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NOTES ON LYAPUNOV GRAPHS AND NON-SINGULAR

SMALE FLOWS ON THREE MANIFOLDS

NOBUATSU OKA

§ 1. Introduction

In the 1980s, Franks, Pugh and Shub raised the question "Given any
subshift of finite type σA: ΣA->ΣA is there a non-singular Smale flow (or
an NS flow for short) on S3 with the suspension of σA as a basic set?"
(See [5] and [12]).

In 1985, Franks introduced the concept of a Lyapunov graph, and
using this graph, he obtained an affirmative answer about the question
(see [6]). Simultaneously, he characterized the Lyapunov graphs appear-
ing as that of NS flows on S3. (See Theorem 1 [6]). On the other hand,
J. Birman, R.F. Williams studied what kinds of knots appear as sets of
closed orbits of knot holders of an NS flow on S3. (See [2]). For non-
singular Morse Smale flows (or NMS flows for short), which are special
cases of NS flows, Sasano and Wada characterized the knot types or link
types which appear as sets of closed orbits. Kobayashi also studied the
types of primitive links in the case of special Seifert manifolds. (See [10],
[14] and [16]).

Our purpose of this notes is to decide what kinds of Lyapunov graphs
appear on certain three manifolds associated with NS flows. By using
this graph, the global conditions of flows on manifolds are more visible
than other methods.

Our first result in Theorem A is a characterization of the Lyapunov
graphs of NS flows on L(2p — 1, q) by using a standard technique of 3-
dimensional topology, which extends Theorem 1 of Franks' paper [6].
For NMS flows, Franks characterized the type of Lyapunov graphs as-
sciated with NMS flows on S3. (See Theorem 2 [6]). In our notes, we
define a notion of a singular vertex for Lyapunov graphs associated with
NMS flows on the irreducible, orientable, closed 3-manifolds which can
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not admit incompressible tori. By observing that the Lyapunov graphs

on the case of the above manifolds which are not lens space must have

one singular vertex in Theorem B, we extend Theorem 2 [6] to the case

of the irreducible, orientable, closed 3-manifolds which can not admit in-

compressible tori. Moreover, we define a special Lyapunov graph which

distinguishes a singular vertex from an ordinary vertex. We characterize

the types of the special graphs on the case of lens space. (See Proposi-

tion 5 and Proposition 6).

I would like to express my gratitude to professors K. Shiraiwa,

G. Ikegami, and S. Negami for their useful advice and encouragement.

§2. Definitions and preliminaries

For the definition of an irreducible 3-manifold, a Seifert fibered space,

an incompressible surface, etc., we refer to Hempel [7] and Jaco [8].

DEFINITION 1. Suppose that φt: M-+M is a continuous flow and

ε > 0, we say there is an ε-chain from x to y provided that there exist

points xx = x, x2, , xn+i = y and real numbers t(i) > 1 such that diφtii)(xt),

xί+1) < ε for all 1 <̂  i <Ξ1 n. A point x is called chain recurrent if for any

ε > 0 there is an ε-chain from x to x. The set R of all chain recurrent

points is called the chain recurrent set.

DEFINITION 2. If φt: M —> M is a smooth flow, then a smooth func-

tion g: M - * R will be called a Lyapunov function provided

(1) d(g(φt(x))/dt < 0 if x e R and

(2) when x, y e R, g(x) = g(y) if and only if for each ε > 0 there

are ε-chains from x to y and y to x.

DEFINITION 3. A smooth flow φt: M -» M on a compact manifold is

called a Smale flow provided that

(1) its chain recurrent set R has a hyperbolic structure, dim R ^ 1

and that

(2) it satisfies the transversality condition.

Remark 1. When a Smale flow does not have any singular points,

it is called a non-singular Smale flow (or an NS flow for short).

Remark 2. A flow φt: M -> M is especially called an NMS flow when

its chain recurrent set R consists of finitely many hyperbolic closed orbits

and satisfies the transversality condition.
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DEFINITION 4. An (abstract) Lyapunov graph is a finite connected

oriented graph which possesses no oriented cycles, and each vertex of

which is labelled with a chain recurrent flow on a compact space.

From now on we assume that M is an irreducible, orientable, closed

3-manifold. Since we study an NS flow on M, each vertex of a Lyapunov

graph will be labelled with a basic set, which in this case is topologi-

cally equivalent to either a suspension of a subshift of finite type σA:

Σ —• Σ corresponding to a matrix A (see Bowen [1]), an attracting closed

orbit, a repelling closed orbit, a closed orbit of twisted saddle type, or a

closed orbit of untwisted saddle type.

We note that all attractor and repeller of an NS flow are closed

orbit; because a hyperbolic chain recurrent set satisfies Axiom A (see

Franke and Selgrade [3], and Smale [15]), each basic set has a closed

orbit. If a basic set A is attracting or repelling and dim A = 1, A must

be an isolated orbit.

DEFINITION 5. Suppose φt is a Smale flow on M, g: M->~R is a

Lyapunov function and A is a basic set with g(A) = C. We will say that

X = g'^lC — e, C + ε]) is a basic block for A, if the following three con-

ditions are satisfied.

(1) X contains only one basic set.

(2) There exist (not necessarily connected) codimension one sub-

manifolds U and V with boundary in X such that U C V and that they

are transverse to the flow.

(3) Let H be a finite set of one handles &« ( ^ D1 X D1) in U; H =

Ui hi the first return map r: U —> int V is well defined, smooth and there

is a hyperbolic handle set H C int £7, with every orbit of A intersecting

H and ht C H intersecting A. Here we call a handle set H hyperbolic

handle, if it satisfies the followings.

(1; If xeht and r(x)ehp then int(r(W?(*)) D W%r(x)) and r(W\(x))

c int (W;(r(x)).
(2) There is a λ e (0, 1) such that for each x e hu with r(x) e H and

each υeTa(W\(x)), w e Tx(W^(x)) we have ||rfr(u)|| £ λ\\υ\\, \\dr(w)\\ ^ ^ H ^ H .

Here W"(x) denotes the interval D1 X {p} C ht which contains a point x.

Similarly W\{x) denotes the interval {q} X Dι C ht containing x.

