P has a
C= null-solution for arbitrary lower order terms. ([15])

(2) Under the same assumptions as in the theorem, the flat Cauchy
problem Pu = f is C~ well-posed in [0, T'] X R*. (See Proposition A.2 in
Appendix.)

In the rest of this section, we shall clarify the meaning of the con-
ditions (A-3) and (A-4). Put P, = t°9? + t*b(£)o, + t'd(f). Assume the con-
ditions (A-3) and (A-4). Then, there holds 4(P) = 4(P,). There are three
possibilities about the shape of 4(P,).

Case (1) «—1>pandr+1>p4 (Fig. 1)

Case (2) B—1>7 and a« + 71 >28. (Fig. 2)

Case 83) a« —2>7 and a +71 <28 (Fig. 3)

(Note that P, is essentially Fuchsian if and only if  — 1>« — 2 and
T>a—2)

We can easily show the following lemma. (Cf. [13], see also the next

section.)

LemmaA 3.3. P, can be factored as
(3.2) P, = t-¥(t3, — A())(t3. — 6(D)),

where A and © have the following properties in each of the above three cases.
Case (1) A(t) = t~*A(t), where A€ Cgye, t =a — f— 1> 0 and Re 1(0)
< 0. OeCg.
Here, Cg,. = {f(t) e C=(0, T1; f(t*) e C=[0, T'] for some positive integer M}.
Case (2) A(t) = t*A(t), O(t) = t=*0(t), where 2,0€ Ciyy t = — 8 — 1
>p=pf—7—1>0, Rea(0) <0 and Reg(0) <O.
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Case (3) A(t) = t=*A(t), O(f) = t=*0(t), where A, 0 € CZye, £ = (¢ — T — 2)/2
> 0 and Re 1(0) < Red(0) < 0.
We shall use these factorization in Section 7.

§4. Review on ordinary differential operators with C~ coefficients

In this section, we consider an ordinary differential operator
@ Q = 3 b/,
e

where b;,e C=[0, T] and b,, = & (¢ is a positive integer). We can define
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r(j), l;j(t), 4Q), S, S,, L(p) and V(y) in the same way as in Section 1.
We put

flo)= > b0 for peS, and

JEV (1)

fld)= 3 b0z —1)---(c—j+1 (f0eS).

JEV O

@

®

TuEOREM 4.1. (1) If there exists peS, and a root z, of f(r) =0
such that Rez, > 0, then there exists ve C~[0, T] such that Qu = 0 and
9{v(0) = 0 for any non-negative integer j.

(2) Let N be an arbitrary positive integer. If 0e S and there exists
a root t, of fi(r) = 0 such that Rer, > N, then there exists ve C¥[0, T]
such that Qu = 0 and 8/v(0) = 0 for any j < N.

Proof. First, we consider formal solutions. As is well-known, the
equation Qu = 0 has formal solutions of the form v* = e®® ¢ w(t), where

(i) R(t) is a polynomial of ¢-“# with no constant term, for a

positive integer M,

(ii) peC,

(iii) w(?) is a formal power series of t/* such that w(0) == 0.
(The equation may also have formal solutions with logarithmic terms,
but we do not need such solutions.)

The leading term of R(¢#) and the value of p when R(¢) =0 are
calculated easily from 4(Q) as follows. (See [5], [7], [10] etc.)

(I) For any pe S, and any non-zero root 7, of f,(r) = 0, there exists

a formal solution v" such that R(¢) = —(ro/p)t * + (higher order terms).
(IT) Assume that 0¢ S. If 7, satisfies f,'z)) = 0 and f(z; + k) = 0 for
k=1,238, .-, then there exists a formal solution v" such that R(¢) = 0

and p = r,. (As for this solution, we can take M = 1.) Thus, if 0€ S,
fi(zy) = 0 and Rer, > N, then there exists a formal solution v" such that
R() =0 and Rep > N.

By A.N. Kuznetsov [13] or B. Malgrange [14], if there exists a formal
solution v, then there exists an actual solution v which has the formal
expansion v". Thus, the theorem follows.

