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ON A PROBLEM OF ONO AND QUADRATIC NON-RESIDUES
MING-GUANG LEU

§0. Introduction

Let k be a quadratic field, 4, the discriminant and M, the Minkowski
constant:

.;_JZ;“ if k is real,

M, =
2 J=A  if k is imaginary.
T

Consider the finite set of prime numbers
II, = {p, rational prime; p < M,}.

There are exactly 8 fields for which /7, = §. They make up an exceptional
family:
E, ={k=Q(\Wm); m=—1, +2, +3, 5, —7, 13}.

For any k&, let X, denote the Kronecker character. The character splits
II, into 3 disjoint parts:

II} = {pe II,; %(p) = 0},

Iy = {pell,; t(p) = -1},

Iy = {pell,; 1(p) = +1}.

We remind the reader that for a positive prime integer p

p
Xu(p) = (__1)<A:—1>/8 if p=2, 2/4,,
0 if p|4,.

Consider, next, the 3 families of fields:
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K = {k; II, = I3},
K- = {k; II, = IT;},
K+ = {k; I, = II}}.

Ono’s problem in [4] is to determine explicitly the 3 families. Since
E, is common to all 3 families, it is enough to determine K° — E,
K- — E, K* — E,, respectively. In the first case, the equality K° — E,
= {k = Q(ym); m = —5, +£6, 7, 15, £30}" is settled in [4]. In the second
case, the equality K- — E; = {k = Q(/m); m = —11, —19, —43, —67,
—163, 21, 29, 53, 77, 173, 293, 437} is almost settled by H.M. Stark [6] and
M.-G. Leu [3]. (For more details, see [4].)

In this paper, we shall consider the third case and prove that

K+ — E,={k=Q(m); m= —15, —23, —47, —71, —119, 17, 33, 73, 97}

which is the equality (5) in [4] hinted by the machine computations.
Since %,(2) = 0 for m = 2, 3 (mod 4), x,(2) = —1 for m =5 (mod 8), and
%(2) =1 for m =1 (mod 8), we have m = 1 (mod 8) for 2 = Q(y/m) in
K+ — E,. So the problem to determine K+ — E;, is reduced to prove that
M, is larger than the least quadratic non-residue modulo |m| for certain
numbers m of type m =1 (mod 8). For k = Q(y/m), we define the fol-
lowing 3 disjoint classes:

C={neZ; () = 0},
C ={nez; %)= -1},
C,={neZz; %) = +1}.

In the sequel, (%) will denote the Jacobi symbol, where @ denotes

a positive odd integer and n is an integer such that (n, @) = 1. Note
that X,(n) = ( lZl>when 4, =1 (mod 4) and (n, 4,) = 1. Furthermore, m

k
will denote a square-free integer = 1 (mod 8), [x] the integral part of a

positive real number x, g the least positive integer belonging to C, and
p, D1, D, the positive prime numbers.

We shall divide our argument into two parts. In §1 we shall
consider the case m <0 and in §2 the case m > 0. Before the main
argument, we prove the following lemma which enables us to consider

» In [4] Ono included erroneously m=10 in the set K°—Es This was pointed out by
M. Ishibashi.
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only the cases where either m is a prime number or a product of two
prime numbers.

Lemma 1. If k= Q(ym)e K* — E,, then

(1) for m> 0, either m = p or m = p,p,,
and

(2) for m <0, either m = —p or m = —p,p,.

Proof. Suppose that m > 0 and m = p,p,p, - - - p,, n > 3, where p, is
prime for i =1, 2, ..., n. Without loss of generality, one can assume
that p, = min{p,, p,, - - -, p.}. Then we have p? < p,p,--- p,/4 which im-
plies that p, < M,. Since ¥(p,) = 0, we have I, =+ II} and so k = Q(y/m)
¢ K+ — E, which proves the assertion in the case (1). Similarly one
proves the assertion in the case (2), Q.E.D.

§1. The case m <0

Case 1. m = —p,p,, p,p. = 7 (mod 8).
Without loss of generality, we can assume that p, < p,. Since p, >

o - 2
M, = ﬁzﬂ/p,p2 for k= QW —p,p,)e K+ — E,, we have p, < %Px.
T

We first prove the following lemma.

LemMa 2. For k= Q( —p,p)e K* — E,, we have q < _lléﬁa if pps

> 3000.