DEFINITION 6. Suppose Aό is a basic set of a Smale flow contained

in a basic block X5 with hyperbolic handles H, then we call K(AS) =
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DteΈtφt(H) the saturated handles. K(Aj) has stable foliations Ws(x) with

leaves containing x e K, and y e Ws(x) if and only if there exists tut2eR

and zehiClH such that φn(x), φttiy) are both in Wi(z) d ht. The un-

stable leaf Wu(x) has a similar property.

DEFINITION 7. A Smale flow φt on Λf will be called fitted provided

(1) there exists a Lyapunov function g: M-+ R with respect to which

a basic set ^ has a basic block X, and {Xj} are pairwise disjoint, and

(2) if x e KiΛi), y e K{Λ^ and g(x) > g(y), then Wu(x) either con-

tains Wu(y) or is disjoint from it and Ws(y) either contains Ws(x) or is

disjoint from it.

Remark 3. A fitted Smale flow satisfies the transversality conditions.

LEMMA 1. Suppose that φt: M-» M is a non-singular smooth flow on

an irreducible, orientable, closed 3-manίfold M, and suppose that g:

M-^Έl is a Lyapunov function associated with a flow φt. Then each com-

ponent of a level surface of a regular value of the Lyapunov function g is

homeomorphic to a torus.

Proof Suppose that we cut manifold M at the level g~\C), where

C is a regular value of the Lyapunov function g. Let g~\[C, + oo)) be

denoted by M + . Suppose that a flow exits transversely on the boundary

dM+. Thus considering a double of M+, we obtain X(dM+) = 0, where

X(dM+) denotes the Euler characteristic of dM+. If there is a surface of

genus greater than or equal to two in g~\C) = dM+, the boundary of

g~\C) must contain S2. Since M is irreducible, the S2 bounds a ball in

M. But there exists a singular point in the ball. This is a contradiction.

Then each component of dM+ is a torus.

LEMMA 2. Let T2 be a compressible torus in an irreducible, orientable,

closed 3-manίfold M. Then T2 bounds a solid torus or there exists a non-

trivial knot h in S3 such that T2 bounds a compact 3-manifold M which

is homeomorphic to S3 — N(h), where N(h) denotes a regular neighbour-

hood of h. Moreover, in the last case we can take a boundary of a com-

pressing disk of T2 for a meridian of h.

Proof. Let T2 be a compressible torus in M. Then there exists an

essential simple closed curve on T2 which bounds a disk D2 in M. By

Dehn's Lemma, D2 is a non-singular disk. Thus the (T2 Π (M - (D2 X I)))

U D2 X dl is homeomorphic to S2. The S2 bounds a ball in M. Here K
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denotes a closure of an outside of the torus as in Figure (1). Let

M - (K U D2 X I) be denoted by A. Then if the ball S 3 corresponds to

A, we see that A U D2 X I is homeomorphic to a solid torus. It means

that the T2 bounds a solid torus in M. If the ball B3 corresponds to

K U D2 X /, we see that T2 bounds K = B3 - D2 X I. Thus when if is em-

bedded in S\ it may be a non-trivial knot complement S3 — iV(/ι). More-

over, in this case, the boundary of a compressible disk of the T2 can be

taken as the boundary of D2 X {p} of the D2 X I in M. Then we see

that the disk D2 X {p} is a meridian disk of h in S3.

K

D 2 XI

Figure (1)

PROPOSITION 1. Suppose that M is an orίentable, irreducible, closed

3-manίfold, and that M does not admit incompressible tori. Let φt: M—>

M be a non-singular smooth flow with a Lyapunov function g: M—> R.

Let Γ be a Lyapunov graph associated with the flow φt and Lyapunov

function g. Then Γ is a tree.

Proof. By Lemma 1, each component of g~\C) is a torus, where C

denotes a regular value of g. Since M is an irreducible manifold and

since M does not have any incompressible torus, each component of

g~\C) bounds a solid torus or a non-trivial knot complement by Lemma

2. Hence Γ is a tree.

Remark 4. If ί/i(M, Q) = {0} for a 3-manifold M, a Lyapunov graph

Γ associated with a flow φt: M-+M and a Lyapunov function g: M-+H
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is a tree. In this case, the flow φt is not necessarily non-singular (see

[6]).

Remark 5. There exists an irreducible, orientable, closed 3-nianifold

M which does not admit incompressible tori and HX(M, Q) Φ {0} in the

category of Seifert manifolds whose orbit spaces are S2 with three ex-

ceptional fibers (See [8]).

PROPOSITION 2 ([β]). Let Xt (i = 1,2, , n — 1) be a ^-dimensional basic

block in a ^-manifold M. Suppose that h^: dXϊ ->dXUι is a diffeomor-

phism (1 ^ ί ^ n — 1), where dXϊ is the part of the boundary dX* on which

the flow exits, and dX?+1 is the part of the boundary dXi+ί on which the

flow is entering (l<,i<,n — 1). For each ί, ht is ίsotopίc to gt\ dXϊ ->

dXt+1 such that the flow on Xx (Jgι X2 [Jg2 U**-i Xn is fitted Smale flow.

§3. Main results

The main results of this paper is as follows.

(1) Case of Smale flow

THEOREM A. Let φt be an NS flow on a lens space L(2p — 1, q) and

let g be a Lyapunov function. Then a Lyapunov graph Γ associated with

the flow φt and the function g satisfies the following conditions (0), (1)

and (2).

(0) It is a tree with one edge attached to each source and sink vertex.

(1) Each source (resp. each sink) vertex is labelled with an attracting

closed orbit (resp. a repelling closed orbit).

(2) If V is any other vertex, it is labelled with a suspension of the

subshift of finite type σ(A) with a transition matrix A which is an irre-

ducible nX n matrix. Let e£ be the number of entering edges and let eγ be

the number of exiting edges. If kv = dimker((7— Av): Z% -+Z?), where

Av is the mod 2 reduction of Av, then ev <̂  kv + 1, ev <I kv + 1 and kv + 1

<: ev + ev.

Conversely, if an abstract Lyapunov graph Γ satisfies the above condi-

tions (0), (1) and (2), then there exists an NS flow on L(2p — 1, q) whose

Lyapunov graph is Γ.

(2) Case of Morse-Smale flow

DEFINITION 8. Suppose that I 7 is a Lyapunov graph associated with

an NS flow φt and a Lyapunov function g on an irreducible, orientable,
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closed 3-manifold M which does not admit incompressible tori. If there

is a vertex of Γ which satisfies following conditions, we call the vertex

a singular vertex.