§5. Proof of Theorem A

In this section, we prove Theorem A. Let P be an operator given
by (1.1). We shall construct null-solutions in the form u = v(?) exp <{¢, x),
where &€ C" and {§, x) = > 7, &;x;. Thus, the equation Pu = 0 is reduced
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to the equation Q.v = 0, where Q, = > 7 ,a,(¢; £)9/ is an ordinary differ-
ential operator with a parameter & Put

flé;0) = 2, a,0;8)’ for peS, and
JEV ()
fu(&;7) = _GE;(O) 4,0;8)c(c —1)---(c —j+ 1) Gf 0e9).

In the case of Type (II-a), by Theorem 4.1-(1), there exists ve C=[0, T']
such that Qv =0, 3/v(0) =0 for any j. (In this case, £ can be taken
arbitrarily.) Thus, we have a C= null-solution u = v(?) exp (&, x>.

To prove Theorem A in the cases of Type (I) and (II-b), we need the
following lemma.

Lemma 5.1. Consider a polynomial F(&;7) = >\"_,c,(&)c! of =, where
c&) (j=0,1,---,h) are polynomials of £eC" and c,(&) = 0. If there
exists j such that ord.c; > ord.c,, then for any real number M, there exist
&€ C" and 7, e C which satisfy F(&; 1) = 0 and Rer, > M.

Proof. We may assume that n =1 without loss of generality. Put
s;=ord.c; (j=0,1, --,h) and o = max,,.,_:(s; — s,)/(h —j). By the
assumption, we have 0 > 0. Put J={j; 0<j<h, s;, =35, + o(h — )}
Note that & e J and J\{h} # @. Putting ¢ = p% and & = pe*’ (o > 0, e R),
we have F(¢; t) = p*****F,(0; ), where

h
F,(0; 0) = 3 c(pe'?)pr-o-Ngl .
7=

Since s; = ord, c;, we can write ¢;,(§) = c}¢* + (lower order terms), where
¢’ # 0, unless ¢, (&) = 0. Since s; < s, + w(h — j) and since the equality
holds if and only if j e, we have
5.1) F,(0;0) —> F(0; ) = efCrtom ;J (e ’g)’. (o — o0)

J
Since hed and J\{h}+# &, the equation > ,.,c}’ =0 has a non-zero
root v. Hence, by choosing a suitable 6, € R, we can see that there exists
g, € C which satisfies F.(6,;0,) = 0 and Reg, > 0. From (5.1) it follows
that for a sufficiently large p, there exists o, € C which satisfies F,(4,; o,)
=0 and Reg, > $Reg, (> 0). Thus, for a sufficiently large p, the equa-
tion F(pe®; z) =0 has a root r,e€ C which satisfies Rec, > & (Re gy)p°.
This implies the lemma.

Now, we return to the proof of Theorem A. First, we consider the
case of Type (I). By the condition of Type (I), we can define
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¢~ =max{pesS,; d(j) > 1 for some je V().

Let f.-(&; 7) = 2 b0 c(8)c?, where ¢,(&) = 0. By the following lemma, we
see that ¢,(£) is a constant.

Lemma 5.2. ord.c, = 0.

Proof. Note that A = max V(¢~). If A = m, then ord,c, = d(m) = 0.
If A~<m, then, by Remark 1.2-(1), there exists pe S, such that x> p~
and Ae V(y). Hence, by the definition of x~, we bave ord,c, = 0.

Since there exists j such that ord,c, > 1 by the definition of x~, we
can use Lemma 5.1, and hence there exist & € C* and z, ¢ C which satisfy
f~(&; 7)) = 0 and Rez, > 0. Hence, by Theorem 4.1-(1), there exists ve
C=[0, T] such that Q,v =0 and 8/v(0) = 0 for any j. Thus, we have a
C= null-solution u = v(t) exp (&, x).

