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ON THE STRONG UNIMODALITY
OF LEVY PROCESSES

TOSHIRO WATANABE

§1. Introduction and results

A measure p(dx) on R is said to be unimodal with mode a if p(dx)
= cd,(dx) + f(x)dx, where ¢ = 0, 3,(dx) is the delta measure at a and f(x)
is non-decreasing for x < ¢ and non-increasing for x > a. A measure
pdx) = > > . pddx) on Z={0, 1, £2,---} is said to be unimodal
with mode a if p, is non-decreasing for n < ¢ and non-increasing for
n = a. A probability measure p(dx) on R (resp. on Z) is said to be
strongly unimodal on R (resp. on Z) if, for every unimodal probability
measure 7(dx) on R (resp. on Z), the convolution ux y(dx) is unimodal
on R (resp. on Z). Let X,, te[0, oo0), be a Lévy process (that is, a pro-
cess with stationary independent increments starting at the origin) on R
(resp. on Z) with the Lévy measure v(dx). The process X, is said to be
unimodal on R (resp. on Z) if, for every ¢ > 0, the distribution of X, is
unimecdal on R (resp. on Z). It is said to be strongly unimodal on R
(resp. on Z) if, for every t > 0, the distribution of X, is strongly uni-
modal on R (resp. on Z). In this paper we shall characterize strongly
unimodal Lévy processes on R and Z.

THeOrReEM 1. Let X, be a Lévy process on R. Then X, is strongly
unimodal on R if and only if

X, =0B@® + 1t,
where B(f) is a Brownian motion and ¢ and 7 are constants, ¢ = 0.

THEOREM 2. Let X, be a Lévy process on Z. Then X, is strongly
unimodal on Z if and only if
X, = X% — X,
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where X® and X® are independent Poisson processes and a and b are
non-negative constants.

Ibragimov [1] proves that a probability measure on R is strongly
unimodal if and only if it is a delta measure or absolutely continuous
with support being an interval and the density being log-concave. As a
counterpart on Z, Keilson-Gerber [2] proves that a probability measure
p(@x) = > v . pd(dx) on Z is strongly unimodal if and only if p? =
PrniiPn-, for every ne Z. These results play an essential role in our
proof.

The following are main related results. Yamazato [9] shows that if
the density of |x|u(dx) is log-concave on R-{0}, then the distribution of
X, is strongly unimodal on R for sufficiently large ¢ > 0. It is an open
problem to characterize unimodal Lévy processes on R or Z in terms of
their Lévy measures. Wolfe [7] proves that, if X, is unimodal on R
(resp. on Z), then u(dx) (resp. v(dx) + cd,(dx) for some ¢ > 0) is unimodal
on R (resp. on Z) with mode 0, and that the converse does not hold.
Medgyessy [3] shows that if v(dx) is symmetric and unimodal on R, then
X, is unimodal on R. The analogous result on Z is observed by Wolfe
[7]. As a big advancement, Yamazato [8] shows that Lévy processes of
class L are unimodal on R. Steutel-van Harn [4] proves the unimodality
of Lévy processes on the non-negative integers analogous to class L.
Watanabe [5] constructs non-symmetric unimodal Lévy processes on R
that are not of class L. Watanabe [6] gives a similar result for Lévy
processes on the non-negative integers.

§2. Proof of Theorem 1
Let p,(dx) be the distribution of X,. Then we have

@1) [7 e = e,
W(2) = itz — 2-1g%" + f T e — 1 — dax(l + ) u(d),
where 7e R, ¢* = 0, and
({0) =0 and J: 2(1 + )" (dx) < oo .

The measure v(dx) is called the Lévy measure of X,.
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Proof of “if”” part. Since normal distributions are strongly unimodal
on R by Ibragimov’s result [1], X, = ¢B(¢) + 7t is strongly unimodal on R.

Proof of “only if”’ part. Suppose that X, is strongly unimodal on R
and not deterministic. Then, for each ¢ > 0,

2.2) p(dx) = fi(x)dx

the set {x: f(x) > 0} is an interval, and logf,(x) is concave on this set.
This is by Ibragimov’s result [1]. By Wolfe’s theorem [7],

2.3 v(dx) = ¢(x)dx

with ¢(x) non-decreasing for x << 0 and non-increasing for x> 0. It is
well-known that, for any bounded continuous function g(x) with support
in R — {0}, it holds that

(24 lime [ gGuidn) = [ gomds).

Hence, by Lemma 3 of Ibragimov [1], we can choose a sequence #(n)
such that, as n — oo, #(n) — 0 and

(2.5) Un) ™ fom (%) —> 6(x)

for a.e. xe R. It follows that log ¢(x) is concave on the support of ¢(x)
by (2.5). Therefore, ¢(x) is bounded on R and

(2.6) ¢ =uR) = I 7 gx)dr < oo

Suppose that ¢ > 0. We shall show that this leads to a contradic-
tion. Let

=7 — j " X1+ 2)u(dx) .
We can assume 7, = 0, because we can consider X, — 7,¢ instead of X,.
There are two possible cases.

Case 1. ¢ = 0. The process X, is a compound Poisson process and
hence p,({0}) > 0. This is a contradiction because non-trivial strongly
unimodal probability measure on R has no point mass.

Case 2. ¢* > 0. We get, for any t > 0,

@) u(d) = 0 % p(dx)
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where p{’(dx) = g(x)dx is the normal distribution with mean 0 and
variance o¢%, and p®(dx) is a compound Poisson distribution. Since
230} - 1 as t— 0, we obtain from (2.7) that

2.8 lim {£.(0)}'/.(0) = lim (2xt)*of,(0) = 1.

We have, by Ibragimov’s theorem [1],

(2.9) {f(x)} = fU0)f(2%)
for any ¢ > 0 and x ¢ R. Hence we obtain from (2.5), (2.8), and (2.9) that
(2.10) 0 = lim (2z)"o{t(n)}*{(¢(n)) " fuw (D)

= lim (224(n))" 0 f(O{ (1)) "' f 2y (22)} = (220)

n—-co

for a.e. xe R. It follows that ¢(x) = 0 for a.e. xe R. This contradicts
the assumption ¢ > 0.

Therefore, if X, is strongly unimodal on R, then u(dx) = 0. Thus we
have proved Theorem 1.

§3. Proof of Theorem 2

Let X, be a Lévy process on Z. Then we can write (2.1) as

(3.1) W) = j (€ — 1u(dx)

with v({0}) = 0 and vw(Z) < oo.

Proof of ““if”” part. Since Poisson distributions are strongly unimodal
on Z by Keilson-Gerber [2], X, = X — X? is strongly unimodal on Z.

Proof of “‘only if” part. Suppose that X, is strongly unimodal on Z.
Let p(dx) = > . ..p.(t)d,(dx) be the distribution of X,. By Keilson-
Gerber’s theorem [2], we have

(3.2) {D:(OF = po(®) (D)
for any ¢ > 0. Since p,(dx) converges weakly to 5,(dx) as ¢ — 0, we get
(3.3 limp,(t) =1.

t—0

Since (2.4) holds, we have

(3.4) lim p,(8) = u({n)
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for n == 0. Hence we obtain from (3.2), (8.3), and (3.4) that

(3.5

0 = Lim (¢~ p,()))" = Lim py())t " pot) = +({2}) .

Therefore we get v({2}) = 0. Since »({n}) is non-increasing for n =1 by
Wolfe’s theorem [7], this implies that »({n}) = 0 for n = 2. Similarly we
have v({n}) = 0 for n £ — 2. The proof of Theorem 2 is complete.
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