(1) If we cut the graph Γ at any point C+ of any entering edge of

a vertex V, a submanifold of M which corresponds to a component of Γ

containing the vertex V is neither a soild torus nor a non-trivial knot

complement S3 — N(h) such that the boundary of a compressing disk of

d(S3 — N(h)) is a meridian of this knot h.

(2) If we cut the graph Γ at any point C~ of any exiting edge of

the above vertex V, a submanifold of M which corresponds to a com-

ponent of Γ containing the vertex V is also neither a solid torus nor a

non-trivial knot complement which satisfies the condition of the case (1).

DEFINITION 9. If a vertex V corresponds the closed orbit of twisted

saddle type, then we call the vertex V a twisted vertex, An untwisted

vertex is defined similarly. Here a saddle type closed orbit is called

untwisted or twisted if the associated unstable bandle Eu is oreintable

or not.

THEOREM B. Suppose that φt is an NMS flow on an irreducible, orί-

entable, close 3-manίfold M which does not admit incompressible tori and

suppose that g is a Lyapunov function. Then a Lyapunov graph Γ associ-

ated with the flow φt and the function g satisfies the followings.

(a) Case of M being a lens space:

(1) It is a tree with one edge attached to each source or sink vertex.

(2) If V is a vertex labelled with the closed orbit of saddle type and

the vertex V has ev enterning edges, and ev exiting edges, then

er == 1 or 2, ev = 1 or 2 and if V is twisted, then ep •= ev = 1.

(b) Case of M not being a lens space:

(bl) Suppose M admits a Seifert fibration whose orbit manifold is S2 with

three exceptional fibers. And suppose that it does not admit a Seifert

fibration whose orbit space is a projective plane P 2 .

(1) The graph is a tree with one edge attached to each source or

sink vertex.

(2) There exists one (singular) vertex V* labelled with a closed orbit

of saddle type, and suppose V* has e£* entering edges and ey*

exiting edges. If V* is untwisted then either ev* = 2 and eγ* = 1,

or ev* = 1 and ev* = 2. If V* is twisted, then ev* = ev* = 1.



44 NOBUATSU OKA

Suppose V is any other vertex labelled with a saddle orbit, and

has ev entering edges and ev exiting edges. If V is untwisted,

then ev = 2 or 1, ev = 2 or 1. // V is twisted, then ev = ev = 1.

(b2) Suppose that M admits a Seίfert fibration whose orbit manifold is

S2 with three exceptional fibers. And suppose that it also admits a

Seίfert fibration whose orbit manifold is a protective plane P 2 with

at most one exceptional fiber.

(1) The graph is a tree with one edge attached to each source or

sink vertex.

(2) There exists one (singular) vertex V* labelled with an orbit of

saddle type. Suppose V* has ev* entering edges and ev* exiting

edges. If V* is untwisted, then ev* = 2 and ev* = 1, ev* — 1 and

ev* = 2, or βy* = ev* = 1. If V* is twisted, then ev* = ev* = 1,

Suppose V is any other vertex labelled with an orbit of saddle

type and has ev entering edges and ev existing edges. If V is

untwisted, then ev = 1 or 2, βy = 1 or 2 and if V is twisted,

ev = ev = 1

Conversely, if an abstract Lyapunov graph Γ satisfies conditions (1) and

(2) of case (a), case (61), and case (62) respectively, then there exists an

NMS flow φt on M whose Lyapunov graph is Γ.

Remark 6. Kobayashi detects the following. If an irreducible, ori-

entable, closed 3-manifold M which does not admit incompressible tori

admits an NMS flow, then M is one of the following manifolds.

(1) lens space (2) Seifert manifold whose orbit space is S2 with three

exceptional fibers. (See Kobayashi [10] and also see Morgan [11]).

§ 4. Proof of Theorem A and Theorem B

We will use the next Lemma and Proposition for the necessary con-

dition in Theorem A and Theorem B.

LEMMA 3. Suppose V is a singular vertex of a Lyapunov graph Γ.

If we cut the graph Γ at any cut point on its edges, the submanίfold of

M which corresponds to the component of Γ containing the vertex V is

neither a solid torus nor a non-trivial knot-complement S 3 — N(h) such

that the boundary of compressing disk of 9(S3 — (N(h)) is a meridian of

this knot h.
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Proof. Suppose that we cut the graph Γ at a cut point on an edge

of a vertex V. Let Γ' denote a component of Γ which contains a sin-

gular vertex V, and let N denote a submanifold of M which corresponds

to Γ'. Suppose N is a solid torus or a knot-complement. Attaching one

solid torus which contains an attracting closed orbit or a repelling closed

orbit along the boundary of N, we can construct a non-singular smooth

flow on S3. Then we can construct a new Lyapunov graph Γ". By the

Solid Torus Theorem (see [13]), any torus in S 3 bounds a solid torus on

one side and bounds a knot-complement which satisfies the condition of

Lemma 3 on the other side. Then if we cut the graph Γ" at any point

C* of any entering edge of Vo or any exiting edge of Vo, each compo-

nent of Γ" is a solid torus or a knot-complement. This is a contradic-

tion. Thus N is neither a solid torus nor a knot-complement which

satisfies the condition of Lemma 3.

PROPOSITION 3. Suppose that φt is a non-singular Smale flow on an

irreducible, orίentable, closed 3-manifold M which does not admit incom-

pressible tori, and suppose that Γ is a graph associated with a flow φt

and a Lyapunov function g, then a vertex of Γ which is neither an at-

tracting nor a repelling satisfies the following conditions.

(1) There exists at most one singular vertex Vo labelled with the sus-

pension of a subshift σ(AVo). Suppose Vo has e£0 entering edges and eγQ

exiting edges. If kv = dim ker ((/ — AF o): Z? -> Z"), where AVo is the mod 2

reduction of AVQ. e£0 <: kVo + 1, eγ0 ^ kVo + 1, kVo + 1 — dim

(2) Any other vertex V satisfies condition (2) in Theorem A. More-

over, if M is not a lens space, Γ must have exactly one singular vertex.