Next, we consider the case of Type (II-b). Let fi(&;7) = X o ci(&)7,
where ¢,(&) £ 0. By a similar argument to the proof of Lemma 5.2, we can
easily show that ord,c, = 0, using the condition of Type (II). Further,
by the condition of Type (II-b), there exists j such that ord.c; > 1. By
Lemma 5.1, for an arbitrary positive integer N, there exists &, ¢ C* and
ry € C which satisfy f(&y;zy) =0 and Rer, > N. Hence, by Theorem
4.1-(2), there exists vy e C¥[0, T'] such that Q. vy = 0 and 9/v,(0) = 0 for
any j < N. Thus, we have a C¥ null-solution u = v,(t) exp (&, x).

§ 6. Proof of Theorems B and C

In this section, we prove Theorems B and C. First we give an easy
lemma, without proof, which gives solutions to first order equations on
0, T x R.

LemmA 6.1. Let n=1 and consider P = 3, + A()o, + B(t), where
A,BeC>(0,T]. Let «(t), #1)e C=(0, T satisfy (d/dt)e/ = A and (d/dt)%#
= B. Assume that 2 is a neighborhood of x = 0 and that a domain W
of C satisfies WD {x — £(t); te(0,T], xe Q). If F(2) is holomorphic on
W, then u(t, x) = exp{—Z(OIF(x — L (t)) is a solution of Pu = 0 on (0, T]
X 8.

Now, we prove Theorem B.

Proof of Theorem B. By considering solutions of the form u(t, x) =
u~(, x;) for a suitable j, we may assume that n = 1. First, we consider
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the case when s(1) = ¢ — 1. In this case,
P = {0, + t'a(t)a, + t~*b(t)},

where a, be C~[0, T], he Z and a(0) #+ 0. We can take .«/(t), 4(t) ¢ C~(0, T']
which satisfy (d/df)</(t) = t~'a(t) and (d/dt)#(t) = t-"b(t), in the form

A(t) = a(0)Jog t + A(f),  #() =t""'B(t) + B,logt,
where A,, B,e C=[0, T], A,(0) = 0 and B, is a constant. Note that

x — () = —a(0) log {t~exp (i;(—o#g» .

If Q is a sufficiently small neighborhood of x = 0 and 7T, is a sufficiently
small positive number, then

o= tew (:x;("ﬁ)“‘@) t9e0,T] x 2} < W,

=12eC; 1, zt.
{26 2] < 1, |arg 2| < 4}
Hence, by Lemma 6.1, if G(z) is holomorphic on W,, then
u = t-% exp (—t-""'B())G <t- exp (:ﬁé&))
a(0)

is a solution of Pu = 0 on (0, T;] X 2. If we choose a suitable G(z), then
dlu(t, ) >0 (t— +0) in C=(Q) for any j and (0, 0) € supp «, hence u is a
C= null-solution at (0, 0).

Next, we consider the case when s(1) < £ — 1, that is,

P = {3, + t ' *a(t)o, + t *b(@)},

where a, be C~[0, T], a(0) = 0, ¢, he Z and ¢ > 0. By an argument similar
to the above case, we have a solution of Pu = 0 in the form

u=t"exp{—1t""'B(D)}Glexp{—t~* + A(t) logt + xA,(})}),

where A,, A,, B, e C*[0, T] and B, is a constant. By choosing a suitable
G(z), we also obtain a C= null-solution for P at (0, 0).
Next, we prove Theorem C.

Proof of Theorem C. Let P be an operator given by (2.2) and assume
(2.3), (2.4) and (2.5). Dividing P by t, we may assume that r = 0 and
hence ¢ = —1 — ¢ for some positive integer e.
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We can solve the system of ordinary differential equations

% — &t x), x(0) =y  near (0,0).

Let the solution be x = X(¢,y). Note that if ¢ is sufficiently small positive
number, then y — X(¢, y) = x is a diffeomorphism between a neighborhood
of y = 0 and a neighborhood of x = 0. By the coordinate transformation
t =s, x = X(s,y), we have 8, + 3 7., G,(¢, x)3,, = 9,. Since the conditions
for P and u are invariant under this coordinate transformation, we may
assume that &,¢(, x) =0 (j=1,---,n), without loss of generality. We
may also assume that Re 5(0, x) > 0 on R".

