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Introduction

The two main problems in the theory of the theta correspondence

or lifting (between automorphic forms on some adelic orthogonal group

and on some adelic symplectic or metaplectic group) are the characteri-

zation of kernel and image of this correspondence. Both problems tend

to be particularly difficult if the two groups are approximately the same

size.

Eichler's famous solution of the basis problem for elliptic modular

forms [E4] (and its representation theoretic versions by Shimizu and
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Jacquet/Langlands [Shz, J-L]) characterizes the image for the lifting from

0(4) (the orothogonal group of the norm form of a definite quaternion

algebra over Q) to Sp(l), the work of Waldspurger [Wai, Wa2, Wa3] on

the Shimura correspondence characterizes kernel and image for the corre-

spondence between 0(2,1) resp. 0(3) (the orthogonal groups of the trace

zero parts of the norm form of a split or division quaternion algebra re-

spectively) and Sp(l). Rallis proved fairly general results for the lifting

from Sp(ϊ) to a rank 1 orthogonal group 0(1, m) [Ral] and for the lifting

from Sp(ή) to a "large" orthogonal group [Ra4].

Howe and Piatetski-Shapiro [H-PS] could prove injectivity of the
lifting for the pair (0(2,2), Sp(2)) (using Whittaker model techniques).
They could not generalize this to the lifting from 0(4) to Sp(2) (in this
anisotropic case Whittaker models do not exist). Restricting attention to
forms on 0(4) whose lifting to Sp(2) corresponds to a holomorphic Siegel
modular form of degree 2, Yoshida [Yl, Y2] treated the same problem
and conjectured injectivity of the lifting. He could, however, prove his
conjecture only for special D and even for these only for special forms
on the orthogonal group. Part of his motivation was the conjecture that
the (one dimensional part of the) zeta function of a certain abelian va-
riety should be the spinor L-function of a Siegel modular form. For the
particular varieties he considered, the lifting (if nonzero) of a suitable
form on the orthogonal group would provide a Siegel modular form with
the required spinor L-function (for details see [Yl, Y2]).

In the present article, we take up this problem in the same semi-
classical spirit as Yoshida and prove that his lifting is almost injective.
More precisely, we can show that the forms Ψ on 0(4) in the kernel of
the lifting to Sp(2) are characterized by a condition on a special value
of their standard L-function. From the work of Waldspurger [Wai, Wa2,
Wa3] and Rallis [Ral, Ra3, Ra4] it is not surprising that a condition of
this type characterizes the kernel of the lifting. However, using the
special situation we associate (as in [Yl, Y2]) to the form Ψ on 0(4) a
pair of elliptic modular forms of weight 2 whose symmetric L-function is
the standard L-function of Ψ. With the help of a result of Ogg [0] on
this symmetric L-function we can then show that the vanishing of the
lifting is indeed a quite exceptional case, thus proving the "almost in-
jectivity" mentioned above. In particular, the lifting does not vanish in
the cases needed for Yoshida's geometric conjecture. This sharp result
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is surprising and depends very much on the special situation considered
here. That the exceptional case does indeed occur has been shown in
[SP].

In classical terms our result gives a precise description of the linear
dependence relations between the theta series of degree two of the inte-
gral quaternary quadratic forms attached to normal ideals in definite
quaternion algebras over Q. As a consequence we can show that the
classes of these quadratic forms are distinguished by their theta series
of degree 2. We now sketch the organization of this paper.

In [Bό3] the first named author gave a characterization of those
Siegel modular forms of level 1 which are linear combinations of theta
series attached to even unimodular positive definite quadratic forms.
Part 1 can be viewed as an attempt to make the method of [Bo3] appli-
cable to higher levels N (at least for small weights and with emphasis
on the case of squarefree level and trivial character). Our basic objects
are Eisenstein series of type

El(Z,8,N)=
det (CZ + D)k Idet(CZ+ D)\2s

where {C, D] runs over all non associated coprime symmetric pairs with
C = 0 mod N.

In section 1 we review the "pullback machinery" created mainly by
P. Garrett [Ga, Boll. The integration of a Siegel cusp form of degree n
(in the sense of the Petersson scalar product) against such an Eisenstein
series of degree n + n' (restricted to a block-type diagonal) can be de-
scribed in terms of Hecke operators and Eisenstein series of Klingen
type. The Hecke operators decompose into a contribution from the "good
primes" (this part is of the same type as for level 1) and a "bad part".
In section 2 we show that the bad part also has a formal Euler product
expansion-for the good primes this is well known [B52]. In section 3 we
build a bridge between the theory of singular modular forms (as created
mainly by Freitag [Fre2]) and the fact (due to Shimura/Feit [Shi2, Fe])
that Resf.((w+1)/2)_fc E$(Z,s,N) is a holomorphic Siegel modular form (for
"small" weights k < (n + l)/2). We describe those residues very explic-
itly as linear ocmbinations of theta series, in fact "all" theta series of
quadratic forms of levels dividing N occur in that residue. The results
obtained so far are combined in section 4. Theorem 4,1 gives a sufficient
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condition for an eigenform F (of sufficiently small weight) to be a linear

combination of theta series. We can at present prove the necessity of

this condition only under an additional restriction on F (see Remark 4.1

for more details). A second delicate point is that we cannot generally

assume the existence of a basis of eigenforms of our Hecke algebra for

the space of cusp forms. This seems to be due to the lack of a theory

of newforms in our situation. Fortunately both difficulties play no role

in the application to Yoshida's lifting which are the main goal of this

article. We hope to clarify them in the general situation in future work.

In part 2, we come to the main problem of our work, the investiga-

tion of the injectivity properties of Yoshida's lifting. Section 5 reviews

the ideal theory of an Eichler order R of squarefree level N in the defi-

nite quaternion algebra D over Q. For a pair (φ, ψ) of automorphic

forms on D% which are right invariant under the adelic group of units

R* we define (following [Yl, Y2]) Yoshida's lifting of degree n, Y{n)(φ, ψ).

This is a holomorphic modular form of degree n and weight 2 which can

be written as a linear combination of the theta series of degree n of the

ideals of the Eichler orders of level N in D. It can be viewed as the

result of applying the theta lifting to an automorphic form Ψ(φ, ψ) on

the adelic orthogonal group OA(D) of the norm from of D that is derived

from the pair (α>, ψ) via the embedding SO(D) <=—> (Dx X D x)/Q x.

From section 6 on we assume φ and ψ to be newforms (or "essential"

in the sense of [Hi-Sa]) and eigenforms for the Hecke algebra of D x

(whose action is represented by Brandt matrices). In sections 6 and 7

we show that Y(n)(φ, ψ) is then an eigenform of the Hecke operators

arising from the puUback machinery of section 1 and compute the Satake

parameters. For the good primes this is a straightforward application of

results of Rallis [Ra2] and Kudla [Ku] (generalized Eichler commutation

relation), for the primes ramified in D it is almost trivial, but some work

is required for the remaining primes dividing the level N. In section 8

we sketch a proof of the fact that Y{n)(φ, ψ) = 0 implies that Y(n+1)(^, ψ)

is cuspidal.

We are then in the position to prove our nonvanishing theorem for

Yoshida's lifting (Corollary 9.1). To be more specific, we split the space

β(n) generated by the Y{n){φ, ψ) for newforms φ, ψ on D% as above into a

direct sum of subspaces Θ(nJ) where Θin'3) is annihilated by n — j + 1-fold

application of SiegeΓs Φ-operator (but not by n — j-fold application). By
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a result of Kitaoka [Ki] the theta series of degree m — 1 of quadratic

forms of rank m having the same discriminant are linearly independent.

This implies that all information on the above splitting is contained in

the case m = 3. We concentrate on that case and characterize the sub-

spaces θ ( 3 > 0 by conditions on special values of the reduced standard

L-function of elements of these spaces (Theorem 9.1). This is done by

applying Theorem 4.1 and using the explicit computation of the contribu-

tion from the bad primes performed in section 7. By the computations

of section 6 the reduced standard L-function of Y{n)(φ, ψ) is related to

the symmetric L-function associated to φy ψ. Since φ and ψ correspond

to elliptic modular forms of weight 2 with the same Hecke eigenvalues

(by the results of Eichler [E4], Shimizu [Shz], Jacquet/Langlands [J-L])

we can apply a theorem of Ogg [O] on the value at s = 2 of the sym-

metric L-function of a pair of elliptic modular forms. The results obtained

on the analytic properties of the reduced standard L-function of Y(3)(#>, ψ)

suffice to determine the subspace θ ( 3 > i ) in which Yi3)(φ, ψ) lies by a com-

parison with the analytic characterization of these subspaces obtained in

Theorem 9.1. Our nonvanishing result is then an easy consequence.

The final section 10 collects relations between the Petersson norms of

the various forms on orthogonal and symplectic groups that appeared so

far. These are interesting in their own right [Ral] and allow to express

the Eisenstein series of Klingen type of degree n attached to a cuspidal

Yino)(φ, ψ) (n0 < n) by the Yoshida lifting of degree n. This last result

will be needed in a forthcoming paper where we give a new proof of

Waldspurger's formula relating special values of twisted L-functions to

Fourier coefficients of modular forms of half integral weight.

Preliminaries

For generalities on Siegel modular forms we refer to [Frel]. For

M = ( c D) w e d e n o t e b ^ <M> Z ) -> M < Z > = (AZ+ B)(cz+ D)-1 the
usual action of the group G+Sp(n, R) of proper symplectic similitudes on

SiegeΓs upper half space H n .

For any function/: Kn -> C, any MeG+Sp(n,H) and any "weight"

k we write

(f\kM)(Z) = (det M)*/2j(M, Z)"Y(M<Z»

with y(M, Z) = det (CZ + D).
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We shall mainly be concerned with Siegel modular forms for con-

gruence subgroups of type

$ % e Spin, Z) IC = 0 mod

The space of Siegel modular forms (and cusp forms respectively) of de-

gree n and weight k for Γ$»(N) will be denoted by M*(N)(S*(N)); by < , >

we denote the Petersson scalar product. Φ denotes SiegeΓs operator

Φ: Mk

n(N) -> M^i(iV).

Our normalization of Hecke operators is as follows:

For fe M*(N) and M e GSp(n, Q) with Γ^(N)MΓin\N) = U W^OM,

we put f\kΓ^(N)MΓ^(N) = ΣiflMi We shall freely use the adelic inter-

pretation of Siegel modular forms and Hecke operators (see e.g. [Y3]. In

particular, let

KP(N) = {(£ I ) e GSp(n, Z P ) | C Ξ 0 mod NZP} ,

denote for M e G*Sp(n, R) by (M, 1, •) the adele with oo-component M

and all other components l2n. Then to the Siegel modular form fe

M*(N) there corresponds a unique automorphic form Wf on GSp(n, A)

with trivial central character, right invariant under K(N) = γ[pKp(N) and

satisfying

/(M</ln»./(M, iln)- fc - F/M, 1, •)

for all M e G+Sp(n, R).

By Mn(Z)* we denote the set of nonsingular integral n X n matrices,

ΊJ%^ denotes the set of symmetric integral n X n matrices. For an in-

teger α, a I N°° means that p \ a only if p | N.

Part I. Eisenstein Series and Theta Series

§ 1. Pullbacks of Eisenstein series

In the case of the full modular group it is well known how SiegeΓs

Eisenstein series behaves when restricted to the diagonal-see [Bδl], [Ga].

In this section we describe how these results generalize to groups of

type ΓIΓKN).

Let m, n be natural numbers with m > n. The "small" symplectic

groups Sp(ή) and Sp(m) can be embedded into Sp(n + m) by means of
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M : =

Mι : =

IA 0 BO
0 1, 0 0
C O D O
-0 0 0 1.

0 0 0\
10 A 0 B |
10 0 0,
\0 C 0

We have to understand the double coset decomposition of

V / o \ /°o \ o \ /1-^ o \ / ' o \ ) ) >

where, as usual, for any subgroup G of Sp(ή), we denote by GTO the sub-

group of all \ n n ) in G with C — 0.

THEOREM 1.1. A complete set of representatives for the double cosets

in (1.1) is ^iu

U //

with

M

!«•,

.M

Vo o/
M = diag(mi,

M = 0 mod N

In the sequel we shall call such a matrix M an elementary divisor

matrix of size ί.

THEOREM 1.2. For g$ e Jtn, a complete set of representatives of the

Γ(

o

n+m)(N)m4eft cosets in Πn+m)(N)MgfίΓ^(N)] X Γ^m)(N)1 is given by

Here Cmtn(N) denotes the parabolic subgroup

and Γ$n)(M) is the (congruence) subgroup of Γ^n)(N) given by
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Furthermore I = lmιU is the embedding Sp(n) °=—> Sp(m) given by

A
C

B\
D) '

IA

- Pc

\o

0

0
0

β
0
D
0

0
0
0
-I-772,-71

Proofs of these theorems are in [Ga] for N = 1. The results for arbi-

trary N can be proved in essentially the same way or may be deduced

from the corresponding statement for N = 1 (we omit details).