Proof. By Proposition 1, the Lyapunov graph Γ is a tree. Suppose

that there are two singular vertices V1 and V2 in Γ. Then Vx is con-

tained in a component of Γ — {C} corresponding to a solid torus or a

knot-complement in M, where C is a cut point of an entering edge or

an exiting edge of the vertex V2. Then by Lemma 3, Vi is not a singu-

lar vertex. Thus the number of singular vertices in Γ is at most one.

Now we suppose that Γ has a singular vertex V*, and we choose cut

points {Cl9 - - , Cn} on all entering edges and all exiting edges of singu-

lar vertex V*. By Lemma 1 and Lemma 2, each component which does

not contain the singular vertex V* corresponds a solid torus or a non-

trivial knot-complement S3 — N(h). Now, we will cut Γ at a cut point
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Ci e {d, , Cn) and let Γr be the component of Γ — {C,} which does not

contain V*. Then Γf corresponds a solid torus or a non-trivial knot-

complement S3 — iV(Λ) in M. By attaching a new solid torus which

contains an attractive closed orbit or a repelling closed orbit along the

boundary of the solid torus or the knot-complement corresponding to Γ\

we construct a new graph Γn associated with a new flow on S\ Then

each vertex of Γ" satisfies condition (2) in Theorem A by Franks' Theo-

rem 1 in [6]. Thus the vertex which is not a singular vertex satisfies

the condition (2) in Theorem A. Let C be a level of the singular vertex

V* of Γ for the Lyapunov function g. By Lemma 2, each component of

Γ corresponding with g~ι([C + ε, + oo)) = Y is a solid torus or a non-

trivial knot-complement, and also g~\{— oo, C — ε]) = Z is a solid torus,

or a knot-complement in M. Let X be g~\(— oo, C + ε]), then X\J Y — M

and I Π F = dX consists of disjoint e£0 tori.

Now, we consider the following Mayer-Vietoris exact sequence with

in Z2.

HZ(X) Θ HZ(Y) • H,(X U Y) • H2(Xf\ Y) - ^ > H2(X) Θ H2(Y) - ^ > .

Since each component of Y is a solid torus or a knot-complement, HZ(Y)

S H2(Y) s {0}. And we see that i? 3 (* U Y) = H3(M) ^ Z2, fli(X) s {0},

and fli(XΠ Y) = ® ή Z 2 Hence,

( 1 ) dim ker C* = dim Im a* ^ dim H2(X)

and

( 2) dim Im a* = e£0 — 1.

Next, we consider the exact sequence of the pair (X, Z).

H2(Z) —> H2(X) -**> H2(X, Z) — > HX{Z) —> .

Since H2(Z) = {0}, 61* is injective and dim H2(X, Z) = dim ker (J — A) = kVo

(see Franks [6]). Then

( 3 )

We see e£0 ^ )feFo + 1 by (1), (2) and (3) and eγ0 ^ kVo + 1 follows from

considering the reverse flow.

We will show that e£0 + eγ0 ^ kVo + 1 - dim HX{M). We see that

( 4 ) dim H2(X, Z2) = dim H2(X, Z2)
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and that

( 5 ) H\X) = HX{M, M - X).

Now, we consider the following exact sequence.

fli(M - X) • fli(ilf) • fli(M, M - X) > # 0 (M - X) > .

Then

( 6 ) dimiϊi(M, M - X) ^ e$0 - I + dimfli(Λί) .

We consider the next exact sequence of the pair (X, Z) again.

H2(Z) • fli(X) - H H2(X, Z) • mZ) > .

By (4), (5), (6) and the facts that bu is injective and that HX(Z) = ®fjxZ2,

we obtain that kVo + 1 — dim iϊΊ(M, Z2) ^ e£0 + e?0. If M is not a lens

space, an NS flow on M has at least one basic set which is neither an

attractor nor a repeller. Then an associated Lyapunov graph Γ has at

least one vertex Vo which is neither an attractor nor a repeller. Sup-

pose that an associated graph Γ has no singular vertex. Then for any

vertex Vo which is neither an attractor nor a repeller, there exists a cut

point Co on an entering edge VQVΊ or an exiting edge VQVι. The com-

ponent ΓQ of Γ — {Co} which contains Vo corresponds to a submanifold

which is homeomorphic to a solid torus or a non-trivial knot-complement.

Similarly, there is a cut point d on an entering edge V1V2 or an exiting

edge VΊ V2 such that the component of Γx of Γ — {CJ which contains Vt

corresponds to a submanifold which is homeomorphic to a solid torus or

a non-trivial knot-complement. Here, if Vo — V2, the manifold M is

homeomorphic to one of (solid torus) [Jτ (solid torus), (solid torus) [Jτ

(non-trivial knot-complement) and (non-trivial knot-complement) {Jτ (non-

trivial knot-complement), where A{JT B means a manifold obtained from

A and B by identifying dA and dB which are homeomorphic to a torus

T. In the first case, M is homeomorphic to a lens space, in the second

case, M is homeomorphic to S3 by Lemma 2 and in the last case, M has

an incompressible torus. Then this is a contradiction. Thus VΌ Φ V2.

Then, there is a cut point C2 on an entering edge V2VS or an exiting

edge V2V3 such that the component Γ2 of Γ — {C2} which contains V3

corresponds to a submanifold which is homeomorphic to a solid torus or

a knot complement. We see Vz Φ Vx by the above argument. Since Γ
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is a tree, V3 Φ Vo. This procedure can be continued indefinitely. But

the Lyapunov graph has only finite vertices. This is a contradiction.

Thus the Lyapunov graph has exactly one singular vertex.

Proof of Theorem A.

Necessity. By Proposition 3, all vertices (which are neither an at-

tractor nor a repeller) satisfy ev <ί kv + 1, ev <; kv + 1 and kv + 1 —

dim HX(M, Z2) ^ ev + e^. We note that Ήx(U£p - 1, g), Z2) = {0}. Then,

it follows that kv + 1 fg e£ + eF. Thus the condition (2) holds. And the

condition (0) and (1) are clearly satisfied.

