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ANALYTIC CAPACITY FOR TWO SEGMENTS

TAKAFUMI MURAI

§ 1. Introduction

The analytic capacity ϊ(E) of a compact set E in the complex plane
C is defined by Y(E) = sup \f/(oo)\, where —/'(oo) is the l/z-eoeffieient of
/(ζ) at infinity and the supremum is taken over all bounded analytic
functions /(ζ) outside E with supremum norm less than or equal to 1.
Analytic capacity ϊ(-) plays various important roles in the theory of
bounded analytic functions.

It is known that ϊ(E) < \E\, where | | is the (generalized) length
(i.e., the 1-dimension Hausdorff measure [3, CHAP. Ill]) and that the
inverse relation does not exist, in general. In fact, Vitushkin [14] con-
structs an example of a set with positive length but zero analytic capac-
ity, and Garnett [3, p. 87] also points out that the planar Cantor set
with ratio 1/4

£(1/4) =f)En
tt = 0

satisfies the same property. Here EQ is the unit square [0, 1] X [0, 1] and
En is inductively defined from En_1 with each square Q of En_x replaced
by four squares with sides 4~n in the four corners of Q. The set En is a
union of 471 squares with sides 4~π, and the projections of these 4n squares
to the line <=£?: y = x/2 do not mutually overlap. Hence if we choose Jδf
as a new axis, then En seems like a discontinuous graph. From this
point of view, the author [8, CHAP. Ill] defined cranks and studied their
analytic capacities: Cranks are nothing but deformations of sets of
Vitushkin-Garnett type, however, these discontinuous graphs simplify the
computation of analytic capacity and enable us to construct various ex-
amples [8, Theorem F], [9]. Hence clarifying the geometric meaning of
cranks is important and would be applicable to study analytic capacities
of general sets. (Cranks are closely related to fractals (Mandelbrot [6]).)
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Here are simple cranks of degree 1:

Γ(l + iy) = [- 1/2,1/2] U (1 + iy + [- 1/2,1/2]) (y > 0 ) .

This is a subclass of

Γ(z) = [- 1/2,1/2] U (z + [- 1/2,1/2]) (z e C),

where, in general, (* + α JE) = {z + wζ; ζ e E} (z, w e C; E C C). The

purpose of this note is to study T(z) = ΐ(Γ(z)) (z e C) and show a role of

cranks JΠ(1 + iy) (y > 0) in an extremum problem.

In fluid dynamics, Γ(z) is a model of biplane wing sections, and the

study of flows obstructed by Γ(z) is classical (Ferrari [1], Garrick [3]).

As is well known, there exists uniquely an analytic function fz{ζ) outside

Γ(z) such that

( 1 ) fz(Q is integrable on 3Γ(z)Ό (with respect to the length element

\dζ\), fz(ζ) is real-valued continuous on dΓ(z) and fβ(oo) = — i,

( 2 ) \fz(p)\ exists at the right endpoint p of each component of Γ(z)

(Joukowksi's hypothesis).

Here dΓ{z) is the subboundary of Γ(z)c which corresponds to Γ{z)-

{endpoints of Γ(z)} topologically; dΓ(z) has two sides. Condition (1) means

that /,(£) is a velocity field obstructed by Γ(z) with velocity i at infinity,

and (2) means that vortexes at endpoints of Γiz) are negligible. We

define the lift coefficient for Γ(z) by

2

Using Blasius' theorem [7, p. 173], Kutta-Joukowski shows that

gives the lift for Γ(z) with respect to the velocity field with density 1

and velocity eίa at infinity (0 < a < 2π) (cf. [7, CHAP. VII], [3]). In the

section 2, we shall give a formula for ϊ(z) in terms of 3?(z) and shall show

that <£(z) < γ(z) (Theorems 1 and 2). To compute ϊ(z) practically, it is

necessary to study the so-called modulus-invariant arcs. In the section

2, we shall show two lemmas (with respect to modulus-invariant arcs)

which will be used later. Using our formula along modulus-invariant

arcs, we shall show, in the section 4, that the behaviour of T(z) near 1

is critical (Theorem 8). In the section 5, we shall show that

where σ0 is defined by the infimum of ϊ(x + iy)lT(x) over all real numbers

t> The condition "limeio S\t-P\ = ε l/»II^C|=0 (p=±l/2, z±l/2)" is required.
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x and y (Theorem 13). Since T(z) = 1/2, 2σQ equals the minimum of ana-
lytic capacities of cranks Γ(l + iy) (y > 0). This shows that the com-
putation of Γ(l + iy) (y > 0) is essential in this extremum problem. We
shall also show a practical method to estimate σ0. Theorem 13 suggests
that E(l/4) is an extreme in a sense. Our method works for unions of
two segments with different length, however, this is not applicable to
unions of three segments.