For 5 e H m + n and even integral weight k we consider the Eisenstein

series

S ί)

)-* det (Im

d e t ( C ^ + D)~fc|det ( C ^ + D)|~2s det (<&)• .

This series converges for 2Re ( s ) + ^ > n + m + l and has a meromor-

phic continuation to the whole complex plane.
ίW 0 \Now we restrict the argument to a "diagonal" of type 3? — i \

with WeH n , Z e H m .

According to Theorem 1 and Theorem 2 we may split our Eisenstein

series into subseries:

E*™{{ o" z ) ' s > N ) = δ ωί( w> z> s>N)

and

(1.2) ωn(W, Z, s,N) = Σ «..M(W, Z, S, iV)

summing over all elementary divisor matrices M of size n with M =

0 mod N.

Each of the ω^ - ) and ωΛlM( •) behaves like a modular form of

weight k for Γ%{N) with respect to the variable W; moreover, these func-

tions are of "slow growth", therefore we may look at their Petersson

scalar product against cusp forms.

To describe these scalar products precisely we need certain Hecke

operators TN(M), given by the double cosets
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where again M is an elementary divisor matrix of size n with M =

0 mod N.

We let TN(M) act on modular forms from M*(N) by

F\ TN(M) = Σ F\kgj
j

where

is a decomposition of the double coset into disjoint left cosets.

THEOREM 1.3. For FeSn(N) and any M like in (1.2) we have (with

k + 2 Re (s) > n + m + 1, m>ή):

a) <F, <»<(*, - Z , s, iV)> = 0 for ί < n.

b) <F, ωWfM(*, - Z, s, iV)> = /i(n, k, s) det (M)"*-2 JS^n(ίΊ T^M), s, iV)(Z).

iίere Ek

myU{F, s, iV) is α?2 Eisenstein series of Klίngen type [Kli], defined by

El,n(F, 8, N)(Z) = Σ ;(M, Z)
^ e t ( I m ( M < Z » * )

and Z* denotes the n-rowed submatrix of Z in the upper left corner. The

factor μ(n, k, s) is equal to

1 n\k + s - )
(n, k, s) = 2(n2+3n)/2-2πs-nfc+1(-l)nA;/V(κ+1)/2 — -μ(n, k, s) 2 ( l ) V

with

For N = 1 one can find a proof in [Bol], Satz 1. Therefore we only

give a sketch of proof for b).

According to Theorem 1.2 a typical summand of ωn,M is of the form

(1.3) j(g^l{hy^,(™ ^ άet(lm gύgΠ(hyg

Using the (elementary) formula

W 0\\ / In MZ

) ) d e t w J= d e t , ( l , , - MZ*MW),
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one can write (1.3) in the form

Hnigζwy, (i(h)gχzy\ s)χg, w)-*κw§, zy* detim ((i(h)gχzyy

with

#M(W, Z*, S) = det (1, - MZ*MW)-k

X I det (ln - MZ*MW)\'2' det Qm(W)) .

The standard unfolding argument leads to

(1.4) <F,α>n,M(*,-Z,

-zy,s)det

X j(l(h)g, -ZY* det (Im (l(h)g(-Z})y

with W= U+ ίV.
Now we use an integral formula (attributed to Selberg):

(1.5) f F(WWniW, -Z*, s) det (Vy-^dUdV

= μ(n, k, s)F(- (MZ*M)-') det (MZ*M)-k det Im (MZ*M)~'

*) det (M)-*-2' det (Im (Z ))-

(compare [Bol], 2.2).
To combine (1.4) and (1.5) we need the automorphism f of Sp(n, R)

given by(r> n ) = ( _ c ~D )'

We obtain

(1.6) (F, ω^i*, -Z, s, N))

μ(n, k, s) det (M)-*-2s g F\k(^ ~™){l(h)*g*(Z})*

Now we may omit #, since # stabilizes all the relevant groups. Moreover
we have

, Z) = j(h, g(Z)*)j(g, Z)

zy* =
which means that (1.6) is equal to
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μ(n, k, s) det (M)-*-2' Σ(ΣF\$ ~^~') | h)(έ<Z>*)

Now we are done, observing that

runs over a complete set of representatives of the left cosets in the
double coset

§2. An Euler product

All the Hecke operators TN(M) of § 1 are hermitian with respect to
the Petersson inner product on Sl(N), since

but unfortunately they do not commute in general unless N = 1. (For
n = 1 they do commute as operators acting on newforms, but if N is
not squarefree, the TN(M) act as zero operators on Sf(N)n™, see [Li],
Theorem 3).

In this section we investigate the algebraic properties of the TN(M)
by considering them as elements of the big abstract Hecke algebra
jfmn)(N), G+SpfaQ)) over C associated to the Hecke pair (Γ$n)(iV),
G+Sp(n, 0). For generalities on Hecke algebras we refer to the books
[Anl], [Frel]. The case N = 1 was investigated in [Bό2].

Each double coset TN(M) factors into an "ordinary part" and an N-
component:

LEMMA 2.1. Let M e Mn(Z)* with M Ξ O mod N be factorized in Mn(Z)*
αsM = M0 M1 with M0 = 0mod N and (det (MJ, N) - 1. Then
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Moreover the double cosets

rirmffi1 Mί)Γ»")(iV) and ^
are equal.

The proof is straightforward, so we omit it.

The ordinary part of TN(M) is an element of the Hecke algebra

M>(Γ<Γ\N), Sp(n, QiN))) with QiN) = {alb eQ\ib,N) = 1}.

Its algebraic structure is well known:

JT(Γ™(N)9 Sp(n, QiN))) ~ JfiSpin, Z), Spin, Q( i0))

Here we should restrict to ί̂ , rΛ e Spin, Q(Λr)) with CeNMniQiN)).

(The tensor product being restricted in the usual sense). Moreover we

have (by means of the Satake-isomorphism)

Sp(n, Z), Sp(n, z [ i

where Wn is a certain finite group (Weylgroup).

The iV-part of TN(M.) can be further decomposed according to

LEMMA 2.2. For M = N-M, M eMn(Z)* with det (M)jiV°° ^e have

TNiM) = Γ^ίiV)^" 1 ^ ) r r i N ) Γ̂ (ΛΓ. 1J .

This statement follows directly from the decomposition of the double

cosets involved into left cosets:

(a) TN(N.ln) =

— U
A6Z».»

(b) TN(M) = Γ

Here A runs through
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{A e Z&S? |A = 0 mod N} modulo

and uf runs through the left cosets GL(n, Z)w' contained in

GL(n, Z)M'GL{n, Z).

0 M7 W ,A V 0

Here α/ runs through the left cosets GL(n, Z)w' contained in

GL(n, ZjM'GL(n, Z) and A runs through Zg£> modulo wZ%£w'. Again

we omit the elementary proofs.

COROLLARY 2.1. The mapping

GL(n,Z)MGL(n,Z)

induces an isomorphism φ between the Hecke algebra

3f(GL(n, Z), GL(n, z[±, , -1]) Π Mn(Z))

and ί/ie Hecke algebra generated by the

Γ r ( i V ) ί M 1 — V o w ) W ^iίΛ M integral, detM\N°°
\ 0 Mv

/ιere qrj, , qι are the primes dividing N.

It is known that

j?(GL(n, Z), GL(n,Zp-, .,-!-]) n Λf,(Z))

~ ^ ^ ( G L ^ Z ) , GL(ra,zί—1) Π Mn(Z))

and (again via Satake-isomorphism):

{n, Z), G

Suppose now that F e M*(iV) is an eigenfunction of all the TN(M) with

M = OmodiV, MeMn(Z)*:

In the sequel we need an important additional assumption, namely
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Then Lemma 2.1 implies that F is also an eigenform for all the double

cosets corresponding to M, e Mπ(Z)*, (det M,, N) = 1:

F\ rnmf^ Mί)Γ°n)(N) =Ai?)(Mi) F'

and for M as in Lemma 2.1 we get

In [B52] it was proven that the Dirichlet series

Σ
(where M, runs over all integral elementary divisor matrices with

(det (M^, N) = 1) is equal to the Euler product

* &f\s - n)

where Dψ\s) is the "standard L-function" attached to F:

( 1 n 1 \

— — 11 — I ,

here the aiyP are the "Satake-parameters" of F—we use the same normal-

isation of the Satake isomorphism as in [Bδl], [Frel].

We want to prove a similar result for the Dirichlet series formed

by the λF(M0). To do this we observe that—using the Corollary—a

1-dimensional representation λ of the Hecke algebra

is given by

(2.1) GL(n9 Z)MQGL(n, Z)

h—>F|ΓiχJVr.lll)-1

(In (2.1) TN(N ln)~ι makes sense when considered as endomorphism of

C'F).
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Now we can use a result of Tamagawa [Tarn] which implies that

(2.2) 2 3(M0) det (Mβ)-' - ft •
Mo q\N

1

where f]i denotes the GL(n, Z)-double coset given by

V 0 qΛj

and the βitq are the Satake-parameters of the representation λ (normalized

such that βitq = q~i if λ is the trivial homomorphism counting the number

of left cosets in a double coset). (From the point of view of GLn-Hecke

algebras the "Hecke series"

y Πn)(N)l ° \Γ(n)(N) det
w \ 0 MQ/

looks more natural than the one considered here. However, in the ap-

plications we have in mind (see § 1) we must consider representations λ

like in (2.1).) Summing up, we get

THEOREM 2.1. Suppose that FeM\(N) is an eigenfunction of all the

operators TN(M), MeM n (Z)*, M = 0modiV and assume that the eigen-

value λF(N- ln) is different from zero. Then we have for Re (s) > 0 an

Euler product expansion

Σ^(M)det(M)-i =
TSJn t n

ζιlf)(s) Π C(Λ0(2s -

χΛN(s - n ) DF(β- ή)

where

ΛM ΛΠ<i-ft.w->

and the βitq are the Satake-parameters of the representation λ given by

(2.1).

Finally we mention a very special type of eigenvalues:



50 S. BOCHERER AND R. SCHULZE-PILLOT

Remark, Suppose FeM*(N) is an eigenform of all the TN(M), M = 0

mod N, det M | N°° and assume that the constant term α0 of the Fourier

expansion of F is different from zero. Then

(a) λF(NΛn) =-^LiVn(Λ+1>/2-nfc/2

and for M as above one has

(b) λF(W = λF(NΛn) άet

X number of left costes in GL(n, Z)(^~'M\GL(n, Z).

Here b0 Φ 0 is the constant term in the Fourier expansion of F\J *τ "^ \.

Moreover one has

L det

with

= Π Π
1 - q-*-k+j

The proof is elementary.

Finally we define M*(iV)triv and S£(iV)triv to be the eigenspaces of the

, M = 0 mod N, det M | N°° with eigenvalues given by (a) and (b).

§ 3. Έisenstein series

In this section k is again an even positive number and N > 1. We
collect here the properties of the Eisenstein series El(Z, s, N) needed later
on. It is quite useful to consider at the same time another Eisenstein
series of similar type:

/ Q i ) FHZ <? ΛΠ — V det(Y)s

^. i ; vnκΔ, s, *) - i z έ ] d e t ( c z + fl)t|det(cz + D ) | 2 s ,

where {C, D} runs over all non associated coprime symmetric pairs with
(det (C), N) = 1. In particular, the Fourier expansion of F\(Z, s, N) is
somewhat easier to handle, since in (3.1) the rank of C is always maxi-
mal (thanks to N > 1). Both Eisenstein series are closely related to
each other by means of the Fricke involution

(3.2) E*(-98, Λ0|*($ V ) = W('(t/2)-°" *'ϊ(-> s9 N).
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For generalities on such Eisenstein series we refer to the very explicit

results of Shimura [Shil], [Shi2] and Feit [Fe]. For us the behavior of

Eisenstein series at s = (n + l)/2 — k is of special interest (for "small"

weights, so we are outside the range of convergence):

THEOREM 3.1. For 0 < k < (n + l)/2 we have

(a) The Eisenstein series !£*(—, s,2V) and F£(— ,s, N) have poles of

(at most) first order in sn>]c : = (n + l)/2 — k; the corresponding residues

<?£(—, iV) and ^ " * ( — , iV) are holomorphic modular forms.

(b) The Fourier coefficients of <?£(—, N) and &%(—, N) do not depend

on the exponent matrices T themselves but only on their genera.

(c) The modular forms ik

n{—,N) and ίFk

n(— ,N) do not vanish iden-

tically.

(d) Assume that 2k = n.

Then for all I > 1 there is a constant dΛtl(N) Φ 0 such that

(3.3) W + ι ( - , N) = dnΛ(N)^kn+ι-i

Proof. Part (a) is contained in [Shi2], Theorem 2.7. To prove b)-d)

we look at the Fourier expansion of Fk(—, s, N).