Proof. Suppose, on the contrary, that ¢ > p_xspz_ for some p,p, > 3000,

23
DPiPe

since p, < p, < 3p,, we have 23 < p, <q. So ( ) = 1 by the mini-

mality of ¢q. Since [pz‘f; 2] = pzli) . — s for some positive real number

s < 1, we have

2
%ptpz +1< —gzplpz < %%plpz + ( 1’2‘2’2 — 233)

_ 23( PPy s)
24

- 23[1’2*_1’2] <pp.  for pp, > 3000.
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So we have 23[—92—‘%—] = p,p, — x for some integer x, 1< x < ____plsp?_

Since [p 1P 2] = PP g ap, or bp, for any integers a, b (otherwise,

24 24
we have
pi(p, — 24a)
24 > 24s = or > 24,
p2(p1 — 24b)

a contradiction), we have (x, p,p,) = 1. Furthermore, [pz‘f; 2] <P 18p <L

q. Hence, we have

Il

NESES
DP1P: DD
2ty

DD,

o) (o)
DiP: Dip:
= —1, a contradiction, Q.E.D.

Now we can prove Theorem 1 after the model of the proof of the
theorem in [2]?

Proof. Since v/ 2 (p,p.)"* + 8(p,p)* + 18 < —72?«/ .0, = M, for p,p, >
360000, it suffices to prove that
(1.1) g <V 2(p.p)" + 8(p.p)” + 18
for k = Q(W—p.p,)e K* — E, and p,p, > 360000.

? In p. 108 of [2], there seems to be a gap of arguments in the choice of a and the
choice of « there. So we make our argument slightly different from [2]. Our inequality
(1.1) is weaker than that of Hudson and Williams in [2] (the inequality (2.1)), but our
(1.1) is enough to prove our theorems.



QUADRATIC NON-RESIDUES 189

Assume, on the contrary, that

(120  q¢>+v2(pp)" + 8p.p)”° + 18,  for some p,p, > 360000.

Since p,p, = 7 (mod 8), we have ( 8 ) =1 and ( — 1) = —1=y(=1.
DD, DD,

By Lemma 2, we have g < !%m« and so the integers

(1.3) pp.—8q—1), pp,—8@qg—2), --,pp, — 8

are all positive and belong to C or C,.
Let r be an odd positive integer of the form

14) r= [—;— (plpa)"ﬁ] +a
where « is a positive integer < 4 to be chosen later.
Since
(1.5) %(plpz)"5 <r< %(plpz)‘“ + 4
and p, > M, = :tz—x/ﬁ; as k= QW —p,p;)e K* — E,, we must have
(1.6) r<p, and r<q-—1.

Let h be the unique integer satisfying
.7 8h = 8q — p,p, (mod r), 1<h<r.
By (1.7), we may define an integer n by

(1.8) n o PPy —8g—h)
r

From (1.6) and (1.7), we have 1< h<qg—1 and 1< h <p,, and so the
numerator in (1.8) is one of the integers in (1.3), and hence n is positive.
Now, let I = [2(p,p,)"*] + 8 so that

(1.9) 2pip)”* + 7T <1< 2p,p)” + 8.
Further, put
(1.10) a=[n""]+1.

Then n'? < a < n'* + 1 so that (¢ — 1)* < n < a’. Finally, choose « such
that
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either r=1 (mod 8 or r =5 (mod 8).
Case (I) r=1 (mod 8).
(1.11) (a) a =0 or 3 (mod 4).
As we verify it soon, we have
(1.12) (n+ 8 —8r < pp,— 8,

and so the integers nr, (n + 8)r, .- -, (n + 8] — 8)r appear in the sequence
(1.3) (c.f. (1.8)) and the ! integers

(1.13) nn+8,-..,n+ 8 — 8,

belong either to C or to C, because ( ) = 1. These integers are =7

D1D:
(mod 8). Now, the condition (1.12) is satisfied because by (1.2), (1.5), (1.7),

(1.8) and (1.9), we have
(n + 81 — 8)r < p,p, — 8q + 8r + 8r(2(p,p,)"”* + 8) — 8r
<p;p: — 8q + 8(% (pip)"”° + 4)(2(p1p2)"5 + 8)

< pi1p: — Bﬁ(plpz)z/s — 64(p,p)"° — 144
+ 8(pip)*° + 96(pipy)"° + 256
= D1D; — 8(p,p2)2/5(\/§ — 1) + 32(p,p)* + 112 < p,p, — 8.

If ¢ =0 (mod 4), we consider the sequence of integers
1.14) @+ ae—1), (@a+ 3)a—3),---,(@a+ 26— 1)(a—2b+ 1)
where b is the largest integer such that
(1.15) (@ + 2b — 1)a — 2b + 1) > (a — 1)
if a = 3 (mod 4), we consider the sequence of integers
(1.16) (@ 4+ 2a, (@ + 4)a—2), -, (a+ 2)(a— 2+ 2)
where ¢ is the largest integer such that
(1.17) (a + 2¢)a — 2¢ + 2) > (a — 1)°.