Γ(z)
z

r(z) = r(Γ(z))
- 1/2 0 1/2

§ 2. A formula for ϊ(z)

In this section, we give a formula for T(z) (z e C). Without loss of
generality, we may assume that z is contained in P = {ζeC; R e ζ > 0 ,
Im ζ > 0}, where Re ζ and Im ζ are the real part and the imaginary part
of ζ, respectively. A domain Γ{z)c is univalently mapped onto a ring
{ζ € C; r < |ζ| < r'}. The modulus of Γ(z)c is defined by mod (Γ(z)c) = τ'\τ
[12, p. 199]. An arc λ in P is called modulus-invariant, if mod (Γ(z)c) is
a constant on λ. For z e P, Im z > 0, λ{z) denotes the modulus-invariant
arc in P with endpoints z and a real number; this real number is uniquely
determined by z and larger than 1. In this section, we show the follow-
ing two theorems.

THEOREM 1. For z e P, Im z > 0,

(3) r( 2 2 2

where z is chosen as the initial point of this curvilinear integral.

THEOREM 2. &{z) < T(z) (z e P). Equality holds if and only if z is
real.

Since z is the initial point of the integral in (3), Theorems 1 and 2
show that ϊ(z) < 1/2 (z e P, Im z > 0). Here are some lemmas necessary
for the proof. The following lemma is a version of biplane theory to
analytic capacity (Ferrari [1], Garrick [3], Sasaki [13, pp. 208-213]).

LEMMA 3. For 0 < k < 1 and t > 0, we define
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\2ml + (1 + tf)f - V{2ml + (1 + ff)f}» - 4(14) ξ ( ί) = \2
2(1

„ (t) = Γ2mj + (1 + fe)< + V{2ι»j + (1 + kψγ - 4(1
2(1 + kΨ)

lk(t) = τk + I {y]k(
s) — ?fc(s)}^5 *

Jo

where

, K(k') = f
Jo

> j * mk
J l ^ / S 2 _ "L

— ί

Vl

•>2

ft' — V l ft2d8, K(k) f t ^ 2
1 — s2 Jo VI — s 2 Vl — A V

Lei

z t(ί) = x»(<) + iyt(t)

Then

(6) r(zk(t)) =

Proof. Since this lemma plays an important role in the proof of
Theorems 1 and 2, we give the proof of this lemma, for the sake of
completeness. For 0 < k < 1 and t > 0, we write ξ- = ξk(t) and η = ηk(t).
Take a Schwarz-Christoffel transformation

/(ζ) = Γ , , _ ^ - " y

m * , ds - iίζ ,
JoVs-lVs+lVks-lVks+1

where we choose a branch of the square root so that the upper half
plane is mapped to the positive orthant. Since

Vk d s

Vs2 - 1 V I - f t V ,

/(C) univalently maps {[- I/ft, - 1] U [1, l/ft]}c onto {(- a + ί[a_, β_]) U
(α + i[a+9 β+])}c for some α > 0, a± < β±. (See [13, pp. 208-213].) Pomme-
renke [11] shows that γ(E) = |JB|/4 if E is a compact set on the real line.
Since
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the conformal invariance of T( ) and Pommerenke's theorem show that

r ( ( - a + ί[a_, β_]) U (α + i[a+9 β+]))

1
[- ilk, - l] u [i,

Legendre's formula

E(k)K(k') + E(k')K(k) - K(k)K(k') = π/2

shows that

[4, p. 291]

= 2 Re /(I) = 2 "** ~
- s 2 Vl -AW

Let

Then (4) and (5) show that

1 <C ζ <C /?2fc, ψi(f) = ^ ί ^/c <C 57 <C 1/& , ψί;(>7) = — £ •

These inequalities yield that

β+ = ψk(ξ) — tξ , a+ = — ψ f c(^) — tη , a_ — — β + ,

and hence

β+ — «+ = ψkiy) + Ψfc(f) + (̂57 — ί ) ,
α_ - β+ = 2ίf - 2ψ t(f).