According to [Ma], § 18—and using his notation—we have

(3.4) F*(Z, 8,N) = Σ *n( r> τ> *> N

T

where T runs over all symmetric half integral matrices of size n and

(3.5) ak

n{Y, T, 8,N) = Ak(s)S^(k + 2s, T)h™s>s(Y, T) det (Y)

with

The "singular series" is defined by

(3.7) Sim(s,T)= Σ
R = R' modi

where v(R) is the product of the denominators of the elementary divi-

sors of the rational matrix R. The confluent hypergeometric function

^ ^ . ( y , T) was investigated very precisely in [Shil].

To prove c) we consider the "constant Fourier coefficient" α£(Y, 0n,

s, N). Here the singular series is a product of Riemann zeta functions
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and hjβitt(Y, 0n) is a product of gamma factors. The relevant part of (3.5)

for T = 0n is

Γ (k + 2s - n + 1 \
n\ 2 / ζ™(k + 2s - n) A ζm(2k + As-n-ι>)

Γn(k + s)Γn(s) ζ™(k + 2s) ΛA CN\2k + 4s - 2v)

In fact, this function has a first order pole in s = sn>k, which proves

c). Assertion b) may (at least in the case of 3F\(—,N) and T positive

definite) be read off directly from (3.5) when combined with a). For

general T and also for <££(—, N) it is easier to use Theorem 2 below.

Concerning d) we prove here only a much weaker statement, from

which by the theory of singular modular forms [Fr2] the assertion d)

follows in a straightforward way:

PROPOSITION 3.1. If 2k = n with k even, we have for all I ;> 1: There

exists a constant d Φ 0 such that for all half integral Tin) > 0:

^ Baβ ^ α!U*((y

0

(n) yo), (Γ

o

ί n )

 0?,,), 8, N) = d-Res a*(Y, T, s, N).

Proof. The factors on the right hand side of (3.5) satisfy nice recur-

Q ( l )j and ί Q Q(1)J and

any I > 1:

(3.9)

- ΐ) Λ ζ< )̂(25 - „ - / - „ ) ( _ .

Γ " i ζ w (2s 2iO * ^ ' ^

(310) h

= 2-""2r/^ + 2s -

x Λί?.-«/ι..-«/f(y; Γ ) .

Here (3.8) is elementary, (3.9) follows from [Ki4], Theorem 1 and (3.10) is

essentially Proposition 4.1 of [Shil].

Putting (3.8)-(3.10) together we get
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°») s ' N ) - φ > s K ( y ' T>s ' T N), o o»)

where φ(y, s) is (up to powers of 2 and TΓ) equal to

2s - I) ' CN>(2k + 4s - n - I -

Γι(k + s)Γt(s) VN\k + 2s) ΛΛ ζw(2k + 4s - %>)

In particular, φ(y, s) is of order zero in s = (/ι + I + l)/2 — £ (and inde-

pendent of y).

From the formulas above—applied to I = 1, n = 2k — 1 and s = 1/2—

one easily obtains (observing that in that case φ(y, s) has a first order

pole at s = 1/2):

COROLLARY 3.1. For n = 2k — 1 the Eisenstein series E^i—, s, N) and

Fn(—<,s,N) are regular in s = 0; their values at s = 0 are holomorphic

nonυanishing Siegel modular forms, denoted by 3Fk

n{—,N) and $h

n(—,N).

There is a nonzero constant dk(ri) with

All the weights which occur in Theorem 3.1 are "singular weights"

except the extreme case k = τι/2, therefore we expect ^n(—,N) and

#"ί(—,iV) to be interesting linear combinations of theta series.

So let (for m = 2k divisible by 4 and 2V > 1) ^(m, N) be the set of

all even integral positive definite quadratic forms in m variables whose

level divides N and whose determinant is a square.

We consider, for S e ^(m, N)9 the degree n theta series

Q(n)(2j} — V 1 />*ϊ trace

and the corresponding genus theta series

where Sj, , Sh runs over representatives of the GLn(Z)-classes of forms

in the genus of S and A(S) is the number of units of S. (We omit the

usual normalizing factor ( 2 l/A(Sί)"1 in order to save notation in the

sequel). All these theta series define elements of M*(N). We have the

following (very weak) version of SiegeΓs main theorem:

THEOREM 3.2. Let m = 2k be divisible by 4 and let S?u , £ft be the

genera in ^(m, N).
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a) Then for all n^m there exist numbers a\n) = α ( n ) (^) , βln) = β{n]

1 < i < t such that

(3.11) £Ϊ(->N)

(3.12) J ^ ( —,JV)

b) The numbers af\ βln) are not all equal to zero.

c) The βln) are essentially independent of n:

βin) = Cnβί (1 < i < t)

with a suitable constant cn Φ 0.

d) ain) = Λ7r(-n(n+1))/2det(^ί)
n/2/3(n)(^f) wΛere &>f is the genus of N S~\

S e &u (for the exact value of the βln) in case n — m, N squarefree see the

following corollary).

Proof All we have really to prove here is (3.12) for all n > m.

Everything else will then follow from Theorem 3.1 d) or by applying the

Fricke involution ί *τ ~Z> 1 and using (3.2) and

w-io; <&% Ifcl jiy Q I = v̂ ; α e t ( o j " v ; 'vNs-ι.

For 7Z > m the theory of singular modular forms [Fre2] asserts that
J^( —,iV) is indeed a linear combination of theta series #§°, Se^(m,N).
Thanks to (3.3) the same holds for m = n.

Since SiegeΓs Φ-operator is injective for n > m we may now restrict
ourselves to n = m. The Eisenstein series άFk

m( —, N) can be written as

(3.14) J^(-,iV) =

where S runs over representatives of the GL(m, Z)-classes in y(m, AT).
The coefficients a(S) are given by the equations

(3.15) am(T) = Σ A ( 5 J P <S), T e ^(m, N).
is) A(S)

Here A(S, T) is the rumber of integral nepresentations of T by S and
am(T) is a Fourier coefficient of !F\( —, N); in the terminology of [Bδ-Ra]
equation (3.15) says that a(S) is a "primitive Fourier coefficient" of
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Using GL(n)'ΐίecke operators one can express a(S) in terms of the

am(T)—see [Kil]. Since those GL(n)-Hecke operators commute with

Andrianov's "genus operator" [An3] we see that (3.15) together with

Theorem 1 b) indeed implies that the coefficients a(S) depend only on the

genus of S. Therefore we may arrange (3.14) into genera, which proves

(3.12) for n = m. The Fourier coefficients am(S), SeS?(m,N) are much

easier to understand than the "primitive Fourier coefficients" a(S):

PROPOSITION 3.2.

m + l)/2 1 m/2

i Π
_2L + ι\ <=1

2 - 20"1 Π tt ~ P'1)

In particular, am(S) depends only on m and N (not on S e^(m, N)ϊ).

Proof (sketch). According to (3.5) am(S) is essentially a product of a

"singular series" part and a confluent hypergeometric part. The singular

series in question only depends on the p-adie class of S with pJ(N, so it

is independent of the individual S e ^{m, N). The results of [Ki4] imply

that (for Te<¥(myN))

2 / *&
,, T) = ^ — Π Zw(2s - 2Ϊ)-1

in particular S^is, T) has a simple pole in s = m/2 -f 1.

Concerning the hypergeometric part we need

ί h%)UStS(Y, T) \ =

V ΓJβ) ) I-V2
race (YT)

This easily follows from [Shil], 4.35.K.

The primitive Fourier coefficients a(S) can be calculated from the

am(S) = am(N) with the help of a generalized Mόbious inversion formula.

To see this, let V = Qm be equipped with the quadratic form given by

S, let L be a lattice on V corresponding to the matrix S, K a lattice

corresponding to T. Then A(S, T)/A(S) is just the number of lattices

1/ 3 K that are isometric to L.

We write a(L) := a(S), a(K) := a(T) and obtain αm(Γ) = ΣL^K a(L).

We restict attention to the case of square free N (see Remark 3 of § 4

below).
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B> Theorem 1.7.2 of [Kil] this implies

a(K) = Σκ *(L, K)aM(L)

with

τr(L, K) = Π (-l)**p*»(*»-1)Λ = Π *,(£> *Q

if L is integral, π (L, K) = 0 otherwise, and where Λp = ΛP(L, if) is the

Z/pZ-dimension of LpjKp (since our lattices are of square-free level,

LJKP is of type Z/pZ Θ Θ Z/pZ). Since by Proposition 3.2 aJL) has

the same value am(N) for all integral L 2 K, we are left with the task

of determining for each p | N the number of integral Lp 3 ifp with LJKP

of ZΏ-dimension Λβ:
p

= am(N) Π

= am(N) Π ,

We fix p and omit the index p in the following, meaning the Z^-lattices

when we write K, L and assume all lattices to be of square free level;

this implies that they are orthogonal sums of unimodular and p-modular

"unramified" [Pf] lattices.

We say that L is of type Lf (L ~ Lt) if it is of index p* in a Zp-

maximal lattice on V. For i < j , L ~ Lu K ~ Lj we have then hp(L, K) =

j — i (if L 3 if) and thus for K ~ Lt

We put r = ^ I χ

 i f ^ ShjJwise* P} ( s o t h a t d e t ^ i s e x a c t l y divisible
by p 2 r ; since the quadratic form has square discriminant, Vp is either a

sum of hyperbolic planes (split case) or such a sum plus a four-dimen-

sional anisotropic Qp-space).

Put further sp = sp(V) the Hasse-symbol of the quadratic space V at

p ([OM], §63), sp = ( - 1 , -1)^ 4 5 P (so that ΠpfinifS, = ( - D m / 4 and for p

finite sp = 1 iff V is split at p.) We fix a maximal unimodular sublattice

of K; evidently it splits off orthogonally in each integral L 3 K.

By an elementary divisor argument (similar to [OM], 82:23) it is not

hard to show that the lattices L ~ Lt with L Ξ> K are in bijective corre-

spondence with the (t — i)-dimensional totally isotropic subspaces of the
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regular quadratic space of dimension 2r over Έp that is split iff V is

split at p. The number of these subspaces is computed to be

/ , x f Π * (Pι~j~ι + 1) if V' is split at p

C-λi£. 1 + 1. th .
11 (P ' 1/ otherwise

where ί J is the number of s-dimensional subspaces of Έp.

By a combinatorial identity attributed to Cauchy ([G-R], p. 242) we

get

ap(K) = (- iyp^-« = δ,(-iyp'^-«

if the determinant of K is exactly divisible by p2r.

Our final result is then (since 4|m and det S being a square imply
p](N *>p — L)'

p finite

a(S) = (-l)m/4αm(Λ^) [] (- l )^p^^- 1 ) if det S = Π P2Γl>

We have proved:

COROLLARY 3.2. Let N be square free. Then

where the 6^t are the genera in Sf(m, N) and for St e 5^ we have det Sf =

Y\p{Np2τp{ί). In particular, all theta series of forms in Sf(m,N) appear in

<Fl and Sk

n with non-zero coefficient.

§4. The basis problem for small weights

We are going to characterize (under some additional conditions) those

modular forms of small—but nonsingular—weight, which are represented

by theta series ("basis problem"). Let θ(n)(/n, N) c M^\N) be the C-

vectorspace spanned by those theta series 9f\ S e Sf(m, N)9 for which the

coefficient #(n)(gen S) in (3.11) is different from zero (for square free N

we have seen that these are all the <9$\ S e Sf(m, N).
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THEOREM 4.1. Let m = 2k be divisible by 4 and n/2 < k < n and as-

sume that F e S*(N) is an eigenfunction of all the TN(M), M = 0 mod N

(a) For all nf > n we have

Res μ(n, k, s)

^ λF(N) ΛN(2s + k — ή)Dj^)(28 + k — ή) jpk (Ί? x

ί4-1) ^ ^ + ! ζm(2s + k)f[ ζw(4s + 2k- 2i)
i = l

where {S} runs over a set of representatives of GLm(Z)-classes of quadratic

forms in <¥(m, N) with aw(gen S) Φ 0.

(b) The equation (4.1) implies that FeΘin\m,N) if λF{N) AN(s)Dψ\s)

has a (simple) pole at s = n + 1 — k.

(c) For FeSk

n(N)triy one has FeΘin)(m,N) if D(

F

N)(s) has a (simple)

pole at s = n + 1 — k.

(d) If conversely Fe θ(w)(m, N) Π Sk

n(N) is such that

<F, 98} Φ 0 only for S e sr(m, N), det S = Π P2rp{S)

with 2P l i y r rp(S) of fixed parity, then the converse of b) and c) is true.

(This apparently unnatural condition will be satisfied in the applications

in part II).