Sufficiency. Let Xu X29 , Xn be basic blocks corresponding with

vertices of a given abstract Lyapunov graph satisfying the conditions as

in Theorem 1 [6], where Xn is especially a basic block corresponding

with an attractive closed orbit. Since all boundaries of basic blocks Xu

X2, ',Xn-i are standard tori. By the Solid Torus Theorem [13], we can

construct unknotted solid torus Xx \Jgx X2 U^2 * * U^_ 2 ^n- i in S\ where

gu #2> * •> gn-2 are attaching diffeomorphisms. Because Xn is a basic block

for an attractive closed orbit, it is a solid torus. Then, we can choose

an attaching diffeomorphism gn_x such that (X1{JglX2Uga ••• U*n-2^«-i)

U^n-i Xn is a l^ns space L(2p — 1, q). By Proposition 2, we can con-

struct a fitted Smale flow on L(2p — 1, q).

Remark 7. Since the diffeomorphism ht in Proposition 2 is isotopic

to gu the type of lens space L(2p — 1, q) is unchanged.

QUESTION. For a singular vertex Vo, is there a basic block such that

kVo = ^FO + eF0 > eίo <: kVo + 1 and β?0 <, kVo + 1 in lens space L(2p, q)Ί

Concerning the above question, we can construct a basic block such

that kVo = e£0 + eγ0, βjo ^ kVQ + 1, and β 0̂ <̂  ̂ F o + 1 in 3-torus. But a

3-torus is not a lens space and it has an incompressible torus.

Construction of a basic block in a 3-torus.

We consider a cross section of φt, whose first return map has two

saddle points and one attractive fixed point as Figure (2). We next add

kv — (eγ + 1) pairs of a source and a saddle point on this cross section

and also add kv — (ev + 1) pairs of a sink and a saddle. Finally we add

(n — kv) nilpotent handles but we do no further isotopy and which con-

tain no chain recurrent points at this moment. (See Theorem 1 in [6]).
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X S 1

Figure (2)

Then, we can construct basic block such that kv = e£ + ev, ev <. kv + 1

and eγ <L kv + 1. By attaching a standard solid torus containing one

repelling closed orbit along the boundary of this basic block we obtain

a 3-torus and an NS flow. (Here, kv ^ 2).

Remark 8. A closed orbit of saddle type has two dimensional un-

stable manifold and also two dimensional stable manifold and satisfies

kv = 1. Therefore, there is no saddle type vertex which satisfies kv =

ev + ev in an NMS flow on any 3-manifold.

To prove Theorem B, we need the following proposition.

PROPOSITION 4. Suppose that M is an irreducible, orίentable, closed

^-manifold which does not admit incompressible tori, and suppose that M

is not a lens space. Let φt be an NMS flow on M with a Lyapunov func-

tion g. Then a Lyapunov graph associated with the flow φt and the func-

tion g satisfies one of (1), (2) and (3).

(1) (a) M admits a structure of a Seifert fibered manifold whose orbit

space is a projectίve plane P 2 with at most one exceptional fiber, and (b)

a graph Γ has one singular vertex VQ such that e£0 = eγQ = 1 and VQ is

untwisted. Any other saddle type vertex is of S*-type, where a vertex of

Sz type is a vertex which is not a singular vertex, and which satisfies

condition. (2) of the case of a lens space in Theorem B.

(2) (a) M admits a Seifert fibration whose orbit manifold is S2 with

three exceptional fibers and (b) the graph Γ has one singular vertex Vo

such that eVo = 2 and eγ0 = 1 or eVo = 1 and eVo = 2. Remaining saddle

type vertices are of Sz-type.
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Figure (3)
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(3) (a) M admits a Seifert fibration whose orbit manifold is S2 with

three exceptional fibers and (b) the associated graph Γ has one singular

vertex Vo such that e£0 = eγ0 = 1 and Vo is twisted. And any other sad-

dle type vertex is of Ss-type.

Proof. Because M is not a lens space, the Lyapunov graph must

have one singular vertex (see Proposition 3). If Vo is a vertex corre-

sponding to a twisted closed orbit, then e£0 = eγ0 = 1 (see proof of Theo-

rem 2 in [5]). We also see a topological type of basic block containing

a saddle type closed orbit corresponding to the singular vertex VQ as in

Figure (3). (See [10].) It is homeomorphic to one of the followings:

Sι X D2 # S1 X D2, S1 X D2 # T2 X 7, T2 X / # T X J, a Seifert fibered space

whose orbit space is an annulus with one exceptional fiber of index 2,

(two hole disk) X S\ an orientable S^bundle over a punctured Mδbius

band, and P 3 % T2 X I. Suppose that a basic block B is homeomorphic

to P x / f P x I . Since M is irreducible, we can regard T2 X I % T2 X I

as T2 X I % S\ And one component of a boundary torus of T2 X / bounds

a solid torus, because M has no incompressible torus. We also see that

the Seifert structure of T2 X / is extended to this solid torus. Otherwise,

M is homeomorphic to S3 or a lens space. Since a Seifert space with

compressible boundary is only a solid torus (see Jaco [8]), S1 X D2 U

S 1 X D2 is homeomorphic to a lens space and S 1 X D2{JT (non-trivial

knot-complement) is homeomorphic to S3 by Lemma 2, M is a lens space

or S\ Thus T2 X / # T2 X I and Γ2 X J # S1 X D2 are excluded. Since

M is irreducible, we also see that S1 X Z>2 # S 1 X Z)2 and F f ^ X ί are

excluded. If a basic block B is homeomorphic to (two hole disk) X S1,

one component of boundary tori of this basic block B bounds a solid

torus. Otherwise, M admits an incompressible torus. If {x} X S1 in bound-

ary of B bounds a disk in this solid torus, then M is homeomorphic to a

lens space. Thus, the Seifert structure of (two hole disk) X S1 extends

to this solid torus. Thus, it yields that each of the boundary components

of (two hole disk) X S1 bounds a solid torus. Otherwise, M is homeomor-

phic to S3 or a lens space. Then we see that a Seifert space whose

orbit manifold is S2 with three exceptional fibers can be constructed from

the basic block (two hole disk) X S 1 . Also a singular vertex type of Vo

which corresponds to the closed orbit of (two hole disk) X S1 is e£0 = 2

and eγQ = 1 or e£0 = 1 and eγQ = 2, where Vo is untwisted. Each closed

orbit corresponding to the remaining saddle type vertices is contained in
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a solid torus. They are not singular vertices by Lemma 3. Clearly, they
satisfy condition (2) of the case of the lens space in Theorem B. They
are S3-type vertices. Then we see that it satisfies conditions of case (2).
When a basic block is either an orientable S ̂ bundle over a punctured
Mόbius band or a Seifert space whose orbit manifold is an annulus with
one exceptional fiber of index 2, we refer to the assertions in the proof
of Theorem 1 in [10], and the proof of Theorem 4 in [10]. Then we see
that the Seifert structure of these basic blocks are extended to the out-
side of these. Thus in the first case, M has a Seifert structure whose
orbit space is P 2 with at most one exceptional fiber. Also, we see that
the type of the singular vertex Vo is e+Vo = ev0 = 1, where Vo is untwisted.
Since remaining saddle orbits are contained in solid tori (see assertions
in Theorem 1 of [10]), the remaining vertices are of S3-type by Lemma 3.
It satisfies the condition (1). In the last case, M has a Seifert structure
whose orbit space is S2 with three exceptional fibers, and the basic block
yields singular vertex whose vertex type is e£0 = eγ0 — 1, where the
vertex Vo is twisted. The remaining vertices are of S3-type. Thus it
satisfies the condition (3).

Proof of Theorem B.

First suppose Mis a lens space.

Necessity. As a neighbourhood of an attractor or a repeller is a
solid torus, and as the graph is a tree by Proposition 1, the condition
(1) is satisfied. Also, if V is a closed orbit, then kv = 1. Thus e£ = 1
oϊ 2 anά e~F = 1 OΪ 2 can be obtained. If V is twisted, then ey = ev = 1
(see the proof of Theorem 2 in [6]).

Figure (4)

Sufficiency. By using (1), (2) and (3) in Figure (3) and Figure (4), it
is easy to construct an NMS flow on S3 which has a basic block corre-
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(1) x (2) , (3)

«• untwisted

(4) (5)

<• twisted

Figure (5)

sponding with the vertex type (1), (2), (3), (4) and (5) in Figure (5). Each

boundary component bounds a solid torus in the both side in S3. There-

fore, by using a similar method in Theorem A, we can construct an

NMS flow associated to a Lyapunov graph Γ on any lens space. Suppose,

M is not a lens space.

Necessity. Since a Seifert structure of a manifold is not always

unique (see Jaco [8]), under the assumption the following three possi-

bilities occur by Proposition 4:

(1) M has a structure of a Seifert manifold whose orbit space is S2

with three exceptional fibers and also has a structure of a Seifert mani-

fold whose orbit space is P2 with at most one exceptional fiber.

(2) M has a structure of a Seifert manifold whose orbit space is S2

with three exceptional fibers but does not have a structure of a Seifert

manifold whose orbit space is P2 with at most one exceptional fiber.

(3) M has a structure of a Seifert manifold whose orbit space is P2

with at most one exceptional fiber but does not admit a structure of a

Seifert manifold whose orbit space is S2 with three exceptional fibers.

For example, a prism manifold corresponds to case (1), and if a

Seifert fibered manifold whose orbit space is S2 with three exceptional

fibers has infinite fundamental group, then it can not have a Seifert

structure whose orbit space is P2 with at most one exceptional fiber (see

Jaco [8]). Then such a manifold satisfies case (2). And under our as-

sumptions, the fact that there is no manifold which satisfies the condi-
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tion (3) is known (see Jaco [8]). The rest of our proof is a direct
consequence from Proposition 4

Sufficiency. For a construction of a basic block containing a closed
orbit corresponding with a singular vertex, we can use a basic block in
Figure (3). Since we can adopt a standard solid torus as the outside of
the basic block, we can reduce the construction of the remaining basic
blocks to the case of a lens space.

§5. Special Lyapunov graphs

By Theorem 2 in Kim [9], we see that a lens space which contains
a Klein bottle can be constructed from a basic block, an orientable S1-
bundle over a punctured Mδbius band. Because a solid torus or a knot
complement Ss — N(h) can not contain a Klein bottle, we see that the
vertex corresponding with a closed orbit of the above basic block is a
singular vertex.

On the other hand, in Theorem B we can construct any associated
graph on a lens space without using a basic block which is an orientable
Sx-bundle over a punctured Mδbius band. This means that we can not
find a singular vertex of a Lyapunov graph of an NMS flow on lens
space by just looking at the ordinary Lyapunov graph. Therefore, we
define a special Lyapunov graph which can distinguish a singular vertex
from other vertices, by putting a mark "*" on the singular vertex.

DEFINITION 10. If a special Lyapunov graph has no singular vertex
and satisfies the conditions (1) and (2) in the case of the lens space of
Theorem B, or conditions (0), (1) and (2) of Theorem A, we call this
graph a Lyapunov graph of S*-type. We will provide the following prop-
ositions about a special Lyapunov graph.

PROPOSITION 5. Suppose that φt is an NMS flow on a lens space M
which does not contain a Klein bottle and suppose that M is not a
projectίve space P\ Let g be a Lyapunov function. Then the special
Lyapunov graph Γ associated with the flow φt and the function g does
not have singular vertices. In other words, the graph Γ is of Sz-type.

Proof. Suppose that the associated Lyapunov graph Γ has a singu-
lar vertex Vo. Since we consider a Lyapunov graph on a lens space
which does not contain a Klein bottle and is not homeomorphic to P3, a
basic block which has one closed orbit corresponding to Vo is homeo-
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morphic to one of the followings; S1 X D2 % S1 X D\ S1 X D2 % T X /,
T2 X I % T2 X I, (two hole disk) X S1 and a Seifert manifold whose orbit
space is an annulus with one exceptional fiber of index 2. Suppose that
such a basic block is (two hole disk) X S\ Each connected component
of M — (two hole disk) X S1 is a solid torus as in Theorem B. Then if a
simple closed curve {x} X S1 of (two hole disk) X S1 (Ί (solid torus) bounds
a disk in this solid torus, the closed orbit which corresponds to the sin-
gular vertex Vo is included in a solid torus. By Lemma 3, it is not a
singular vertex. This is a contradiction. Thus the Seifert structure of
(two hole disk) X S1 must extend to the outside of this basic block.
Here, if a lens space has a Seifert structure whose orbit manifold is S2,
then the number of exceptional fibers is at most two. Thus (two hole
disk) X S1 is excluded. For the remaining case, using the assertions in
the proof of Theorem 1 in [10], we can show that a closed orbit which
corresponds to a singular vertex Vo is also contained in a solid torus.
It is a contradiction. It means that there is no singular vertex in a
Lyapunov graph associated with the φt and the Lyapunov function g on
such a lens space.