Rotating, translating and normalizing (— a + i[#_, /3_]) U (α + i[αr+, 9̂+]), we
obtain

r(z*(t)) = I^AVF^ΓF^ 1

2fe - f) '

ίπl{VK(k')}

ί)

Since
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we have

( 7 ) Ψ*(ί*(*)) - tξk(t) = - ^ - P ξ*(s)d8 .

In the same manner,

( 8 ) ψk(vM + tηk(t) = I t + Γ Vk(s)ds .

Z Jo

Thus

( 9 ) ψk(ηk(t)) + Ψ&M) + t[ηk(t) - ξk(t)} = lk(t) , z*(t) = 2fc(*) ,

which yields (6).

LEMMA 4 (the lift formula). The function £?(z) is continuous on P

and

(10) J?(zk(t)) = {to + - U ^ f c ( l ~ f/0 (0 < k < 1, ί > 0).

This lemma is known in fluid dynamics ([1], [3], [13, p. 213]). The

outline of the proof is as follows. For 0 < k < 1 and t > 0, let f(ζ) be

the Schwarz-Christoffel transformation used in the proof of Lemma 3.

Then if(ζ) univalently maps {[— l/k, — 1]U[1, 1/&]}C onto a domain similar

to Γ(zk(t))\ say i?. For real numbers [/, V, p, n, we take

£?(ζ) = ί/ζ - iV Γ - = = 4 ^ = = ^ - ίp Γ
Jo v s2 — 1 V k*s2 — 1 Jov V o v s 2 — 1 v AV — 1

Then Ω(h(w)) is an analytic function in i?, where h(w) is the inverse

function of i/(ζ). Using Joukowski's hypothesis and (the argument of

Ω(h(oo))) = — π/2, we determine [/, V, ô, n. Translating and nor-
dw

malizing R, we obtain fgM(ζ) Computing /^(ί)(oo), we obtain (10).

LEMMA 5. I t = Γ f 1 - ^fc(s))ds = Π {ξk(s) - l}ds (0 < k < 1).
2 Jo I & J Jo

Proof. Since

* - ,,(*) = o ( r 2 ) , ξk{s) - l = o(t-2) (ί — • cx>),

two integrals in the required equalities converge. Equality (8) shows that
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f. ( i " Vt(s)}ds =:I2~ UvM + *{τ ~ηk(t)}
Letting t tend to infinity, we obtain

Γ ( i ~ Vk(s)}ds = ~ϊ ~ Ψ* = IJL
2

Thus the first equality holds. Analogously, (7) yields the second equality.

In order to prove Theorems 1 and 2, it is necessary to use the fol-

lowing property:

(11) To z e P, Im z > 0, there corresponds uniquely a pair (k91) so that

zk(t) == z and λ(z) = {zk(s); s > t) U {(1 + k)/(l - k)}.

This property will be shown in the next section. Here we give the

proof of Theorems 1 and 2, assuming (11). First we give the proof of

Theorem 1. For z e P, Im z > 0, let (k, t) be the pair in (11). Equality

(10) shows that

Thus we have, by Lemmas 4, 5, (6) and (10),

r(z) - 1/2 = γ{zM) - 1/2 =

Im z

f. {1 -. -

T Γ I Ϊ • ^ (^ ( S ) ) -S(*.(β))}42 Je 1 + feV yt(s

r(z>(g)) - ^(gt(g)) /»(a) & = 1 f
S?(«*<β)) y t(s)2 2J J (Imζ)2
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This completes the proof of Theorem 1. Next we give the proof of
Theorem 2. For zeP, Re z > 0, Im z > 0, let (A, t) be the pair in (11).
We write ξ = ξk(t) and η — ηk(t). Equalities (4) and (5) show that

(v - ξf = yf + ί2 - H

= 1 ^ k ψ {2ml + (1 + WY - 2V(1 + kΨ)(mi + f)}.

Thus we have, by Lemmas 3 and 4,

A{r(z) +

r(zf

{(1 _ feyf _ (i + ̂ χ 9 _ ξγ}

{r(z) + &

X [(1 - k)Ψ - {2ml + (1 + kψ - 2V(1 + kΨ)(mi + t2)}]

f ml)2 + (kml - Ϊ)Ψ - (kt

A simple calculation shows that kml > l Thus <e(z) < r(^) (z e P,
Re 2 > 0, I m z > 0). If Re z = 0 and Im 2 > 0, then we have

by (12) and the continuity of Γ(2) and ^f(z). We now show that

(14) ΐ(z) < se(z) + -—JL- - (zeP,0<Imz< 1/2)
log (1/Im z)

for some absolute constant C. By (12), we have, with two absolute con-
stants Cj and C2,