Proof. Statement a) can easily be obtained by combining Theorem

1.2 and Theorem 3.2. We remark here that the gamma factor μ(n, k, s)

as well as the Riemann zeta factors in (4.1) are all of order zero at the

arguments in question. Furthermore c) follows from b), since for Fe

S*(N)tτiΎ, the function ΛN(s) is of order zero at s = n + 1 - k. The " i n -

direction in b) easily follows from (4.1) for n = nr since i?*,n(F, s) = F.

For the (partial) converse of d) we simply note that the computation

of the βi in § 3 (for square-free N) and the parity condition of d) imply

that

I «'2«>(gen S) ±Lg^L9p, F) Φ 0

(for iV not square-free see Remark 2 below).

Remark. 1) There are two points in our theorem which are not

quite satisfactory. The first is the parity condition in d). The only way
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we see to get around it is to work out the pullback for the genus theta

series of each genus in <$f(m, N) (which is an Eisenstein series by [Ku-

Ra]). When one does this, everything looks the same as above for the

p)(N (which is no surprise from the adelic point of view), but for p \ N

we have to handle a far more complicated Hecke-algebra than above. It

appears that under suitable conditions on the local Spn(Qp)-representation

generated by F we can still conclude that the pole of ΛN(s)DP(s) does

not come from ΛN(s) and thus conclude that the converse of c) holds

without the parity conditions (where ΛN(s) is the contribution of the

above mentioned Hecke-algebra for p \ N).

The second unsatisfactory point is that we cannot choose a basis of

S%(N) consisting of eigenforms of all the TN(M), M = 0 mod N and also

do not know anything about λ°F(N). Of course, this defect becomes even

worse when we try to work with the pullback of the genus theta series.

May be this point can be clarified by a good theory of newforms for

Siegel modular forms (to our knowledge such a theory has not yet been

worked out). Again, this will probably demand a detailed study of the

local representations.

Curiously, none of these difficulties come into play for the applications

of our results to Yoshida's lifting in part II (which were the starting

point of our investigations). This may be caused by the fact that in this

case we are considering theta liftings of forms on the orthogonal group

that are "new" in a natural sense.

2) Our Theorem was formulated for arbitrary level N, but it is only

the squarefree case which is really interesting. This is explained by the

fact that

E*(Z, s, N) = (N")-nsE«(N" Z, s, N') if N' = \] q and N = N'N" .
q\N

3) The assertion c) of the Theorem above is also true for level 1

([Bό3], [We]).

Part II. Yoshida's Lifting

§ 5. Automorphic forms on the quaternion algebra and its orthogonal
group

Let D be a definite quaternion algebra over Q, ramified at the primes

Pu ' - ' y Pry split at all other primes, Nt = p1 pr.
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Let R be an Eichler order of level N = iViiV2 ((Nl9 N2) = 1, N2 square-

free), i.e. Rp is a maximal order in Dp for all pJ(N2 and is conjugate to

\(a 7 ) e M 2 ( Z p ) | c Ξ θ m o d p for p|iV2 (where Dp has been identified
{\c a/ j

with M2(QP)). The arithmetic of these orders has been investigated by

Eichler in [E 3].

An ideal / is a Z-lattice of rank 4 on D, it is called an order if it

is a subring (with 1) of D. All ideals considered here shall have the

following properties:

i) the left order {x e D\xl cz 1} of J is an Eichler order of level N.

ii) J is locally principal, i.e. for each p there is xpelp with Ip =

R'pxp, where R' is the left order of /.

Obviously, the right order of such an ideal is again an Eichler order

of level N and any ideal / with left order R is of the type I = (RA x) Π

D = Rx for some x e DA.

Two ideals It and I2 are said to be right equivalent or to belong to

the same (right) class if there exists xe Dx with J2 = Ixx.

With a double coset decomposition

h h

D* = I J Ryϊy71Dx = ί J DxytR
x (n(y) = 1)

we then have a set of representatives Ryϊ1 of the classes of ideals with

left order R (whose number is known to be finite and denoted by h). On

D there are the involution x ι > x, the norm n(x) = xx and the trace

tr(#) = x + x. The group of proper similitudes of the quadratic form n{x)

is isomorphic to (JDX X JD X )/Q X (and accordingly for the completions and

the adelization) via

(xu x2) i > σXUX2 with σ,,,^^) = Xiyxΐ1

([E 1], § 5), with the special orthogonal group SO(D, n) being the image of

{(xu x2) e (Dx x Dx)/Qx I nix,) - n(x2)}.

Let Iij = ytRyj1 (ίj = 1, , h), Rt — IiU ei — |i?x | , and consider the

theta series of degree n of the quadratic lattice Iij9

&lf(Z): = &n)(Iij9 Z) = 2] exp (2τri trace(Q(x)Z))

with Q{x)vμ = i tr (x,^), Z e H n .
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Linear combinations of these theta series are conveniently dealt with

by collecting their coefficients in an automorphic form

= {/: D* X Dl > C|/is left invariant under Dx X Dx and right

invariant under RA X RA}:

Any such automorphic form / is determined by its values at the

(y^yj) and, conversely, can be given by prescribing these values arbitra-

rily.

DEFINITION 5.1. Let

φ,ψe sfφl, Rl) = {/: Dl > C\f(ϊxu) = f(x) for all γ e D\ u e Rl].

The n-th Yoshida-lifting Y(n)(φ, ψ) of (φ, ψ) is defined by

<,i-i eiej

φ e *S/(DA> RA) is called cuspidal (by abuse of language) if φ(x)dx = 0.

Remark. This lifting has been studied by H. Yoshida in [Yl], [Y2]

from the adelic point of view. In that setting, which is also more con-

venient for the computation of the action of the Hecke operators on

Y(n)(φ,ψ) in subsequent sections, it is defined as follows:

Denote by ω the Weil- (or oscillator-) representation of (Spn)A on the

space of Schwartz-Bruhat functions S(DA) attached to the norm form on

DA and with respect to the standard additive character of QJQ (see e.g.

[Y2] for formulas for the action of generators of the local components

SPniQp)), let / = \\Jυe^(Dn

A) be given by fp = characteristic function of

Rl for p finite, /^(x) = exp (—2τr trace Q(x)), put

ΘJjg, (xu xό) = Σ o)(g)f(x^zx2) (g € (Spn)A, xu xι e Dl, n(x,) = n(x2) = 1).
z6J?Λ

Then F = Y{n)(φ, ψ) corresponds to ΨF = : Ϋin)(φ, ψ,/): (Spn)A > C given by

Ϋ{nK<P, Ψ, Dig) = ί φ(xdψ{Xι)θf(g, (Xu X2))dxίdx2.

Here the integral is restricted to xu x2 with n{x^) = n(x2) = 1. (Alterna-

tively, one can extend the oscillator representation to the group of simil-

itudes (see e.g. [Vi2]) and then integrate over all of DA X D£).
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LEMMA 5.1. Let N be squarefree. The space θ(n)(4, ft) generated by

theta series of degree n of integral quaternary quadratic forms of level N\N

and square discriminant is spanned by the

where D ranges over the definite quaternion algebras over Q unramίfied

outside ff and R ranges over the Eichler order of level N\fϊ in D.

Proof. An inspection of the possible Jordan splittings of the com-

pletions of such a quadratic form shows that it must be in the genus of

one of the Eichler orders and thus, observing the identification of (Dx

X Z)x)/Qxwith the group of proper similitudes of (D, ή), is isometric to

one of the (Iij9 ri). This proves the assertion since obviously

s/(Dϊ X Z)ϊ, Ri X Rl) s j / φ ϊ , Rϊ) ® s/(Dϊ, Rf).

On J/(Z)A, RA) we have for pJ(N Hecke operators f(p) defined by T(p)φ(x)

= 1 φ(xy~ι)τP(y)dy where τp is the characteristic function of {yeRp\n(y)
J Dp

epZp}. They are given explicitly by

f(p)φ(yί) - Σ Bti{p)φ{ys),

where the Brandt-matrix entry B^ip) is the number of ideals of norm p

in the class of Ii5 that are integral (i.e., contained in their left order

Rt = yiRyz1).

For JV' IN there is an involution wN, on sί(J}\, i?£) given as follows:

For p IN choose πp e D% to be a nontrivial representative of N(R9) =

{xeDϊlxRpX'1 = Rp) modulo R$Q$ (one has (N(RP): R$Q$) = 2, see e.g.

[Vil]), e.g., for p\Nt choose π to be a prime element of Rv, for p\Nz choose

π>-{p 0 j

For N' IN let πN> e RA be given by

= fr, ifp\N'
otherwise

and put

: = φ(yπN,).
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LEMMA 5.2. Let N2 = p r + 1 pt) let ε: Z\ >{±l) be a character and

let ηN, = (ηN,(pd, - -,-ηN,(Pt)) e Z\ for N'\N be given by

Let s/9(Dϊ,R$:={φes/(Dl,Rϊ)\wN.φ = e(ηN.)φ for all N'\N). Then

Rl) = 0 i 6 a 4 s/ (Dϊ, 22*).

Proof. Obvious.

LEMMA 5.3 ("Stable non-vanishing"). Let φ e ^ ' ( D ϊ , i2ϊ), ψ e sό*\Ώ\,

Proof. For the proof we have to check when the quadratic lattices

(/€J, 7i), (Jfcl, n) are isometric. This is easily seen to be the case if and
only if either

i) yT1eRlπNty^1Dx and yj1 eRx

AπN,y;ιDx for some N'\N

or
ii) (i) holds with i and j interchanged.

Let Zϊ act on {1, . , h] by putting Rϊy£ιt)D* = Rxy7^N.Dx (N'\N),

and let Fix(i) = {η e Z\\η(ι) = ί}.

Writing Y{n){φ, ψ) as a linear combination J ] αίn )# ( n )(iQ of theta series

of pairwise non-isometric lattices in the genus of (R, ή) we find for Kv

7 mod (Fix(i)nFixO)) β^/l + î̂ )

TO if ε Φ ε'

The assertion now follows from Kitaoka's [Ki2] result that the theta

series of degree m — 1 of inequivalent quadratic forms in m variables

having the same discriminant are linearly independent, since φiy^ψiyj) +

Ψ(yi)ψ(yj) = 0 f° r ^ h J implies φ — 0 or ψ = 0.

Remark. The assertion of Lemma 3 can also be formulated in terms

of functions on the orthogonal group O(D, ή):
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Let Ψ: OA(D, n) — • C be defined by

= Σ

where the summation is over all (yuyό) with

a e O(A n)σyuyj0A(R) and OA(R) = {re OA(D, n)\τR = R}.

Then Ψ Φ 0 if and only if ε = ε'.

§ 6. Computation of Euler factors: Good places

Let ψ, ψ e es/ε(Z>A, -Rί) for some character ε on the group of involutions

wd (d\N) as in §5, assume further that ψ and ψ are eigenfunctions of all

the Hecke-operators f(p) with eigenvalues λp, μp for pJ(N (equivalently,

the modular forms in Sl(N) corresponding to ψ, ψ (if these are cuspidal)

under the correspondence of Eichler, Shimizu, Jacquet-Langlands are eigen-

functions of the Hecke-operators T(p) with the same eigenvalues). We

can then compute the Satake parameters of Yin)(φ, ψ) in terms of those

of φ, ψ.

THEOERM 6.1. Let φ, ψ e s/e(DA, RA) as above, let p^N, denote by βp,

β~ι resp. βpy β~x the Satake parameters of φ, ψ with respect to the Hecke-

algebra of GL2(QP) s D* (so that λp = p1/2(βp + β;1), μp = pιβ(βp + β'1)).

Then Yin)(φ, ψ) is an eίgenfunction of the p-component of the Hecke-

algebra of GSpn with Satake-parameters

ao(p) = p-«Λ-2><»-1>/4)β-1 (normalized to cxl(p)a1(p) an(p) = 1).

*i(p) = β 'βp
a2(p) = βpβp

«2+i(p) = P3 U > I)-

Proof. Let GO+(DP) denote the group of proper similitudes of (D, n),

PGO+(DP) = GO+(DP)IQ$. Then faQ*, XtQ*) » σXl,XΛQ* (with σXux£y) -

xxyxi,) maps D*IQP X D^/Q* bijectively onto PGO+(DP).

Identifying D* with GL2(QP) we see that the product of the Borel

subgroups of PGL2(QP) is mapped onto a Borel subgroup of PGO+(DP)

(i.e., the stabilizer of a flag Wx ̂  W2 of isotropic subspaces of dimensions

1, 2 respectively of (Dp, ή)). Inverting the map, the torus
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of PSO(DP) = SO(DP)I{±1} is mapped onto

(Q) x

A homomorphism p\ je(PGL2(Qp) x PGL2(QP\ PGL2(ZP) X PGL2(ZP)) -> C x

with Satake parameters (βp, β"1)* (βp, β"1) is thus mapped onto p*:

je(PSO(Dp), PSO(RP)) -> C x with parameters /3p/3;\ &&.