Now, assume that ue CY((0, T'}; 2'(R™) satisfies (2.6) and (2.7). Put

AB(t, x) = —jT e b(z, x)dr .

By the equation
@, + t-b(t, x)u = 0,
we have
2.{u(t, x) exp (#(t, x))} = 0,

hence there exists F(x) € 2’(R") such that u(t, x) exp (#(¢, x)) = F(x) near
x = 0 for any te (0, T,]. Note that

A, x) = — 209 4o L B ot 4 Bx)logt,

3

where B, e C=([0, T] X R*) and B,e C=(R"). Since Re (0, x) >0 on R~
we have

"% exp (%(t, -)) —> 0 (t— +0) in C=(R") for any M.
Hence, by (2.6), we obtain
u(t, -) exp (8, -)) —> 0 (t — +0) in 2/(R?),
which implies that F(x) = 0 near x = 0. Thus, there exist 7, > 0 and a
neighborhood £, of x = 0 such that u = 0 in (0, 7] X 2,.

§7. Basic estimate

In this section, we shall show a basic energy estimate for the operator
P given by (3.1). We use the same notations as in Section 3. Assume
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the conditions (A-2)-(A-5).
By Lemma 3.3, we have the factorization (3.2) of P,. Put
Gl _—_f;’%-@(a)da, W =k+1, Pep—atitl
and
(7.1) E¥u; t) = {t|w(, ) + G@Oult, I
— (R . )ult, -), ult, +))s + [ludt, Y,

for ue C¥(0, T]; H***). Here, u, = d,u and (-, -), (resp. ||-[,) denotes the
inner product (resp. the norm) of the Sobolev space H® of order s on R™.

Remark 7.1. By the condition (A-2), we have (Qu, ), < 0 and hence
E¥ is well-defined.
The following energy estimate is vital to the proof of Theorem D.

ProprosiTiON 7.2. Assume the conditions (A-2)~(A-5). Then, there exist
positive constants N, T, and C for which the following inequality holds:

(12) E*u;t) < c{j 5| Pute, )l.de + t:7E*Xu; tl)} 0<t<t<T)
for any ue C¥(0, Ty]; H**?).

To prove this proposition, we transform P using G(¢).
If we put u = e %y, then the equation Pu = f is transformed to
Py = ef@¢-e*=*1f where

13) Py = 5 4 B0, — 07QE;0) + 1 3 c,(00,,.

Here, ¢ = q¢ —a + r + 1 and b(t) = t:(1 — A(t) + O(t) € Cye
LemMma 7.3. The condition (A-5) implies 2q' > p’ — 1.

Proof. Consider the three cases given in Section 3. In Cases (1)
and (2), there holds 28 < @ + 7, hence the condition (A-5) is “2¢9 >p — 1
+ B’ Since ¢t =a — 5 —1, we have 2¢" >p’ — 1. In Case (3), there
holds 23 > « + 7, hence the condition (A-5) is “2g >p — 1 + (a + 7)/2".
Since £ = (@ — 17 — 2)/2, we also have 2¢' > p’ — 1.

Now, we shall give an energy estimate for P,. Put

(74 E(v;1) = {t"[lut, I — ¢(QE; 3 v, -), v(E, -)), + v, I}
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for ve C¥(0, T1; H**Y).
Remarks 7.4. (1) By the condition (A-2), we have
(7.5) 2 ||va(e, IIF < CLE(v; OF

for some constant C.
(2) Note that Ef(u;t) =|e °©|E(e°©u; t).

Lemma 7.5. Consider the operator P, given by (7.3). Assume that
o > 1,29 >p — 1and the condition (A-2). If Reb(0) > —¢, (e, > 0), then
we have the following estimate for some positive constants N’, T, and C:

(7.6) eﬂ‘)ES(v;t)gc{j Ve || Po(r, )| dr + Y er W E,(v; t»}

) 0<t,<t<Ty)
for any ve C¥(0, Ty]; H***), where () = ef(a’ — 1)t~ *.