ΐ(z) - X(z) < r(z)\km\ - ΐf (kml - D2

- {r() + JSP()K1 k)\kf + l) - (1{r(z) + JSP(«)K1 - k)\kf + ml)

- (1 - Kfml (1 - KfK(k') - (1 - /e)2 log (1 +

and
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( k m l ~ 1 ) 2 = k ( k m l ~ 1 ) 2

(1 - k)\kf + ml) (1 - k)\kψ + kml)

k'mj _ ml _
(1 - k)%l + kΨ) AUzfkWf

__ E(k'f(Imzy

where (k, t) is the pair associated with z. Thus

r(z) - SP{z) < min {- C l , C2(Im
i (l - ky log (i + (ijk))

If Im z < k, then γ(z) - if(-ε) < C2 Im 2:. If Im z > k, then

- (1 - Kf log (1 + (1/A)) - log(l/Im z)

for some absolute constant C3, because of 0 < Im z < 1/2. Thus

r(2) - ^(2) < max { — - £ L -, C2 Im z] ,
I log (1/Im z) i

which gives (14). Since T(z) and ££{z) are continuous on P, (14) shows

that the equality holds for real numbers z. This completes the proof of

Theorem 2.

Inequality (13) yields that

γ(iy) - &{iy) >C,y (0 < y < 1/2)

ί constant C4. We do n<

in (14) is best possible or not.

for some absolute constant C4. We do not know whether the order

1
log(l/Imz)

§3. Modulus-invariant arcs

To compute ϊ(z) practically, it is necessary to study modulus-invari-

ant arcs. To use later, we prepare, in this section, the following two

lemmas; (15) and (16) in Lemma 6 give (11) which was used in the proof

of Theorems 1 and 2.

LEMMA 6.

(15) zk(t) is a continuous homeomorphίsm from Q — {(k, t)\ 0 < k < 1,

t > 0} to P - [0, 00).
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(16) For (k, t) e Q, λ(zk(t)) = {*M; s > t} U {(1 + *)/(l - k)}.

(17) For 0 < k < 1, #*.(£) is strictly increasing, and yk(t) is strictly de-

creasing with respect to t.

LEMMA 7. Let a > 0. Then, for any k satisfying ka < k < 1 (ka =

max{(α — l)/(α + 1), 0}), i/iere exists uniquely taΛ > 0 swc/i ί/iαί Λ:fc(ία,fc) = a.

We have

(18) yk(ta,k) is continuous and strictly increasing with respect to k.

(19)

(20) αr t = Γ"*{(1 - o ^ ί ) + (1 + a)ξk(s)}ds.
Jo

Proof of Lemma 6. For 0 < k < 1, we have

(21)

In fact, (4) and (5) show that

and hence

lim xk(t) = 1 + 2 lim f ξk{s)ds / Γ
C — o o ί-oo Jθ / JO

= i , 2_ __ = J^tA

(I/A) - 1 1 - k '

The other three equalities in (21) are easily seen. We have

(22) Hmyk(0) = 0 , lim *t(l/fc') = lim^l/A:') = oo .
Λ—0 Λ—1 Λ — 1

In fact, we have

lim ^2τfc = 2 lim k2 Γ* m J 7_j' ds
λ -Ό fc-o J i V S 2 — 1 V 1 — klS"

= 2 lim ft mi log m. = lim | g l log ί - g ^ } = 2

which gives



ANALYTIC CAPACITY FOR SEGMENTS 29

l im Λ (0) = lim π - = -1 l i m _ L - = 0.
*-o *-o k2K(k)τk 2 *-o iv(«)

Since lim^i mκ = 1, we have, with nk = V 1 —

limτfc = 2 lim {m\ Γ dg_ - k~2 Γ J- ^-ώ

_ i m ( m Λ - ) J ^ - ; = = = - -

Recall that ξk(s) > 1, 0 < f̂c(s) - ξk(s) < (I/A) - 1. We have

lim inf *fc(l/A') = 1 + lim inf 2 Γ* fΛ(s)ds/f/A {̂ fc(s) - ξk(s)}ds
k-+l * - l J o / J o

> 1 + lim inf . = oo

and

lim inf yk(ljkf) = lim inf π / < k2K(k!) (ηk(s) —
fc-l fc—1 / I Jo

= lim inf
_ 1

oo .

Thus (22) holds.