We restrict this to ^(PO(DP), PO(RP)) (where PO(JOP) = O(DP)/{±1})

and apply Rallis' result [Ra2, Ku] generalizing the Eichler commutation

relation between Anzahlmatrices and the action of Hecke operators on

theta series.

For n > 2 this asserts the existence of a homomorphism

κn\ ^(Spn(Qp\ Spn(Zp)) -> Jf(O(flp), O(i?p)) such that a homomorphism

p*: Jf(O(Dp), Oίi?^ -> C x with Satake parameters Γi, Γ2 is mapped to

p* o κn with Satake parameters

«1 = Γl , ^2 = ^2 , ^2 + ; = P j (j = 1, * , ft — 2) ,

and such that £n commutes with the theta lifting. In particular, by ap-

plying the theta lifting to an automorphic form G on OA(D) which is an

eigenfunction of 34?(O(DP)9 O(RP)) with eigenvalues given by p%: 3f(0(Dp),

O(RP)) -> C x one obtains an eigenfunction F of Jf(Spn(Qp), Spn(Zp)) with

eigenvalues p$ = p*°Kn'> ̂ (SpAQp), Spn(Zp)) ~> C x . In our situation this

shows that F = Yw(φ, ψ) is an eigenfunction of Jr(Spn(Op), Spn(Zp)) with

Satake parameters α^p), , an(p) as asserted.

The parameter ao(p) can be computed by (3.3.70) of [Anl]:

aQ(p) ft (1 + α <(p)) = ^p)p-»«Λ+1>/« ,
i = l

where λF(p) is the eigenvalue of F under the Hecke-operator T(p) =

T(l, , 1, p, , p). Using Yoshida's [Y3] computation of the action of

T(p) on theta series we obtain

(see also [Yl] for ra = 2), and thus

TfUP) = P - ^ / S , + β;1 + βP + β;1) Tf (i + P1)

= P"- 1 ^ 1 fl (1 + «ι(P» -
i l
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COROLLARY 6.1. The standard L-function of Fw = Y<n)(φ, ψ) is for n ^ 2

π ( P . O K

77ιe spinor L-function of F{m is for n ]> 2

ί̂s.(β) = π (i - fcp-vα - /Sp-'p-o-'d - β,p-rκι - β;ιP-rx

PΪN

= Lm(φ, s + l/2)L<*>(ψ, β + 1/2),
( " ~ 1 ) ( r a " 2 )

π π
i 1 l ^ Ί < <

Remark. The last formula for ^ = 3 has been obtained by Tanigawa

[Tan]. We will see that Y3(ρ, ψ) can be cuspidal for y> = 1. This gives

then some examples of cusp forms of degree 3 whose spinor L-function

has a functional equation under s ^ l - s and can be analytically con-

tinued.

§ 7. Computation of Euler factors: p dividing N

Let φ,ψe stfε(D±, R%) be as in section 6, and assume in addition φ

and ψ to have the following properties:

( i) φ and ψ are in the essential part [Hi-Sa] of s/(D%, Rl), i.e.

φ(x)p(x)dx = 0 for all p e ^(D^, i?£) which are right invariant under (R'A)
X

for some order R! c D strictly containing R.

(ii) For all primes q\N2, Φ and ψ are eigenfunctions of the Hecke-

operators T(l, q) given by T(l, ^M^) = ί <p(xy~l)*i,q(y) dy where r1)9 is
JD*

the characteristic function of R*l^ ] ϋ j .

That is, φ and ψ are cuspidal (unless J? is maximal, in which case

they may be identically 1 on DA) and correspond to newforms of weight
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2 and level N, eigenfunctions of all Hecke operators, under the corre-

spondence of Eichler, Shimizu, Jacquet-Langlands.

The functions φ and ψ generate then (if they are cuspidal) irreducible

subspaces of the regular representation of D% on <stf(D£) ([Ge], § 5) whose

p-component for p\N2 is isomorphic to the unique irreducible subspace of

the representation of GLZ(QP) induced by the character ξp\\p

/2, ίp||;
1/2 (see

[Ge], [Cal]) where ξp is the unramified character on Qp with ξp(p) =

- <wp).

By the results of section 6 we have to compute the action on F =

Y(n)(φ, ψ) of TN(NΊn) and of the double cosets

/7 (P) = (V* p iwith

We notice first that by the methods of [Y3] the action of the Hecke

operators can be localized as usual.

LEMMA 7.1. Let Y e Spn(Q), FeMl(N)y let ΨF be the automorphic form

on (Spn)A associated to it (see preliminaries). Let

K™ = {(£ I ) € Spn(Zp) IC = 0 mod JVZP} ,

let σUP be the characteristic function of Kp

n)γKp

n) on Spn(Qp), and let

Pu - - ,Ps be the primes for which Y g Kf\ Put

ΨFI KfYKy = ί ΨF(gg'ι)σU8)dg ,

let F\KfrK™ be the modular form in Mk

n{N) associated to ΨF\KfγK^.

Then

F\rp(Nyrr§»(N) = F\κ<*rκ%\ • • • \κ

In particular, if ΨF\K^rK^ = λnΨF, then

LEMMA 7.2. Let ΨF = ΫM(φ,ψ,f) as in section 5, let KfϊK™ =

^fr 4. Then

where f'p(z) = J^t ωf(rτΎ)fp (ωp denoting the oscillator representation as in
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section 5) and f'e(z) = /Xz) for all places I Φ p. If further xkJ xk e D* are
such that

fp(z) = Σ f fpix^zx^r^τ^dx dx
k J D$XD*

(with τXk the characteristic function of R^xpR^), then

where

<pί(x) = f φy'ι)τxj<y)dy and ψk(x) = ί
J Dp J D

Proof. The proofs are completely analogous to those given in [Y3],
section 1.

The local computations left to be done become particularly easy for

x (i.e., Dp is a skew field and Rp is its maximal order).

LEMMA 7.3. Let p\Nu F = Y(n)(<P, ψ). Then

a) ^ i ^ ( p ° l n " " P o ' l n ) Kp=pn(n-W sp(DyrpF where sp(D) is the

Hasse invariant of the quadratic space {D, ή) ([OM], § 63) and Tp is an

absolute constant.

b) F is an eigenfunction of the Kp

n)( Π^(^) ° Λκp

n) and the Satake

parameters β£p from section 2 of F are given by β^l = p71"1'1.

Proof. By section 2 (proof of Lemma 2.2) we have

0 )K» - y i - 1 * OΛO 1, Λθ (wT1) *

where A = A(α ) runs through pZ^yln modulo wZf^ljJu' and

GUn, Zp)M!GUn, Zp) = U GL(n, Z > ' .
w

Now, for fixed w we have:

M( 0

A(u )

Since ^ i ζ = { z e i ^ l Q ί z J e p ^ Z ^ } (^ a prime element in Z>p), this is
equal to

if z g /r;1]^
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Observing that πp

xRp is the dual lattice of Rp with respect to the norm

form we obtain:

(Here the action of ( -. fi\ under the oscillator representation is com-

puted with the help of formulas from [Pe], [Sa], see also Lemma 8.2.a)

below. For M = N- ln this proves a), for general M we see that (with

the notation of section 2) 3(M0) is equal to | det M0|~
(rι~1) times the number

of w. By (2.2) and our normalization of the βitP this implies b).

LEMMA 7.4. Let p\N2, F = Y(n)(φ, ψ). Then

F\KP*)

Proof. This can be proved using Evdokimov's [Ev] computation of

V~1 77M / 1«. A .

More precisely, denote by Sijf S representatives of the classes of integral

positive definite quadratic forms satisfying the following conditions:

( i ) Stj is split over Qp and equivalent to S over all Z z with / Φ p.

(ii) The level of S and Sυ is not divisible by p2.

(iii) The discriminant of S is exactly divisible by pm~r, that of S^

is exactly divisible by pu.

If Stj corresponds to a lattice K, denote by p'Ήfiip) the matrix cor-

responding to K*<* = K* Π 2[l/p]K.

Then it is easily verified that Evdokimov's r(S,pStj, G rD r_α + iG) is

equal to r(S, S,*(p)). Applying i φ ^ " o

l n ) ^ f we obtain

Σ ( D y c t " 1 - " ) Σ

In our situation (m = 4, r = 2), this implies

ΨFI^n)(p°i ~ P o l n ) # f = - Pn(n-1)/2sp(D)nrp(ΨF - Ϋ™(φ, ψ,
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where f" = fx for / Φ p and f%(z) is the characteristic function of

( (

Since φ9 ψ were chosen to be in the essential part of <srf(D%, R%), we

see that Y{n)(φ, ψ, f") = 0, which proves the assertion.

Remark, i) If Dx and D2 are quaternion algebras as above, Dx is

split at p and D2 is ramified at p, then sp(A) = — sp(D2), i.e., the eigen-

values of l^n )ί - ~"^0

 πW^,n) in the split and in the non-split case

are the same for odd n, of opposite sign for even n. ii) The proof of

Lemma 7.4 is actually valid if only one of <p, ψ is in the essential part of

, Λ*). This will be used later.

LEMMA 7.5. Let F e Mk

n(N), p\N, ΓΠπ) = ( V * 1 )* let Φ a s u s u a l

denote SίegeΓs Φ-operator, write F \ T\n) for F \ Kf (^ Πjw))"' J\nλκ™. Then

FI Tln)\Φ = p2n~zF\Φ\ TJri + p'FIΦI Γ?-" (i < n) .

// F is in the subspace of M*(N) generated by theta series of level dividing

N, then F \ Tln) is in the same space.

Proof. The first part of the assertion is easily verified along the

lines of [Fre 1], IV, § 4 and [Kri]. The second part is clear in the singular

case by [Fre 2] and follows in general from the result in the singular

case by the commutation relation of the first part.

LEMMA 7.6. Let p\Ni9 F = Yin)(<p, ψ). Then F is an eigenfunction of

the Tt = Kff^p"1 yun^K™ and the Satake parameters βϊ%from section

2 of F are given by βl% = pn-i'K

Proof. By the previous lemma we can restrict attention to the case

n = 4 and put f|ΐ4) = Wu^v):==z ^v We have the coset decomposition

.-u($ - * ) ( ; °
where w' runs through representatives of the cosets GL(4, Zp)w' in GL(4,

Zp)UiGL(4, Zp) and A through Z%.% mod wZ^ju/. Letting the repre-
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sentatives act on the test function fp via the oscillator representation we
obtain as in the proof of Lemma 3:

ί Σ |det<- 3 if Q ( z ) e Z ^ m
fp(z) = <[w\zeR4

pw-i}

{ 0 otherwise

0 otherwise.

For z = (zu ,z4)eDp we let K(z) denote the lattice in Dp generated

by (zu , zA) and restrict attention to z with K(z) of rank 4. Obviously

zeRpW1 for some w if and only if K(z) is in p~ιRp and has no more

than ί elementary divisors p" 1 with respect to Rr

If z e RpWo1 for some fixed wOy then the cosets wGL(4, Zp) with z e

Rpw~ι are parametrized by the cosets Ue GL(4, Zp)J(w0GL(4, Zp)woλ Π

GL(4, Zp)) with zw e RPWO\ Since their number depends only on K(z) we

can put w0 = Πt a n d have GL(4, Z)/ΠiGL(4, Zp)\[7ι (Ί GL(4, Zp) in bijec-

tion to GL(4, Έp)fPu where JPt = < ( π * *) e GL(4, Έp)\ is the parabolic

stabilizing the subspace generated by the first 4 — i basis vectors of F£.

K 2?(z) has exactly j <; i elementary divisors p" 1 with respect to Rpy the

number of cosets u with zwei^Πϊ" 1 i s then equal to

(*-•() , where ( j ) = (/?[ " f' "ip] ~ C , "

is the number of ^-dimensional subspaces of Fj. To summarize, we have

r/4 - j \ if Q(z) e Ẑ sy}xn, K(z) c p " 1 ^ has 7 < i
/p(z) = p3ί< \4 — i/p elementary divisors p" 1 w.r.t. Rp

I 0 otherwise

(K(z) of rank 4).

By Lemma 5 we know that with some numbers aκ

where hκ is the characteristic function of if4 for a lattice K cz Dp and

the summation runs over all K = iί(z) with Q(-ε) e Zp\$m. That is,

We can thus use Theorem 1.7.2 of [Kil] to compute the aκ. We com-

pute first the aκ for K that are Z-isometric to Rp.
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Assume K to have j < i elementary divisors p'1 w.r.t. i?p, denote by

βi the number of unimodular lattices M c: p~xRp with M ^D K and one

elementary divisor p~\ by /32 the number of such lattices with two ele-

mentary divisors p " 1 with respect to Rp. We have then

(where the last term occurs only for ί > 2).