COROLLARY 1. Suppose that φt is an NS flow with a Lyapunov func-

tion g on a lens space which does not contain a Klein bottle and is not

a projectίve space P 3 . Let Γ be the special Lyapunov graph associated

with the flow φt and the Lyapunov function g. If Γ has a vertex labelled

with a saddle type closed orbit, then the vertex can not be a singular

vertex.

This corollary is shown by the above proof.

PROPOSITION 6. Suppose that φt is an NMS flow on L(4p, 2p — 1) or

P 3 with a Lyapunov function g. Then the special Lyapunov graph Γ as-

sociated with the flow φt and the function g satisfies followings:

(1) A special Lyapunov graph on L(4p, 2p — 1) associated with a flow

φt and a function g is a graph of Ss~type or a graph which satisfies the

followings; there is one singular vertex Vo satisfying e£0 = eγ0 = 1, and it

is untwisted. The remaining vertices are of Sz-type.

(2) Special Lyapunov graph Γ on P 3 associated with a flow φt and a

function g is a graph of S3-type or a graph which satisfies the followings;

there is one singular vertex Vo satisfying e£0 = β 0̂ = 1 and it is twisted.

The remaining vertices are of SΆ-type.
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Proof. If a flow φt on L(4p, 2p — 1) or P 3 has no closed orbit of

saddle type, the graph associated with a flow φt and Lyapunov function

g must consist of only one sink vertex and one source vertex. It means

that the graph is of S3-type. Thus we may suppose that a flow φt on

L(4p, 2p — 1) or P 3 has at least one closed orbit of saddle type. Let Vo

be a vertex which corresponds to a saddle orbit, and also we assume

that the vertex Vo is a singular vertex. If there is no such a vertex,

the graph Γ is of S3 type. Thus if we cut Γ at any cut point CVo on

any edge of VVo, a. component of Γ — {CVo} which does not contain Vo

corresponds to a submanifold of M which is homeomorphic to a solid

torus or a knot-complement S3 — N(h), where the boundary of a com-

pressing disk of d(Ss — N(h)) is a meridian of this knot h.

Case (1). Suppose that a basic block which contains a closed orbit

of saddle type corresponding to the singular vertex VQ is one of follow-

ings; S1 X D2 % S 1 X D\ S1 X D2 # T2 X I, T2Xl$T2X I, (two hole disk)

X S\ and a Seifert space whose orbit space is an annulus with one ex-

ceptional fiber of index 2. Then, we can show that if these basic blocks

contain a closed orbit of saddle type corresponding to the vertex Vθ9

the closed orbit is contained in a solid torus or a knot-complement as

follows. This means the vertex Vo is not a singular vertex. Thus we

can omit all basic blocks in the above cases. For example let a basic

block be a Seifert space whose orbit manifold is an annulus with one

exceptional fiber of index 2. Since L(4p, 2p — 1) has no incompressible

tori, one component of L(4p, 2p — 1) — (the above basic block B) must be a

solid torus. By the assertions 3 in the proof of Theorem 1 of [10], we

see that a fiber of this basic block does not bound a disk in this solid

torus. Otherwise, L(4p, 2p — 1) is homeomorphic to P 3 . This means that

a Seifert structure extends to this soild torus. Then another component

of L(4p, 2p — 1) — B is a solid torus, and also this Seifert structure ex-

tends to this solid torus. If L(4p, 2p — 1) has a Seifert structure whose

orbit space is S2, the number of singular fibers is at most two. Then

the vertex Vo is not a singular vertex. Therefore, suppose that a basic

block which contains a closed orbit of saddle type is homeomorphic to

an orientable S ̂ bundle over a punctured Mδbius band. Since a solid

torus and a non-trivial knot-complement S3 — N(h) can not contain a

Klein bottle and since the vertex Vo corresponds a closed orbit saddle

type of an orientable S ^bundle over a punctured Mδbius band, there is
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one singular vertex VQ such that e£0 = eγQ = 1 and it is untwisted. For
the remaining vertices, they are contained in a solid torus or a non-
trivial knot-complement by Proposition 3. Thus they are of S3-type by
Lemma 3.

Case (2). Suppose that a basic block which contains a closed orbit
of saddle type corresponding to a singular vertex Vo is one of followings
S1 X D2 # S1 X D\ S ' X f l ^ f x ί , T X / % T X I and (two hole disk)
X S1. Then we can show that the closed orbit of saddle type corre-
sponding to the vertex Vo is contained in a solid torus or a knot-
complement by a proof similar to case (1). This is a contradiction. Then
we can omit these basic blocks. Suppose that a basic block B which
has a closed orbit of saddle type is a Seifert space whose orbit manifold
is an annulus with one exceptional fiber of index 2. Since P 3 has no
incompressible torus, one component of P 3 — B is a solid torus. If a
Seifert structure of this basic block B extends to this solid torus, an-
other component of P 3 — B must be a solid torus. Otherwise, P 3 admits
an incompressible torus, or it is homeomorphic to Sz by Lemma 2. If a
fiber of this basic block B bounds a disk D2 in this solid torus, and if
another component of P 3 — B is a non-trivial knot-complement S3 — N(h),
then P 3 is homeomorphic to S3. Because the above disk D2 is a me-
ridian of h, P 3 is homeomorphic to (solid torus) [Jτ (non-trivial knot-
complement). Thus P 3 is homeomorphic to S3 by Lemma 2. Then each
component of P 3 — B is a solid torus. Using the proof of Theorem 2 in
[10], we see that a closed orbit saddle type of the above basic block is
contained in a solid torus. Then, in this case, the vertex Vo is not a
singular vertex. This is a contradiction. Thus, this basic block is also
omitted. A solid torus and a knot-complement S* — N(h) can not con-
tain a protective plane P2. Therefore, if such a basic block is homeomor-
phic to P 3 # T2 X /, the vertex Vi, corresponding to the closed orbit of
saddle type of P 3 # T2 X I is a singular vertex. This vertex type is
e$0 = βγύ = 1, where Vo is twisted. Another vertex is of S3-type, because
another closed orbit is contained in a solid torus or a knot-complement.
Then, Proposition 6 is proved.