Since

/fc(ί) is strictly increasing, and hence yk(t) is strictly decreasing. Recall

(7) and (9). Since

^ - Ψ*(f»ω) + tξk(t)},

we have, with ξ = f fc(ί) and 37 = 3̂ (2),

Since ψί(ί) > 0 ( 1 < t < mu), we have ψk(ξ) > 0. Since ψj(ί) < 0 (mfc < *

< I/A), we have φk(η) > ψfc(l/A) = 0. Consequently, *i(ί) > 0. Thus (17)

holds. Inequalities (21) show that l i m ^ zk(t) = (1 + A)/(l - k). Thus (17)
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yields (16). Let Wk be the compact set bounded by the x, y axes and

). Then (16) and (17) show that

Wk C {* + iy; 0 < x < 1±A, 0<y< yk(0)) ,

Wk 3 {x + ίy, 0 < x < xk(llk'), 0 < y <

and hence, by (22),

n
0<fc<l

This shows that zk{t) is an onto mapping from Q to P — [0, oo). Recall

that λ(iyk(O)) is a modulus-invariant arc with modulus mod({[— l/k, — 1]

U [1, l/k]}c). The domain {[- 1/Jfe, - 1] U [1,1/£]}C is univalently mapped

onto a Grόtzsch's domain GPk = {ze C; \z\ > 1} — [pfc, oo) with

Since mod (Gp) is strictly increasing with respect to p [5, p. 72] and pk,

(1 + &)/(l — k) (— lim^^ zk(t)) are strictly increasing with respect to k, we

have

(23) Wk c Wk, , Wft Π λ(iyA0)) = 0 (A < tf).

Notice that 2:fc(ί) is continuous on Q (with respect to (k, t)). Since

(1 + k)l(l — k) (= lim^^ zk(t)) is continuous with respect to k, we have

C\k<μ<ι Wμ = Wk. Thus (15) holds. This completes the proof of Lemma 6.

Proof of Lemma 7. Let μ(a) = {ζ e C; Re ζ = a} (a > 0). Then Lemma

6 shows that

μ(a) Π J(iy*(O)) = 0 (0 < A < ka),

ju(α) Π λ(ιyfc(0)) is a singleton (Λα < k < 1).

Hence, if k > £α, then, by (17), there exists uniquely taΛ > 0 such that

Zk(ta,k) is the unique element of μ(a) Π Λ(ryfc(O)). Evidently, xk(tatk) = α.

By (15) and (23), yk(tatk) is continuous and strictly increasing with respect

to k. If a > 1, then ka = (a - l)/(α + 1), and hence (16) gives (19). If

0 < a < 1, then &α = 0, and hence

_ ....)) = 0 .
Jc—*Jc ' k—*0

Since
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a = **(ί.,*) = 1 + { - τk + 2^'"ξk(s)dsjllk(t),

we have (20). This completes the proof of Lemma 7.

§4. Asymptotic behaviour of ΐ(z)

In this section, we show

THEOREM 8.

(24) r;(o) = + oo,

(25) r;(a) = J _ log 1 ( > 0) (0 < a < 1) ,
4π a

(26) r,+(l) < 0 ,

(27) r,(σ) = 0,

ΐyv(a) = E ( )

r;(a) = limvl0{γ(a + iy) - ΐ(a)}ly, ΐy = dΐ/dy and ΐvv = 32r/9/

Equalities (25)-(27) show that ΐy(a) is discontinuous at a = 1. We

see that rv(l) = l/{2π v/c2 — 1} = 0.662 /2ττ, where c is the number satis-

fying cj^Jc1 — 1 = log (c + Vc2 — 1) (cf. Lemma 10). Since

7(1) = 1/2, lim 7(1+ i;y) = 1/2,

(26) shows that Γ(l + iy) has the minimum in (0, oo). If 0 < a0 < 1 is

sufficiently near to 1, the behaviour of ϊ(aQ + iy) (y > 0) is more com-

plicated. Let y0 > 0 be a point such that ϊ(l + iy0) = min^o γ(l + ίy).

Since ϊ(l + iy0) < 1/2, we can choose 0 < ax < 1 so that maxαi^α^1 ϊ(a + iy0)

(= YQ, say) is less than 1/2. If we choose α0 so that max {αl5 1 — 2(1 — 2Γ0)}

< α0 < 1» then Γ(α0 + iy0) < Γ(̂ o)> and hence (25) shows that Γ(α0 + iy) has

a local maximum in (0, yQ). Since r(aQ + iy0) < T(aQ) and l i m ^ r(aQ + iy)

= 1/2, r(α0 + iy) has the minimum in (0, oo). Thus ϊ(aQ + ίy) has at least

two extrema. A calculation shows that limα 4! ϊyy(a) = — oo and

r^(i) = 2lim{r(i + iy) - r(i) - yr;(y)}/y2 =
2/10

Thus ϊyy(a) (a > 1) is also discontinuous at a = 1.