By elementary computations in the matrix ring M2(0P) w e fin^ that

the K cz p~xRp (isometric to i?p) are in bijective correspondence to the

pairs of cosets (xRp, xRp) with det x — p = det jc,

u
\p υ/ \u p/

or

xeRpl l-βp a n ( i £ β ί

or

or one of these with x, x interchanged, or one of these with x, x re-

placed by

0 ^ f 0 T . f 0 Λxί0 T
- p 0/ V-p 0/ V-p 0/ V-p 0/

(and maybe again interchanged), the correspondence of course being given

by K = xRpX"1.

We find further that

a\ Z (\ Λ ___ Q o "t * X* 2^" D

/ / v/ /5i — ί i fjo X 1J. XJL •—- JtΛ"n

b) /' = 1 ft = 1 & = 1 if x e ( IJΪJ, * € _ „ ,
V - p 0/ p 'V0 p

or

* 6 ̂  ° ^Λx

^ 6 U p 0/ 3 1
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c) ; = 1^ = 0 ft = 2 if xeRϊli °W, xeRϊ(P °W
\0 pi \Ό 1/p

or
or

P.. . p

or xeRp(P

e) j = 2 βx = 0 β2 ~ 1 in all other cases

Thus

in case a)

/r*..x * " ( . « ) i n c a s e b )

(7.1) cth = \ \i-2/p

( 3 \ / 2 \
( I — 2( j in case c)

0 in all other cases

(where the expressions involving (ί — 2) occur only for i ;> 2).

The aκ for unimodular if are irrelevant for us by the same argu-

ment as in Lemma 7.4. In fact, the unimodular lattices in Dp are given

by ideals having right and left order conjugate to M2(ZP). By direct

matrix calculations one checks that all such ideals contained in p~lRp

have either left or right order containing Rp, i.e. have characteristic

function invariant (on the lef tor on the right) under (Rp)
x for an order

R; strictly containing R. The same argument applies to the p-modular

sublattices containing pRp which are just

We contend that aκ = 0 for all other p-modular sublattices oip-xRp. To

see this notice that

/;(z) = /;(zθ if z' e Dp is such that K(z') = K(z) + pR\ .

The same holds (by the computations already done) for Σ'acκhκ, where

2 ' extends only over K that are unimodular or Zp-isometric to Rp.

For K(z) ^ pRp, Ί! as above we have therefore
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Pu

κ

Taken together, Yli)(φ, ψ) | Γt can be expressed as a linear combination of

theta series of lattices in the genus of R with coefficients given by (3.1).

We denote by τx the characteristic function of R* ( Λ R*, by τ2 that of

i?ί (J J) Λ*, by r3 that of i?£ (J °) i?p

x, write φ\τ< for ^

and obtain

- 2( . 3

- PH( . 2

\l —

By our assumptions on y>, ψ we can compute the^ |τ 4 , ψ|rί by considering

the action of these Hecke operators on the unique i?p-invariant function

g of the unique irreducible subrepresentation of the representation of

GL2(QP) induced from the character

s
\ , ^ ϊf* *\\ * 11/2 I 4 ,

•2|p

on its Borel subgroup.

By § 3 of [Ca2] this can be given by

^together with g(h * Jx) = ^(ίiίs)\tx |p |^lί^W this determinesg uniquelyJ.

An elementary computation yields then

ψ I r2 = φ I τ3 =

f being a quadratic character we obtain on substituting this into the ex-

pression for Y{A)(φ, ψ):



SIEGEL MODULAR FORMS 75

which is just the same eigenvalue as the one obtained in the non-split

case. Using Lemma 7.5 again we obtain the assertion.

COROLLARY 7.1. Let F = Yin)(φ, ψ). Then the function ΛN(s) of section

2 is given by

4(s) = ̂ ) π π(i-p-2 +r

Note added (Nov. 1990). We can now also prove a version of Lemma

7.6 and of Corollary 7.1 in the case that only φ is essential (this

weakened requirement on the pair (φ, ψ) basically means that <p (g) ψ

gives rise to an "essential" form on the orthogonal group of D (or

rather on the spin group) in a sense which has of course to be made

more precise). To formulate a statement in this case let ψ = ψί + εpψ2

where wpφ = εpφ and where ψ1 is right invariant under a maximal order

RP Ξ2 Rp, ψ2 = wpyjru and let ap, ap be the p-Satake parameters of ψx (and

ψ2) (normalized to apap = p), μp == ccp + ap.

Then with F = Y{n)(φ, ψ) we have

<F| T?\ F) = p<-«*(( n ) - tf-Kp + 1 + εpμp)(n - J) W F> .
\\ I /P \l — 1/p/

The proof is similar to that of Lemma 7.6; one gets that

F\ Tf> - p<-

is a linear combination of theta series of lattices on D of discriminants

different from N2 and hence orthogonal to F (see Lemma 9.1 below).

Furthermore, in the discussion of section 2 assume F only to be an

eigenform for all the TN(M) with M = NMU (det (MO, N) = 1 and define

for any M e Mn(Z)* with M = 0 mod N by <F, ^ ( M ) ^ ) =

, F>. Then (with F = 7(n)(^, f) again) the p-factor of the func-

tion AN(s) from Theorem 2.1 is given by

(1 + e Λ p—rXl + e^p-'-1)-1 fί (1 -P-- 2 ^)" 1

If now ψ e «^(DA» ^A) i s arbitrary we use the decomposition

Rϊ) = C 1 Θ 0 ^nβwΦϊ, (RΆ)X)
R'2R
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from [Hi-Sa] (where s^new{D^y (RΆ)X) denotes the set of cusp forms in the

essential part of s/(D^9 (R'A)
X)) and assume (as always) that ψ is an

eigenfunction of all the wt (l\N) having the same eigenvalues εt as φ.

There are two maximal orders Rp, Rp in Dp containing Rp, and for

each Rf 3 R in the above decomposition Rp equals one of Rpj Rp, Rp.

Writing

/ i ψE 'Λ' + V
ΛS»"Λp

= c

= c + ψί + ψ2 + ψ3

we find that ψ3 can be treated as in the proof of Lemma 7.6, while c and

ψi + εpψ% are of the shape discussed above (and ψι can be assumed to

be an eigenform of the Hecke operator Γp).

§ 8. Cuspidality properties of theta series

We will need some results connecting the behaviour of theta series

of degree n in the /^w)(A/)-i.:αequivalent boundary components of H n .

Although we don't believe these to be new, we sketch the proofs for lack

of a reference.

As usual, for a field K we consider the standard maximal parabolic

subgroups Pn,r(K) of Sp(n, K) where Pn>r(K) has Levi factor Sp(n — r, K)

X GL(r, K) embedded by

A B

C D
,T

A

0

C

0

0

T

0

0

B

0

D

0

0

0

0

τf~ι

(for ί = Q w e have then Cn,E_r = Sp(n, Z) Π P.,,(Q)).

Pi, for 0<h<r (ί = 1,LEMMA 8.1. Let N = p-,

,lt) be given by

,t) let Rψ{lu

N

0 0

0

i o

0

-n-

0

(ί — 1, , t).
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Then

Sp(n, Z) = UΓ1>..,l|.o/1ίIι)(JV)Λ{?>(/1, ,lt)Cn,n-r

Proof. Dividing first by the principal congruence subgroup Γ(n)(N)

and using

Sp(n, Z)/Γ<n\N) = Π Sp(n, Fp)

we see that we have to determine representatives of the double cosets in

PUΐPi)\Spin, F p l)/Pn, r(F p <).

That these are just the images of the R^(•••,/„ •) under reduction

mod Pi is a well known consequence of the Bruhat decomposition (see

e.g. [War], p. 49).

Remark. The double coset of R^ir) is also represented by L "~Λ /

mod pZ. Especially for r — 1 it may sometimes be more convenient to

use this representative.

LEMMA 8.2. Let L be an integral positive definite lattice on Qm with

quadratic form Q and associated bilinear form B(x, y) = Q(x + y) — Qi%)

— Qiy) of level dividing N (i.e. NQiD) <= Z), discriminant d, S(n\L) its

theta series of degree n. Denote by dp the highest power of p dividing d.

Let Rf\ΐ) = Rφih, '"Jt) with /4 = 0 for pt ψ p, I, = I for Pi = p,

= Σ exp (2τriίr Q(x)Z)

where x = to, , xn) runs over (xu , xn_t) e Ln~ι, (xn-ι+1, , xn) e (L*tP)1

and Q(x)ij = ^Bixu xά) as usual. Then

a) £<»>(L) IΛp»>(i) = rPidpYsPiQ)ld;VWn-l>lKL, V»)

where ϊpidp) depends only on dPiQp)2 and spiQ) is the Hasse invariant

([OM], §63)

b) $^iL)\Rfil)\Φr = d;^γpidpysPiQy^-τ\L)\R£-r\l - r) for I > r.

Proof, b) is an immediate consequence of a), a) is most easily

proved using the Weil- or oscillator-representation. It is then a con-

sequence of the explicit formulas for the action of elements of Sp{nm, Qp)

given in [Sa], [Pe], Prop. 2.14 and [Rao], Lemma 3.2.
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Remark. Statement a) above was proved for n = 1 (in a somewhat

different formulation) by Kitaoka [Ki3].

A consequence of the Lemma is:

THEOREM 8.1. Let F = 2 &i&fl be a linear combination of theta series

of quadratic forms of square free level belonging to the same genus. Then

F is a cusp form if and only if F\Φ = 0.

Remark. Note that Theorem 8.1 is different from the corollary to

Theorem 1.1.1 of [Ra3]. Rallis assumes that the (n — l)-st theta lifting of

a form on the orthogonal group vanishes for all test functions and ob-

tains cuspidality of the τι-th theta lifting for all test functions, whereas

we consider one specific test function throughout.

We notice that Lemma 2 allows to determine the part in the space

of Klingen-Eisenstein series of a linear combination of theta series that

is not cuspidal. In order to state the result we need some more notations.

Recall that for any discrete subgroup Γ of Sp(n, Q) commensurable

with Sp(n, Z), Re Spin, Z) and fe SϊiR'ΨR Π Cn,r\ one has the Klingen-

Eisenstein series

E*M Λ5):= Σ

(Here for G c: Cn,r we denote by GQ the intersection of G with the Spir)-

component of Cn>r and by Z* the upper left hand corner of size r X r of Z).

This series converges for k > n + r + 1 and satisfies for R = γRoc

iΐeΓ, i?oeSp(rc,Z), ceCn>r):

E*tr(f, Γ, rRoc) = E*9r(f\cϊ\ Γ, Bo)

(where again c0 is the Sp(r)-part of c). That is, the double coset decom-

position of Γ\Spin, Z)/Cntr determines the Eisenstein series to be con-

sidered.

Furthermore, they satisfy

{/ if R and L are in the same double cosets

0 otherwise.

These facts, taken together with Lemma 2, yield

THEOREM 8.2. Let / = Σ ai$sl € S*(iV) be a linear combination of
theta series of positive integral quadratic forms in 2k variables in the same
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genus of square free level N = px pt and discriminant d and assume

k > n 4- r + 1. Let

n) = Σ Σ Π d j

r = 0 for all ReSp(n,

Remark. By a result of S. Kudla (that has not yet been published)

the following is true:

Let K he SL lattice on the 2£-dimensional quadratic space V over Q,

let OA(V) = U O(V)hiOA(K) be a double coset decomposition such that

htK corresponds to the quadratic form St and let ψ be the right OA(K)-

invariant automorphic form on OA(V) with ψih^ = a{. Assume further

that the form ψ is orthogonal to all forms on OA(V) whose lift to Sp(r, A)

vanishes. Then 2ϋ ceflg*1'* is orthogonal to S*+1(iV).

The above theorem then implies

pir+i) = 2] afig+v if k > 2r + 2 ,

which can be viewed as an extension of SiegeΓs main theorem. We will

arrive at a similar result for Yoshida's lifting in section 10.

§ 9. Non-vanishing

In [Yl], [Y2] Yoshida conjectured that for cuspidal φ9 ψ e <stfε(DA, Rχ\)9

φ φ 0 Φ ψ and R maximal in D the lift Y{n)(<p, ψ) is different from zero.

We shall now prove this conjecture, including the case of Eichler orders

under our usual condition that ψ and ψ are in the essential part of

<$έ(DA, RA). Thus, for the rest of this section we assume ψ, ψ e <srfε(DAf RA)

to be as in section 7. As always N = N^ is the level of R, D is split

at the prime p if and only if pJ(Nx.

Denote by j / e s s the essential part of <stf(DA, RA). By Θ^yNi we denote

the subspace of Θ(n)(4, N) Π M^(iV)trlv generated by the Yίn)(φ, ψ) with

Note added (Nov. 1990). The improvements sketched in the note at

the end of section 7 allow us to weaken the assumption φ e ^ e s s here too.