Proof. We can take T, > 0 and b, > —¢, such that
(1.7 Reb(t) > b, on [0, T,].

In this proof, C denotes an unspecified constant whose value may
be different each time it appears.
We shall estimate

2Re (P(t, -), v(t, -)), = 2t Re (v, v.), — 2t” Re (@, v,), + 2Re (bv,, v)),
+ 2t Re (i C3U,,, vt) ,
=1

$

by means of E,(v;t) as follows.
(@) o ft[[vllf} = &'t v l§ + t¥2Re (vy, v, -

Hence, we have
/
2t Re (v, v), = 0.4t [|v,]|2} — “T{Es}z.

(d) a{—t"Qu, v),}
= —p't""Y(Qu, v), — ' (Q, v), — t”(Qu,, V), — " (Qu, v),
= -p,tp'—l(Qv, v)s - tp,(Qtv: v)s — t”"2Re (QU, vt)s ’

where @, = (0,@)(¢;3,). By Remark 7.4, there holds
1(Qw, v),| < Cllu,llf < CE{E}.
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Hence, we obtain
—2t” Re (Qu, v,), > d{—t"(Quv, v),} + —pil-t”'(Qv, v), — C{E}
, C 2
2 az{—tp (va v)s} - '_t"{Es} .

(C) 2Re (th’ Ut)s = 2Re 6(0”‘%”? = 2b1Hth§ .
d 2 Re (z €\Ve vt) > Ot v, v,
=1 s

> —CEvYu, |2 — &llu? > —%{Es}ﬁ P

for an arbitrary ¢, > 0, by 2¢' > p’ — 1 and Remark 7.4.

(e) oflvlls} = 2Re (v, v.), < 2lvlf, [|vell,
< Clll§ + elvli < CEY + alvl;

for an arbitrary ¢ > 0.
From these estimates (a)-(e), we obtain

2Re (P, v), 2 0403} = (B} + 0~ (Qu, v)}
=SBy + 200l - SEY - sl
> 0By — S(EY + @b — o — vl
If we take ¢, ¢, as ¢ + ¢ < 2b, + 2¢, then we have
AEY — S — 24uli < 2Re (P, u), < 2Pl E,,
and hence
AAE) — %{Es}z — 2t~ {E,}* < 27| P|,E, .
Dividing by 2E,, we have
3,E, — -(t“iE — et-*E, < t-"7|Pu], .

From this, we obtain

Bt %"V E,(v; )} < e || Pit, )], ,

131
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and hence, we obtain

i
t- % E(v; t) < f O PV O Pu(e, )|l de + 7% W E (v; t)
l1

for 0< ¢, <t<T,.
(Note that W/ (f) = —et %))

Thus, we obtain the estimate (7.6).
Now, we prove Proposition 7.2.

Proof of Proposition 7.2. Note that if we put v = e*®u, then we have
Py = Ot Py and E,(v; 1) = |e°P|Ef(u;t). From (7.6), we obtain the
following estimate for some constant N”'.
13
Ef(u;t) < Cle‘“"”““)l{f ™V |ev @8O ||| Pu(z, -)|,dc
t1
+ Y er e B ui ) 0 < b <1< Ty,

Comparing to (7.2), we have only to show that
(7.8) |e¥0=60gr@ 6w | £ Cp O<c<t<T)

for some constant M.

By Lemma 3.3, we can prove (7.8) as follows.

In Case (1), we have Reb(0) = —Re2(0) > 0, hence we can take
& = 0, that is, y(f) = 0. Further, we have e%® = t99p(¢) for some ¢¢
Cz.. Thus, we obtain (7.8).

In Case (2), we also have Re 5(0) = —Re 2(0) > 0, hence we can take
& =0 and +«(f) =0. Further, Re G(¢) is increasing near t= 0, since
ReG'(t) = —(1/t) Re O(f) > 0 near ¢ = 0. Hence, we obtain (7.8) with
M=0.