Here are some lemmas necessary for the proof.
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LEMMA 9. lim ktatk = 2^ a (0 < a < 1).
*-o 1 — a

Proof. Equalities (4) and (5) show that, with ξa>k = ξk(ta>k) and ηa>
k

V ξlίk - 1 V 1

1 - mlγ)-«

V I - τja,k V 1 — krrjaik

Equality (20) shows that

0 = - aτk + fα'*{(l - ά)Vk(s) + (1 + a)ξk(s)}ds
Jo

and hence

Λl/fc

- (1 - a) Iα.fc V s 2 - 1 V I - A

= ta>kV-χ{(l - a) + (1 + α)fα,^-,\}.

Let (^)7=i be a sequence tending to 0 such that lim^^ kflatkJ ( = d, say)

exists. Evidently, 0 < d < l . I f O < d < l , then (29) shows that

la,kjVa,"kj TTlijttl ta,kjVa^kj = / Λ ,o >
Vl-tt

and hence

By (28), we have

By (30), we have
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which gives d = 2y/~α7(l + ά)> We show that d Φ 0, 1. Let u(k) and

v{k) be the first quantity and the last quantity in (30), respectively. It

holds that u(k) = υ(k) (0 < k < 1). If d = 1, then (29) shows that

lim^^ υ(k3) = oo. We have

lim sup u(kj) < lim sup (1 + a^'^^l^ik]) = (1 + a) ,

which contradicts (30). If d = 0, then (29) shows that lim

oo. By (28) and (29), we have

lim ξathjks log (1/*,) = 1.

Hence

lim u{k5) = lim 37ά,Λy{(l + o)m2

kJ log fa>fci — (1 — a)kj2}

= 2α lim η^kjkj2 = oo ,

which contradicts (30). Thus d Φ 0, 1. Since (kj)jz=1 is arbitrary as long

as (A^αffc,)7«i converges, we obtain limk_0 foyβιfc = d = 2y"α"/(l + α). Thus

i ^ fc, _ V α /d + α) _ 2VT
*-o ' Vl - {4α/(l + α)2} 1 - a

L E M M A 10. We

lim tUkmk2 = ,
Λ-*O y c 2 — l

where c > 0 is 2/ιe number satisfying

c/y^^T = log (c + yF~=ΠΓ).

Proof. Equalities (4) and (20) show that, with ξι>k — ξk(tίιk),

(31) 1 ~ ξUmi2

 = ^ 2

y ξ U l V l / e 2 f U '

f m f- 1 V l - A:V

l1 £ l > * } = 0
and hence



34 TAKAFUMI MURAI

V g > t - l V l - k2ςιk

This shows that limfc_0 £1)fc = c. Thus (31) yields the required equality.

LEMMA 11. Let

r { z M ( 1 + * ( * ) ) / 4 (o< fe< i, ί > o).

Proof. We have

V 1 + kΨ

V l +

2π

2τr

i\Πλ- « \ds - r ( i - ,t(β))dβ
Uί \ ^ V 1 + AV/ h \k I

2ττ

~ί"ΛvM~ Jilk^)ds~

12. γ(z) = — +
2 ~ " ' ~ " " (eeP),



ANALYTIC CAPACITY FOR SEGMENTS 35

where kz is the first number in the pair associated with z in (11),

ck =-L-{E{k>) - kK(k>)f ,
4*k

ht(O = {ϊ(ζ)Vr(ζf + c'k(lmζy + r(ζ)2 + c£'

Proof. Let ζ e λ(z). Then kc = kz (= k, say). By (12), we have

HO _ ! _ HO -

+ mlf + (Ami - I)2*2 - {kf + ml)}

2γ(ζ)\kmi - ly

Since

V(kf + miy + (kml - iyt2 + (k? +

[V{(1 + /^2) + (Ami - I)}2 + (Ami - 1)2(1 + /ft2) - (Ami - I) 2

k
+ (1 + kΨ) + (kml - 1)]

[Vl + ^ ί V(l + A2*'2) + (kml - I)2

k

+ (1 + A*?) + (kml - 1)1

/ (1 - kf{\ + kΨ) (1 - Ay{(Amj - I)2 + 2(Amj - 1)}

^ 4A*/()» ^ 4 A W

(1 - k)\l + k2f) (1 -k)\kml - 1 ) '
4k%(ty 4k%(ty

- kyκ(kj(im.
-{r(ζWr(ζy

we have
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1 f ίf1 f ί J^L ι\
2 Jiωlif(ζ) J (Imζ)2

_ kK{k')\km\ - If f γ(ζf

which gives the required equality.