Since we are considering only theta series of quadratic forms in one

genus we have a splitting

n

(9.1) θ™ N — 0 @N1JN
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defined inductively by

) t r l v (by §8)

and

( θ ^ , l ) x = Θ&& by the Φ-operator

where _L means the orthogonal complement in Θ^Va

(N.B.: Forms in (θjfc'ft,)-1- need not be orthogonal to all cusp forms).

Thanks to a result of Kitaoka [Ki2] we have ΘfuN2 ^ ΘfuN, for n > 3,

so the case n = 3 of the splitting contains all information about such

splittings for any n.

We shall prove that this splitting can also be described in terms of

properties of automorphic L-functions.

Results of similar type—but only for "large" weights—were obtained

by Harris [Hal], [Ha2]. Finally we shall describe the splitting in terms

of the Yoshida lifting.

LEMMA 9.1. a) Y< >fo, +)\K? (J^ "J^K™ = ε(wp)rpsp(DyY"(Ψ, ψ)
b) If S is an integral positive quaternary quadratic form with #kn) e

Θ(w)(4, N) with det S Φ N2

xNl then

^ is orthogonal to θ%;%2.

c) // n = 2, det S = N\Nl but S is not in the genus of (R, n), then

^ is orthogonal to

Proof a) As in § 8 we have

φ(yi)ψ{yj) $inKi*if

(where πp denotes the element of D* with ί Λ I or a prime element

of Dp in the p-component, 1 in all others and zp e Dx with n(zp) = p).
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b) Assume that p41 det S for some p \ N2 (i.e. S is divisible by p).

Then using the formula for the action of K™( ° ~~P~0ln) K™ f r o m § 7 w e

see that -Sg0 is an eigenfunction of Kp

n)ί - ~~^Q nJ Kp

n) with eigenvalue

— sp(D)nΓΊ>p
n{n-1)β. Since this operator is hermitian and θ$ltN% is an eigen-

space with eigenvalue — sp(D)nripn{n-1)2, w e s e e that -9^ must be OrthogO-

If S is primitive there is some p\N2 with pJ(άet S. Writing again

p-*S* = S#>p and using a) we see

<y<»>fa, ψ), *?>> = e(α; p)rrs p(Z))- np<y< >(?), Ψ) , «gι>> = o .

c) In this case there is some p\N for which S is anisotropic over

Qp and Dp split or vice versa.

In any case #^2) is (modulo theta series of imprimitive forms that are

orthogonal to θg f],, by b)) an eigenfunction of Kf ( ° ~Po"1 1 2) K™ w i t h

eigenvalue ±ϊ2

pp
3 while Θ%\iN% has the negative of this number as eigen-

value. Again the assertion follows since the operator is hermitian.

Remark. We should note that Lemma 1 remains true if only one of

φ, ψ is in the essential part of sέ(D%9 R%) since the results about TN(Nln)

used for its proof are valid under this weaker condition (see the remark

after Lemma 7.4).

THEOREM 9.1. Suppose Feθ$uN% is an eigenform of all Hecke opera-

tors TN(M), M ΞΞ 0 mod N. Let N = pί pt. Then

( i ) Fe Θ$ι%2 implies that D(

F

N) is of order at least I in s = 1 and

has a simple pole in s = 2

(ii) F e Θ$;JΛΓ2 implies that D(

F

N) is of order I — 1 in s = 1 and has at

most a simple pole in s = 2

(iii) JF e θ̂ ίMv-a implies that D(

F

N) is of order I — 2 in s — 1 and has a

simple pole in s = 2

(iv) F e θ#;?Jr, implies that D(/} is of order 21 — 3 in s = 1 αraZ Λαs a

double pole in s = 2.

Evidently the converses of these statements are also true (in the appli-

cations we have in mind only the behaviour in s = 1 will be relevant).

Proof. To prove ii), iii), iv) we use the Zharkovskaya relations [Zh]
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(9.2) DF>(8) = ζiN)(s - l)ζ ( Λ r )(s + l)D($(s) if ΦF φ 0

(9.3) !)/>(*) = ζ(ΛΓ>(s - l)ζ<">(* + l)ζ<*>(s)fD$&(s) if Φ2F ̂  0

(9.4) £>],*>(*) = Cw(s ~ l)X{N)(s + l) 2ζw(s) 8 if Φ3F =£ 0

ii) For F e θ f t , we have ΦFeΘfcX c Θ<2) (4, iV) and ΦF is a cusp-

form. Combining (9.2) with Theorem 4.1 and Lemma 9.1 we get the first

part of ii).

iii) Here we have

(n,JV)-l

where /l(ra2) is the eigenvalue of the Hecke operator T(n2) (in the usual

notation for elliptic modular forms) for the cusp form Φ2F.

By a standard reasoning (Rankin-Selberg-method) the value of this

Dirichlet series at s = 1 is essentially the square of the Petersson norm

of Φ2F and therefore different from zero; the behaviour in s — 2 is clear.

This proves iii).

iv) follows from (9.4).

The second assertion of i) follows from Theorem 4.1 and Lemma 9.1.

To obtain the result about the behaviour in s = 1 we recall the integral

representation for D(

F

N)(s) obtained in section 4:

= ,(8,2, s) *ANΛN)ΛA2s-l)D^(2s-ϊ) _

)ζ(*)(2s + 2) Π Cw(4s + 4 - 2ί)

In s = 1 we have a simple pole for μ(3, 2, s) and a pole of order / for

1) Π T\TΛVlTTT
βlΛΓ i-i (1 — qr* -i + ' )

To prove i) we must show the crucial

PROPOSITION 9.1. E\{Z, s, N) has a pole of order 1 at s = 1.

Proof. We prefer to prove the same statement of ίl(Z, s, iV). From

section 3 we see that the constant term in the Fourier expansion of

Fl(Z, s, N) indeed has a pole of first order. On the other hand we know
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by the results of Feit ([Fe], Theorem 9.1. b) 3.) that

r(s)L(s)F&Z,s,N)

has at most poles of first order. Here L(s) is a product of (shifted) L-

series with the property that s = 1 is still in the domain of absolute con-

vergence of their Euler product; ϊ(s)s=1 is a product of Γ-factors evaluated

at positive arguments.

The second part of ii) follows in a similar way from the fact that

F\{Z, s, N) is regular in s = 1 (which is implied by [Fe], 9.1. b) 2.).

In [Yl], [Y2] Yoshida conjectured that (for any ε) the lift Y2(φ, ψ) is

different from zero if φ, ψ Φ 0 are elements of <stfe

cusv(D%, #£)•

We shall verify (a strong version of) Yoshida's conjecture by using

the splitting (9.1) of Θ$\ίN2 and solaing the following

PROBLEM. Suppose φ, ψ e # ( 5 ^ R%) are eigenfunctions of the Hecke

algebra, both different from zero and in the essential part. Determine

the subspace Θ§[%(0 < i < 3) in which Yi3)(φ, ψ) lies!

From the results obtained so far it is clear that Y{Z)(φ, ψ) does not

vanish and that Y{Z){ψ, ψ) must lie in one of the subspaces Θ{p^N2. More-

over, according to the Theorem of 1.4. the automorphic L-function D^is)

with F : = y(3)(p, ψ) should contain the solution of this problem.

So let /, g e M\{N) be modular forms corresponding to φ and ψ and

let a(p) = ap + ap, b(p) = βp + βp (apap = βp~βp = p) be the corresponding

eigenvalues of the Hecke operators T(p),p)(N. (Note that this normali-

zation is different from the one used in § 6). We need the L-series

L™ίφ, *, s) : = U ( 1 __ apβpP-χι « apβpp-°)(l - apj8,p-χi - apβpp-*)

= ζ{N)(2s - 2) Σ a ^ b ^
n=i ns

= U»l(s ~ 1).

(see Corollary 6.1 for the definition of L^(s)).

In special cases we have

£ί&(l, 1, s) = CNKs)ζ(N)(s - ΐ)VN\s - 2)

and

Lίξί(l, ψ, s) = L ^ ψ , s)L<«(ψ, β - 1)

where
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bin) 1
L (Ψ, s) = 2 J —-— = Y\

From the results of §6 we have

Several cases have to be considered separately:

( i ) £) and ψ both constant. Then D(

F

N)(s) is of order 2/ — 3 in s = 1

and has a double pole in s = 2.

(ii) ^ constant, ψ cuspidal (and vice versa). Since LiN)(ψ, 2)L(Λr)(ψ, 3)

is different from zero, we get a simple pole for D^is) in 5 = 2. More-

over, the order of D{/}(s) in s — 1 is equal to I — 1 + order LiN)(ψ, s).

(iii) p, ψ both cuspidal, φ not proportional to ψ. Then D(/}(s) has

a simple pole in s = 2. We claim that the order of D(

F

N)(s) in s = 1 is

indeed Z — 1 or equivalently:

£*&(?>, Ψ, 2) =£ 0 .

This is precisely what Theorem 4 of Ogg [0] says.

(iv) φ and ψ cuspidal, φ — cψ (c Φ 0). Then D(

F

m(s) has a simple

pole in 5 = 2 and D^is) is of order i — 2 in s = 1 since in this case

Lί?L(<P> Ψ> s ) has a first order pole in s = 2, the residue is essentially the

square of the Petersson norm of / (see e.g. [0]).

We have thus completely solved the problem stated above. We sum-

marize our results, giving at the same time a description of the spaces

θg&, in terms of the lift 7(3\

THEOREM 9.2. Denote by <tfs

nβw the set of cusp forms in the essential

part of j/e(DX, R%), let {ψt} c s/^w be a basis of j / n e w consisting of eigen-

functίons of the Hecke algebra (if R is maximal, this basis has h — 1 ele-

ments, h the class number of R).

Then the spaces 0 $ ; ^ have the following bases (which are mapped to

orthogonal bases of Θψ^N2 under Φ3~*)

Θ™ {Y<3>(1,1)} (θ&% = {0} for N2 φ 1)

0 if N2φl

1 = e0, L
iN)(^j, 1) Φ 0} i/ N2 =
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Θ%? {Y<8>(1, ψj) I e, = eo, L <*>(*„ 1) - 0} (θ$»Nt = {0} i/ iV2 *= 1) .

Proof. Everything has already been proved except for the orthogo-

nality of the images under Φ3" i of the basis elements. But this follows

from strong multiplicity one for ,s/new which implies (by the results of § 6)

that Y(n)(ψ{, λjrj) and Y(n)(ψ.k, ft) give (if they are nonzero) different homo-

morphisms .ff(GSpn(Qp), Spn(Zp)) -> C x for infinitely many primes p unless

{i,j} = {k,l}.

COROLLARY 9.1. Yoshida's conjecture is true, moreover if N2 = 1 (i.e.

R is a maximal order), O ^ ψ e ̂ ίusP

 a n eigenform we have Y(2)(l, ψ) = 0

if and only if LiN\ψ, 1) - 0.

COROLLARY 9.2. Let N2 = 1. Then all nontrivial linear relations be-

tween the theta series #(2)(IU) are of the type

where ψ is in the subspace of <$/εo(D^, Rl) spanned by those Hecke eίgenforms

φ with UN\ψ, 1) = 0. Furthermore, ^2)(Iυ) = &™(I*ι) implies (Iij9 n) ̂  (Ikl, n).

Proof. Let {Kκ} be a set of representatives of the nonisometric lat-

tices among the Iiά, 2 a*$i2)(Kκ) - 0, not all aκ - 0. Then 2 aK9™(KK) Φ 0

is a cusp form, thus (by Theorem 9.2) equal to Y(3)(l, ψ) with ^ as asserted,

wliicn proves the first part of the corollary. If SL2)(Itj) = ^(2)(Jfcl), then

(by the first part) there is ψ e <?/εo(D^ R%) such that

= T(Fix(θ7T

φ(yι)
#(Eϊx(A) ΓΊ Fix(Z)) e^il + δkl)

- o if iiS £ ivμ

(in the notation of § 5). Assume that j Φ ί and (say) ψ(yj) > 0. Then

<p(yj) + φ(yj) > 0 and Ijj ^ Iijy a contradiction.

Thus j — ί, k — I and (again using the notation of § 5) j Φη{k) for

all η, since otherwise φ{y3) — φ(yk)- If 1 < μ < h is such that j Φ μ Φ k,

then $0(3̂ ) = 0 implies that αrΛ Φ 0 for if, ^ Ijμ, a contradiction.

If on the other hand ψ(yμ) φ 0, then aκ Φ 0 for if, ^ Z^, thus Iμμ ~ I5j

or //i;i = 7fcfc. But that implies μ = 37(7) or ^ = (̂A) for some 57, thus aκ Φ 0
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for Kκ s Iμj or for Kκ = Iμk. Since both these lattices are neither iso-

metric to Ijj nor to Ikki this is again a contradiction. We are thus

reduced to the case that the class number and the type number of D are

both equal to 2. From the tables of Pizer [Pi] one sees that this can

happen only for N = 11,17, 19, in which cases the theta series of degree

one of the nonisometric ideals are known to be distinct.