Remark 9. For the case (1), since L(4p, 2p — 1) is not homeomor-
phic to P3, a basic block is not homeomorphic to P3 # T2 X I, For the
case (2), a basic block is not homeomorphic to an orientable S^bundle
over a punctured Mδbius band, since P 3 does not contain a Klein bottle.
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§ 6. Examples of special Lyapunov graphs of NS flows

By using a construction in [5], we can show that there exist some

examples concerning an NS flow which is not an NMS flow and whose

associated Lyapunov graph has one singular vertex on L(4p, 2p — 1) and

a Seirfert space whose orbit manifold is S2 with three exceptional fibers.

Case (1). A Seifert space whose orbit manifold is S2 with three ex-

ceptional fibers; A graph associated with a flow φt and a Lyapunov func-

tion g has one singular vertex Vo such that eVo ^ kVo + 1, eVo ^ kVo + 1

and kVo + 2 = e£0 + eγ0. Any other vertex V which is neither an at-

tractor nor a repeller satisfies the following conditions; βy <̂  kv + 1,

ev <L kv + 1 and ev + ev ^ kv + 1.

X S 1

Figure (6)
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Case (2). A prism manifold and a lens space L(4p, 2p — 1); A

Lyapunov graph associated with a flow φt and a Lyapunov function g

has a singular vertex Vo such that β£0 <̂  kVo + 1, βy0 <̂  £F o + 1 and kVo +

1 = e£0 + e^0, and also any other vertex V which is neither attracting

nor repelling satisfies the following conditions; eγ ^ kv + 1, e^ <̂  &F + 1

and £F + 1 <̂  eγ + eγ. For our construction of examples of case (1) (resp.

case (2)) we use a two hole disk (resp. a punctured Mobius band) on a

basic block (two hole disk) X S1 (resp. an orientable S ̂ bundle over a

punctured Mobius band) as a cross section of the flow φt first return map

has one saddle point (see Figure (6)). Next, we add new fixed points on

this cross section as follows.

Case (1). We add (kVQ — e£0) pairs of a sink and a saddle, and also

add (kVo + 1 — eVo) pairs of a source and a saddle. Finally we add

(n — kVo) nilpotent handles.

Case (2). We add (kVΰ — eVo) pairs of a sink and a saddle, and also

add (kVo — eVo) pairs of a source and a saddle. Finally we add (n — kVQ)

nilpotent handles.

Then a basic block which contains a basic set corresponding to a

singular vertex Vo in case (1) and case (2) is obtained by a method simi-

lar to the proof of Theorem 1 of [6]. Now, we will construct a fitted

NS flow whose Lyapunov graph satisfies case (1) on a Seifert fibered

manifold M whose orbit space is S2 with three exceptional fibers. For

case (2), we can construct a fitted NS flow similary. Let B be a basic block

which has a basic set corresponding to a singular vertex Vo And let

Xi, Xi, , Xl

Ni be basic blocks contained in M — B (1 <̂  i <̂  kVo + 2).

Because we can regard each component of M — B as a standard solid

torus, we can adopt basic block as in Theorem 1 of [6] for X\, X\, , Xl

Ni

(1 <I ί <̂  kVo + 2). Thus they can be embedded in S3 and their boundary

components are all standard tori. Then by choosing attaching maps

gl gl > §Ni~ι (1 ̂  i ^ kVo + 2), we can construct X{ \Jg{ X\ \Jgi

{Jgi Xi

Ni as a standard solid torus (1 ̂  ί <I &Γo + 2). Next, choosing at-

taching maps hu h2, , /ιfcKo+2, we glue these basic blocks X\ ( J ^ X\ \Jg\

Us* _ -X"ir< (1 ̂  i ^ &ro + 2) along the boundaries of the basic block B.

Then we can construct a non-singular flow φt on a Seifert fibered mani-

fold whose orbit space is S2 with three exceptional fibers. By changing

each g) (l^j^Ni — 1) (1 <; i <; £Fo + 2), into g}' which is isotopic to g), and
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also changing each hs into h!s (1 <L s <L kVo + 2) which is isotopic to hs,

we can reconstruct a fitted flow φ[ from the flow φt by Proposition 2.

Let Xι

κ. (1 ^ Ki ^ Nt) be a basic block which attaches to the basic block

B (I <^ i <L kVo + 2). Since each boundary of these basic blocks is a standard

torus in S3, then we can assume that X[ {Jgiχ U ^ . _ 2 Xκt-u XI U ^ * * *

U*,., *k.-χ U * , . ^ . U*. • U*,.^., *i1+i u £ + 1 U i f _ X ,
Xκi+2 Ug*κ.+2 ' ' ' U*i._! Xz.t, "-9 and X^. are solid tori, where the basic

blocks XLi and XNt (1 ^ kt ^ Lt ^ iV*) contain a repelling closed orbit or

an attracting closed orbit. (If necessary, we suitably change the lower

indexes of basic blocks X{, X\, , and X*Nt). By using Alexander trick,

we see that B Uκ (X{ (Jg, Xs

2 [Jg, {Jg> _x X
SNS) is homeomorphic to B Uhs

(XI U « ^ U i Ughg_± XNX B U M Ik Urf U ^ s . 2 Xt. U^ s_,
U ^ s _ x X'Nt) is homeomorphic to B U*>s (Xsi Urf U ^ s _ 2 Xi.-i U ^ , ,

u ^ _ , χNχ B U»S W u r f u ^ . , ^ s u ^ t XΪ.+I u* i+1

β u ^ _ x i β ) is
homeomorphic to B U*s ffi U^' U ^ , ^ - ! U ^ ^ ^ t . Ug*Ks U^_ x

-X"jvt), etc. Thus we see that a homeomorphism type of M does not change.

Remark 10. Of course, if a singular vertes Vo corresponds to a

closed orbit of saddle type, we can construct an NS flow which is not

an NMS flow on P 3 , L(4p, 2p — 1) and a Seifert fiberd space whose orbit

manifold is S2 with three exceptional fibers by similar construction.

QUESTION. Does any Lyapunov graph on L(2p — 1, q) associated with

an NS flow φt and a Lyapunov function g admit no singular vertex?
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