In Case (3), we have Re 5(0) = —Re 2(0) + Re6(0) > 0. Further, there
holds

=) — G + ¥(r) + Gi) = f t {6(0) + e)o~""'da.

Since we can take & as 0 <{g < —Ref(f) near t =0, we obtain (7.8)
with M = 0.
§8. Proof of Theorem D

In this section, we shall prove Theorem D. Consider the operator
P given by (3.1) and assume the conditions (A-1)~(A-5).
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Before the proof, we give two lemmas. The first lemma shall make
it possible to use the Sobolev norm.

LEmMa 8.1. Assume that wueC°(0, T); 2’(R™) (T > 0) satisfies
supp u(t, -) C K for any te (0, T], where K is a compact set in R"*. If
u(t, ) is bounded in 2'(R™) (resp. u(t, -) — 0, in 2'(R")) as t— +0, then
there exists an integer s such that ue C(0, T1; H®) and ||u(t, -)i|, is bounded
(resp. |lu(t, )|, = 0) as t — +0.

Proof. If we put & = {u(t, -)e 2’(R"); 0 <t < T}, then its closure
Z is bounded in &'(R™), and hence compact. By the structure theorem
of &'(R™), there exists an integer s such that .Z < H*® and that the topol-
ogies on .Z induced from 2'(R*) and from H°® coincide. This implies the
results.

The second lemma shows the existence of “good” dependence domains
for the Cauchy problem in {t > 0}.

LEMmMA 8.2. Assume the conditions (A-1) and (A-2). For t e (0, T],
consider the Cauchy problem with the initial surface t = t,:

Pu =feCt, T]; 2/(R"),
(CP)ll ulz=c1 =€ 9’(Rn) s
O Uer, = € Z'(R").

For any T, > 0 and any neighborhood 2, of x = 0 in R", there exists
a compact set D C [0, T,] X 2, which satisfies the following:
(1) There exist Ty > 0 and a neighborhood 2, of x = 0 such that
D D0, T;] X 2.
(it) For any t,€(0,Ty), if f=0 in DN{t=t} and ¢, = ¢, =0 on
DN {t = t}, then the solution u of (CP),, satisfies u = 0in DN{t > ¢}.

It is the point of this lemma that D is independent of ¢,.

Proof. Let v be a positive integer such that v > 2/(p — a + 2) (> 0).
Let P~ be the operator transformed from P by ¢/ = s. By a8, = (1)v)s'*3,,
we have
P~ = (1y¥)s=**-25 — s*Q(s*; 3,) + l.o.t. [lower order terms]
— (I/DZ)sa»-i-Z-—Zv(a‘g — DZS(p—a+2)y—2Q(sy; az)) + 1.0.t.

Since (p — a + 2 — 2 > 0, the operator P~ satisfies that
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(i) P~ is strictly hyperbolic in (0, T'] X R,

(i) the characteristic roots ¢ = +A(s; &) of P~ is bounded as s — +0.
That is, there exists a constant M such that |i(s; &)| < M|¢&| for
any (s; &) e (0, T"] x R™.

By the well-known result for strictly hyperbolic operators, the Cauchy
problem for P~ with the initial surface s =s (> 0) has dependence
domains D~ of the form

D~ ={(5%); 86 <5< 8, [x— x| < M(s, — 5)}.

Note that M does not depend on s,.
Thus, taking x, = 0 and a sufficiently small ¢, > 0, we see that the
compact set

D= {@x); 0<t <t x| < ME” — ")
satisfies the required properties.
Now, we shall prove Theorem D.