COROLLARY 9.3. Let N2 = 1, N odd, let Ru , Rt be representatives

of the types of maximal orders in D, let

Lt = (Zl + 2Λ4) Π {x eD\tr(x) = 0}.

Then the theta series ^(1)(L i) are linearly independent if and only if

L(ψ, 1) φ 0 for all Hecke-eίgenforms ψ e <srfε°(Dϊ, Hi)-

Proof We notice first that the injective mapping J2Λ(Γ0(N)) -> Mm(N)

of Satz 8 in [Kra] carries the Jacobi theta series of index one of the

Rt to the &(Li) (for N prime this is Satz 1, ch. II in [Kra]). To see this,

let x = s' + 2y e Lt with β 'eZ, y e Rt. Then n(x) e 2Z if and only if s; e

2Z. For xe Lt and s e Z one sees therefore that x'\ = (x + s)/2 is in Rt

if and only if n(x) = s mod 2, and one has tr(V) = s, 7i(x') = (ra(x) + s2)/4.

Using Kramer's notation [Kra],

^o(4r) = 2 exp (2πίn(x)τ), ^(4r) = Σ exp (27rm(x)r)

are therefore such that φo(4τ)<9O)ί(τ, z) + ^i(4τ)^1,1(r, z) is the Jacobi theta

series of index 1 of Ru hence C9o(4r) + φ^τ) = ^α)(L i)(τ) is the modular

form of weight 3/2 corresponding to this Jacobi form. Thus, the ^(1)(L ί)

are linearly independent if and only if the Jacobi theta series of index

one of the Rt are linearly independent. These are, by the same reason-

ing as in [SP] and using Theorem 4.3. of [Y2], linearly dependent if and

only if there is ψ e <xfeo(D^ i?£). with F(2)(l, ψ) = 0.

(this generalizes a result of Gross [Gr]).

Remarks. 1) We should emphasize that the main ingredients of our

proof of Yoshida's conjecture were

—the holomorphy and regularity results of Shimura [Shil], [Shi2]

and Feit [Fe]

—pullbacks of Eisenstein seires and their relations to automorphic

L-functions
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—the theorem of Ogg about LBym which in turn is based on the

Ramanujan-Petersson conjecture for weight 2 (proved by Eichler [E2]).

In particular, we have made essential use of the fact that φ, ψ corre-

spond to holomorphic modular forms.

2) We have used Kitaoka's [Ki2] result on linear independence of

theta series to restrict attention to the splitting of θ ( 3 ). Instead of this,

one could also use the trivial fact that the theta series of degree 4 are

linearly independent and consider the splitting of θ ( 4 ). Essentially the

same type of argument as above can then be used, proving in particular

the special case Y<3)(φ, ψ) Φ 0 of Kitaoka's linear independence result.

3) The elements of the space

C{y ( 2 )(l, ψ eigenform, , 1) Φ 0}

N

389

433

563

571

643

709

997

1061

1171

1483

1531

1567

1613

1621

1627

1693

1873

1907

1913

1933

dim θ< ;»>

1

1

1

1

1

1

2

2

1

1

1

3

1

1

1

3

1

1

3

3

N

2027

2029

2081

2089

2251

2293

2333

2381

2593

2609

2617

2677

2797

2837

2843

2861

2953

2963

3019

3089

dim θ£;?

1

2

2

1

1

2

4

2

4

2

2

1

1

1

4

2

1

2

2

2

N

3271

3463

3583

3701

3779

3911

3943

3967

4027

4093

4139

4217

4253

4357

4481

4547

4787

4799

4951

5003

dim θ»;?

3

2

2

2

1

2

4

1

2

2

1

2

3

1

1

1

2

1

2

3
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satisfy the Maaβ-relations [Y2]. It would be very interesting to see

whether the elements of θ$;3) satisfy similar relations.

4) The result about Y(2)(l, ψ) has been proved independently by

Yoshida (using methods similar to those of [Y2] and a result of Wald-

spurger). For N prime it follows also from the proof given in [SP] for

the special case of N = 389.

5) The case L(N)(ty, 1) = 0 really occurs. For N prime the dimension

of the space generated by such ψ has been computed in many cases by

K. Hashimoto (using that it is equal to £-(dim span {-^(1)(Lί)}) by [Gr]).

With his kind permission we reproduce some of his results in the fol-

lowing Table.

6) In case N2 = 1, Corollary 2 specifies the precise extent to which

the linear independence conjecture of [An2] is wrong for these genera of

quadratic forms.

§10. Scalar product formulas

In this last section we shall compare various scalar productsof the

modular forms and the automorphic forms on D% that occurred so far.

We keep the notations of the previous sections and notice that

= P*-1 π
for n > 2,

(pJ(N9 Bijip) the entries of the Brandt matrix).

This can be deduced without difficulty from [Y3] and is proved im-

plicitly in [Yl], § 5 (the case n — 1 is due to Eichler). Further, all the

eigenvalues λp(φ) for a Hecke-eigenform φ e srf{D\, R*) are real and the

eigenform φ itself can be chosen to be real.

We note finally that the natural notion of scalar product for

Bϊ) and sόφl X JDJ, El X 2ft) is

= ί
J D*

and
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respectively.

We have to consider Y(n)(φ, ψ) for n = 1, 2, 3.

a) n = 1

Let 9? e ^new(̂ A» -RA)> be a Hecke-eigenform, put

Using ^ | Γ ( p ) - ΣkBik(p)9kJ we get

Σ Bik(pXF, $kj) = <F, £

for all i and
By strong multiplicity one for ^n e w(fl^, JRJ) this implies

for some Cj,

yd Σ
j

Choosing some ί with φ(yl) ^ 0 we get, again using strong multiplicity

one: ci — cφ(y}) with some constant c = c(φ) depending on φ, which shows

To determine the constant write

< F , F > = Σ *y*<y,) <F> 9ti> = cίΣ j*y

Since Σ< ψiyif\eχ ^s ^ e first Fourier coefficient of F we find

c = <F0, Fo>

where .Fo is the normalized eigenform corresponding to φ. It is well

known (Rankin-Selberg method) that

with

(4τr)2ζ('V)(2) Π (1 + p-1)
p\N

(see e.g. [Pet], [Ran]). We have therefore proved

PROPOSITION 10.1. For n = 1, F = Y{1)(φ, ψ) we
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ii) <F, F> =

where c0 depends only on N.

b) n = 2.

Let again φ,ψe J^WC^A* -^A) f° r some e be Hecke-eigenforms, ψ Φ cψ ,

put

F = Y(2)(y>, ψ) =£ 0 (a cusp form), $tj == £<»(/«,).

Obviously p: (j^, y^) »-> <F, -ί*̂ ) is a symmetric function on D£ x D^, i.e.

/o(^, ̂ ) = p(yj9 y<).

The space of such symmetric yo e ^{D^ X Z)A> Ĵ A X Rl) is spanned by

the functions

ί) + φXyj)φμ(yι)

where ^ , ^Λ are Hecke eigenforms in s/βss(D^ (i?A)x) for some order R Ξ?

i? of level ΛΓ'IΛΓ, since by [Hi-Sa] ^(Dl,Rl) is the direct sum of the

^essΦL CRA)X) for the orders R 3 J?. Define the operator f (p) by

y/) = Σ Bjk(p)p(yp yk) + Σ Btι(p)p(yl9 ys).
k I

Then

pvμ\t(p) = (λp(φv) + λp(φj)pvμ

for all p not dividing N.

Let now φv9 φμ e ^es8(D^y R%) and assume that pv,μ, has the same eigen-

values under T(p) as V̂)U for p)(N. Let /", be the normalized elliptic new-

form of weight 2 (and level Nf dividing JV) corresponding to φκy i.e., having

the same Hecke eigenvalues for pJ(N as <pκ.

Then fv + fμ — fv> — fμ> has Fourier coefficients an = 0 for (n, iV) = 1,

hence is an oldform of level N [Li], thus orthogonal to /„, /̂ . This im-

plies {/„, fμ} = {/̂ , / }̂, hence {̂ v) φμ] = {̂ , ^} (since strong multiplicity one

holds for i e s g ( D ί , iϊ£) by [Hi-Sa]. (The argument remains true if one of

φ9 ψ is identically 1).

Now ρ(yif yj) = <F, ̂ ) is seen to satisfy

(using the expression of T(p) by Brandt matrices and proceeding as in

the case n = 1), and φ, ψ are in s/nβw(D^, R£) by assumption.

Thus (with ψ = φv, ψ = φμ), p = c^v/ί, i.e.,
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for some constant c — c(φ, ψ) depending on φ and ψ. We are now in

the range where the results of part I apply and obtain

c = c0 Res Dψ\s) Φ 0
S = l

with

°° 2aw(Nu.

where λF(N-ln) = ± Y\plN pnin~1)/2sp(D)nri (by Lemmas 7.3 and 7.4) depends

only on n, Nl9 N2 but not on φ, ψ. We write

const = const (n, Nu N2)

for any such constant depending only on n, Nu N2 in the following.

PROPOSITION 10.2. For n = 2, φ, ψ e ^ n e w ( ΰ ϊ , Λϊ), F = y(2)(^, ψ)

have

i) <j? 5g>> = const-Res D^isXφiyMyj) +
S = l

ii) <F, F> = const Res DF

N)(sXφ ® Ψ, ψ

/or τι' > 2

iii) Y<»'>(p, f) = const- y ) ( ^ " ^ Res ^

= const- ^ ^ ^ ^ Res ^ , 2 ( Y ^ , ψ ) , 5 )

Proo/. The last fact follows from the first and Theorem 4.1.

c) n = 3, R is a maximal order, ψ = 1, L(̂ >, 1) = 0.

ί1 = Y3(^, 1) is then a cusp form, we put # $ = ^< 3 )(/ o). By the same

argument as above we obtain:

PROPOSITION 10.3. For n = 3, i?, 9 as aόoυe, F = Yί3)(^, 1) ^

i) <F5 5?;> = const Res ^ ( s ) ^ ) + ^(y,))

ii) <F, F> = const Res Dψ\s)(l ®φ,l®φ>
S = 2

and for ή > 3
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iii) Y™{φ, 1) = const V n(*)/N ' R e s ^
Res D(]P(s) *-n'/j

= const - g ^ ' ~ ^ " f e ^ ~ 2)
£<*>( 3)L<">(ίa, 2)

, i),β).
s=w'/2

Remarks. 1) The scalar product formulas obtained in all cases are

similar to those of Rallis [Ral] relating Petersson norms of forms on the

orthogonal group and of their theta liftings. The formulas for Yin>)(φ9 ψ),

nf > n are in a sense generalizations of SiegeΓs theorem: They exhibit

a linear combination of theta series as (residue of) an Eisenstein series.

2) In the results described above, there is one point missing: In

Proposition 1 there is no statement (iii) like in Propositions 2 and 3. Here

we can only obtain a somewhat weaker result for Yn'(φ, φ), which however

will be essential in future applications. First we remark that Theorem

4.1 remains valid under the weaker assumption (n + n' + l)/2 — k > 0,

so we can apply it for n = 1, F = Yι(φ, φ)9 φ e j/ n e w (Dϊ, i?£) and v! > 3.

For nr — 2 we can use Corollary 3.1.

We have to observe now that on the right hand side of (4.1) theta

series arising from all Eichler orders of level N —not only from the one

we are considering—may give nontrivial contributions (note that theta

series of Eichler orders of level Φ N are orthogonal to F by Lemma 1 of

section 9).

We obtain then:

PROPOSITION 10.4. For N[\N having an odd number of prime factors

denote by D(N{) the definite quaternion algebra over Q ramified at oo and

the primes dividing N'l9 unramίfied at all other places, and by R(N{) an

Eichler order of level N in D(Nί). Denote further by φW e ^ne

R(Nί)l) the (unique) function in s/m(D(NX9 R(N0l) satisfying

φwv) = F. Then

for n! > 3,

ϊ>) = const. D™J?' υ - Res El.A(F,8)
D{

F

N)(ΐ) S = (n'-2)/2

Σ Y ( 2 V^ } > <P{N>l)) = const-(£ϊ f l(jP, 0)).
N'X\N
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For future reference, we finally state the proposition above for n' — 2

in a slightly different (but equivalent) form with φ, F, Nu N2, N[ as above,

) ' 1 ' ^ I •= number of primes dividing N. Then

N\\N

with

C l = ^ π
2 P\N

In subsequent work we shall show that the arithmetic version of the

identity above (i.e. the corresponding identity between the Fourier coeffi-

cients of both sides) implies a version of Waldspurger's formula for val-

ues of twisted L-series.
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