We now give the proof of Theorem 8. Since

Jγ(Zk(O)) = r(^(Q)) - 1/4 = VK{h!) f l - k _ τ
yk(0) π X k2 4

4

we have (24). Let 0 < a < 1. Then

-> s

2π

where

2

t + (1 + /ί2)"2}2 - 4(&4/n< + /e2w2)(l + u2)]1'2

Let rft = Λ2m| + k\m\ - 1)(1 - k2m\)(l - &)-*. Then we can write

vt(u)

- (ft* + ^4mt)}M2

y 1 + M

- k2ml)(l

^ f t + , { +
VI + w

,. " t + . .f* ,{1 + dtω,(A, u)}
VI + w 2uVl + w2
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with two functions ω^k, u) (j = 1, 2) satisfying sup|ω/&, u)\ < oo, where

the supremum is taken over all pairs (k, u) such that 0 < k < 1/2 and

u > ΛJΊΓ/(1 — α). Notice that limfc_0 dk = 0 and limfc_0 dkK(k') = 2. Thus

Lemmas 9 and 11 show that

- lίxl f * f w Γ
*-o L 27r Jία.

2ττ

= lim ^ g ( f e / ) Γ . 1 -{1 + dkω2(k, u)}du

1 Γ du l i l
log — .

l i m ^ = = = = = log
A:->O 2π J2vir/(i-α) u\ί 1 + u2 4π a

Thus (25) holds. Lemma 10 shows that lim^o ktι>k = oo, and hence

= l i m dkK(k')
4π J*ίi,* MV 1 + u

By Lemmas 10 and 11, it follows that

rizAK*)) = - lim kK}k>) VTTtfg
fco 2

= - — lim ίi fc/n,τ2 = - — - 1 < 0 .
2π *-*o 2 V 2 1

Thus (26) holds. Let a > 1. Theorem 2 shows that

Λ ( ζ ) =c J f e p >(Otr(O + ̂ (0ί Λ f c α ( ζ ) T
Thus Lemmas 7 and 12 yield that

y

and

lim «a + ^ ~ ^ 2 = -λcta lim Γ d« =
i/io v 4 i/io J o

= 2lim 'vα + W) /— _ __ — Cka i i m — ds
yio y2 2 ° 2/io y J o
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h k ~ κκm'
= _ 1 a+lfE(2</Έ\ _ a-l κ(2JΈ

Sπ2a-l\\a+l/ α + 1 V α + l

which shows (27). This completes the proof of Theorem 8.

§5. The constant σQ

In this section, we study the following extremum problem: σ0 =

inf ϊ(x + ίy)lτ(x), where the infimum is taken over all real numbers x

and y. We show

THEOREM 13. Let p(a) = min^o T(a + ίy)/ϊ(a) (a > 0). Then σQ = p(ΐ)

and σ0 < p(a) (a Φ 1).

Here is a lemma necessary for the proof.

LEMMA 14. For each 0 < k < 1,

(32) T(zk(t)) is strictly increasing,

(33) 4ΐ(zk(t))l(l + xk(t)) is strictly decreasing.

Proof. Theorem 1 shows that

and hence

d r(z (t)) _ y'k(t) f- f r(zM) _ Λ y*(β) d s

{
2 I J?(ZM)

Thus Theorem 2 and (17) yield (32). Since

rjzjjt)) _ Λ yί(t)

we have, by (6),
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d 4 r ( z * ( * ) ) _ l - k d V 1 + kΨ
dt 1 + Xk(t) k* dt ψ,( 7 t(ί)) + tηk{t)\

= 1 - f e

k\^(7]M) + tηk(t)Y

L y 1.

Since mfc > 1, we have, with η = ηk(t),

kHψk(v) = kH{ψ.k(v) -

- ml

I - ^37 J 9 V 1 —

- l V l -

V I - 3̂7 J 9 V 1 — k2sι

Hence the first quantity in (34) is negative, which gives (33).