Proof of Theorem D. Assume that ue C*(0, T]; 2'(R™) satisfies the
conditions (i) and (ii) in Theorem D for sufficiently large N. By cutting
off and by Lemma 8.1, we may assume that
(8.1) suppu(t, -) C K for te (0, T'], where K is a compact set in R”,
(8.2) wueC¥(,T]; H**) for some integer s,

(8.3) tMult, -), ¥ 'u,(t, )~ 0 (t|0) in H**%

Fix an arbitrary ¢, (0, T). Since P is strictly hyperbolic on [¢, T']
X R®, we can take the solution wt]e C¥[t, T]; H***) of the Cauchy
problem

Puwlt] =0 on [t, T] X R",
(8.4) wltlle-r, = vl-e, (e H**Y),
azw[tl] lt=t1 = ac”lz:zl ( € HH4) .

Applying the estimate (7.2) to w[t,], we obtain

E¥w(t]; ) < CtrYEF(wlt]; t)
= Ct; "E*(u; t,) for t, <t<T,.

Note that this constant C does not depend on #. By (8.3), we have
t¥E*(u;t) — 0 (t, — +0), if N is sufficiently large. Hence, we obtain

(8.5) wlt](t, -)—>0 (¢, } 0) in H* for any te (0, T\].
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Now, take D in Lemma 8.2. Since P(w[t] — w) =0 in DN{¢t > ¢}, and
(wlt)] — W=, = 0,(wlt,] — w)|,—,, = 0 on DN{t =t}, we have w[t,] = u in
DN{t>t}. Hence, by (8.5), we obtain v = 0 in D.

Appendix. C= well-posedness of the flat Cauchy problem
for some non-Fuchsian operators

In this appendix, we show C= well-posedness of some flat Cauchy
problems as is stated in Remark 2.1 and Remarks 3.2-(2). First, we shall
give the precise statements.

For an open set U in R**!, put U, = UN{t >0} and F=(U,) =
{ue C=(U,); dit),-o = 0 for any j > 0}.

ProposITION A.1. Consider the operator P given by (2.2). Assume
that conditions (2.3), (2.4) and (2.5). Then, there exists an open neighbor-
hood Q2 of (0,0) such that for any fe F=(Q2.), there exists a unique u¢c
F=(R,) which satisfies Pu = f on £,.

ProposIiTioN A.2. Consider the operator P given by (38.1) and assume
that conditions (A-1)~(A-5) in Section 3. Then, for any fe F>=([0, T] X R"),
there exists a unique ue F=([0, T] X R™) which satisfies Pu =f on [0, T
X R

Since the proof of Proposition A.l is similar to that of Theorem C,
we shall prove only Proposition A.2.

Proof of Proposition A.2. Put H* = (,er H® and F=(0,T]; H*) =
{feC=(0, T1); H*); 9{f|.-o = 0 for any j > 0}. Since there exist bounded
dependence domains (Lemma 8.2), we have only to show the following:

For any fe F=([0, T1; H*), there exists uec F=([0, T]; H*) such that
Pu=/fon [0, T] X R

Let fe #=([0, T]; H*). For any j 2 1, put

f&—1,% @¢= Uj)} eZ=([0, T]; H").

i, %) = { 0 (t < 1))

Since P is strictly hyperbolic in {¢ > 0}, we can solve the Cauchy problem;
Pv=f, in [1fj, T] X R",
(CP)j Ulz=1/j =0,

a,vh:;/, == O .
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Let the solution be v,(¢, x) and put

vt x) (= 1))

it x)={ 0 (t<1)j)

}637‘”([0, T]; H*).

Applying the energy estimate (7.2) to u; — u, for any s, we can show
that u = lim,_. u; exists in C!(0, T]; H~). This u satisfies Pu = f in

0, T] X R™ and EX*(u,t) < Cr Y| f(z, -)|,dz for any s. It is easy to show
0

that t~*u(t, -), t-"u(t, -) >0} 0) in H* for any M. Hence, by Pu =f,
we obtain ue F>([0, T]; H*).

Remark A.3. Since the condition (A-1) is used only to show the
existence of bounded dependence domains (Lemma 8.2), we can show the
H~> well-posedness of the flat Cauchy problem for P under the assump-
tions (A-2)-(A.5) without assuming (A-1).
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