We now give the proof of Theorem 13. Let a > 1. Since

l i m ^ r(a + iy)/ΐ(a) = 1, there exists ya > 0 such that

p{a) = r(α + ryj/r(α) = 2γ(a + iya).

By (27), we have ya > 0. Hence there exists a pair (k\ t°) such that

a + iya = «fc0(ί0). Let Z1 > 0 be the number such that ^ ( ί 1 ) = 1. Then

t1 < t\ Hence, by (32), it follows that

Inequality (26) shows that p(ί) < 1. Let 0 < a < 1. Then there exists

ytt > 0 such that

_ r(α + iya) _ 4r(α + fyα)

If ya = 0, then ^(1) < 1 = p(α). If ,yα > 0, then there exists a pair (k\ t°)

such that a + ίya = 2;ko(ί°). Let ί1 > 0 be the number such that xfc0(^) = 1.

Then t1 > t\ Hence, by (33), it follows that

Thus
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p(ϊ) = min p(ά), p(l) < p(a) (a Φ 1).
α>0

which gives the required inequalities in Theorem 13. This completes the

proof of Theorem 13.

From the point of view of Vitushkin-Garnett's example, it is inter-

esting to estimate σ0. A rough estimate is given as follows. The

Garabedian function [2, p. 19] of an interval [— 1/2, 1/2] is given by

in fact,

-Lf
2π Jac-i/2,1

f
2π Jac-i/2,1/2]

Since ψ(ζ)ψ(ζ + 1 + iy) is analytic outside Γ(l + iy) and equal to 1 at

infinity, we have

riX + ίy)<-^-\ \Ψ(Of(ζ + l + iy)\\dζ\ (cf. [2, p. 19]).
2π J3Γ(l + iy)

Thus Theorem 13 shows that

(35) a, < inf 1 f |ψ(ζ)ψ(ζ + 1 + iy)\\dζ\.
v^o π J 9ra+iv)

We can easily compute the right-hand side of (35). The estimate by this

method is rough, however, this method gives a new approach to the

construction of sets of Vitushkin-Garnett type (cf. [8, p. 81]). In order to

get a better estimate, it is necessary to study, in detail, incomplete ellip-

tic integrals. Recall that

σ0 = min 2r(zk(tUk)),

1 -k

hit) = irt(Vt(t)) + ψ,(f»(0) + t{ηkit) - ξk(t)} ,

~s2 = _ d s (l<x<= Γ
J1
Γ / « } if1 V s 2 — 1 V 1 —

Since

=
J
Γ /-r-



ANALYTIC CAPACITY FOR SEGMENTS

we have, by making the substitution 1 — k2s2 = kf2u2,

41

o ^ 1 — u2 Jo v 1 — u2 v 1 — £ ' V

= /r2i? (arcsin v(x), k') — m*F (arcsin v(x), ̂ ) ,

where v(x) = Vl — k2x2/k\ Thus ψΛ(x) can be computed with the aid of

Landen's transformation [4, p. 250] or Jacobian theta functions [4, p. 292],

(As is well known, Landen's transformation yields that

sin

where ψ is defined by tan (ψ — φ) = k tan 9. Since (1 — k)/(l + k) < ft',

we can compute i?(^, £') and F(^, k!) by repeating this formula.) Equality

(20) for a = 1 can be rewritten as

0 = ^ -
2

and hence

^Afc = ίi(fc{mfc - ξk(thk)} + ψfc(ffc(ίi)fc)) .

We now inductively define a sequence (tί%)ζ=0 by ^ = 0,

Since

we have

t{mk - ξk(t)} + fk(ξk(t)) = -£ + f
2 Jo

(rc-1)

< (m, -

and hence

I«... (1 - "i^y I ί<» I = -"ψ- (1 -
2

(n > 0)
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This shows that (*$)ίΓ-o converges to tuiί. (In the case where k is small,

the speed of the convergence of (^)n=o is slow. Hence, by using (ί$)n-o>

we choose first tUΊc sufficiently near to tUΊc and define next (ί$)ίί-o by

where εfc > 0 is chosen so that the convergence of (tί%)%=0 is rapid.

Notice that tίtk = l i m ^ tί%) Thus we can compute 2γ(zk(thk)) (0<k< 1).

The author expresses his thanks to Prof. Yonezawa and Mr. Sakurai

who practiced our program. Prof. Yonezawa shows that 0.95 < σ0 < 0.97.

(σ0 is attained when k is near to 0.1.)
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