Since the integers in (1.14) and in (1.16) are = 7 (mod 8), we see that
the integers in (1.13) are in the same residue class modulo 8 as those
in (1.14) and as those in (1.16).
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Next, we have (¢ — 1) < n < PP < 2(p,p)”, s0 @ <V 2 (2D +
r
1 < p,. Then we have

a+20—1<a+ 2 —1<vV2(pp)" + vV 2vV2(pp)” + 1) + 1
< min(p,, q),

by (1.2) and by the inequalities, p,p, > 360000, p, > —2—\/ pipy.  Therefore
T

the integers in (1.14) belong to C,. Similarly the integers in (1.16) belong
to C,.

Thus, subdividing the integer interval
[(@a— 1% (@—172*+1,---,a>— 2, a* — 1] if ¢ = 0 (mod 4),
[la—DL(@e—1F+1,---,a*+ 20 — 1, @* + 2a] if a = 3 (mod 4)
by the integers in (1.14) and (1.16), respectively, we see, by (1.13), that
8] — 8 is less than the maximum difference between integers in the sub-
divided interval. This gives the required contradiction; we just give the
details for a = 3 (mod 4). In this case, the difference between integers
in (1.16) in the subdivided interval of [(¢ — 1)’, (¢ — 1)+ 1, ---,a> + 2a
— 1, & 4+ 2a] is at most
(a + 2c)(a — 2¢ + 2) — (a + 2¢ + 2)(a@ — 2¢) = 8¢
< 4 4 8a'?
<44+ 8¥2((pp)”° + 1)
< 16(p,p)"* + 20
< 8] — 8.
(b) a=1or 2 (mod 4).
If ¢ = 2 (mod 4), we consider the sequence of integers

where b is the largest integer such that

(1.15) (@ +2b— 1)a— 260+ 1) > (a — 1)

if a =1 (mod 4), we consider the sequence of integers
(1.16y (@ + 6)a, (@ + 8)(a— 2),---,(a + 2c)(a — 2¢c + 6)

where ¢ is the largest integer such that
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(1.17) (a + 2¢)(a — 2¢ + 2) > (a — 1).

By a similar argument as in (a), we also get a contradiction.
Similarly one wlll get a contradiction for Case (II) where r = 5 (mod 8),
Q.E.D.

Case 2. m= —p, p= "7 (mod 8).
By almost the same argument as in the proof of Theorem 1, we have
the following theorem.

THEOREM 1’. For k = Q(v—p)e K* — E,, we have p < 360000.

According to Case 1 and Case 2, for m <0 and & = Q(ym)e K* — E,,
—m must be < 360000. By the help of a computer in our department,
we obtain that m = —15, —23, —47, —71, —119. (See table).

§2. The case m >0

Case 1. m =p, p=1 (mod 8).
By applying a theorem of L. Rédei [5], we shall prove Proposition 1

below which will provide “/TF as an upper bound for the least quadratic-
nonresidue of a prime p = 1 (mod 8) for p > 97.

TaeorREM (L. Rédei [5]). For 4|p — 1, the density 6, of the quadratic
residues, and also the density 6, of the non-residues (mod p) in the interval

. 1 1

1, ter th _ and less than 1 — —— .

[1, v/ P is grater an4+2ﬁ and less than irovs
ProrosiTioN 1. For p = 1 (mod 8) and p > 240000 then q < M, = @—

2

Proof. Suppose, on the contrary, that there exists a prime p, =1

(mod 8), p, > 240000 such that g > 4/,21[’1,

Let x = [4/D,], the integral part of 4/p,. Then one observes the

following four cases.

(i) There are at least *—%

integers < % which are quadratic

residues (mod p,), where a is an integer, 0 < a < 1, such that Y= 2 s

an integer.

(i1) There are at least (x _xta

2

) / 2 even integers in the inter-
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val ([ VP ] [vDe >, which are quadratic residues (mod p,), where o’ is

7
an integer, 0 < o’ < 3, such that x — x—; % is an even integer. (Note

that for an even integer 2b < ,/P,, we have b < -;—JE and so b is a

quadratic residue.)

(iiil) There are at least (x il

_ X + 4 ) / 2 odd integers with 3 as

a factor in the interval ([ VP ] WP, ]), which are quadratic residues

x—b x40

(mod p,), where b, b’ are integers, 0 < b, b’ < 5, such that :

and <x—3— b_ x4+ b/>/2 are integers.

(iv) There are at least %{( d ; c_x f;) C,> - d} odd integers rela-

tively prime to 3 with 5 as a prime factor in the interval ([ v Py ] [v ﬁ])

which are quadratic residues (mod p,), where ¢, ¢/ and d are integers,
0<c /<9 0<d<2, such that

x—c’ x+c and l{(x—c _ x+c’)_d}
5 10 3 5 10

are integers.
From (i), (ii), (iii) and (iv), we see that there are at least

N=Z28 oy (x-220) /oy (220 _240) /5
-5 -

distinct integers in the interval [1, 4/p,], which are quadratic residues
(mod p,). We have

x—1 __x+3) 2 (x—5_x+5>
Nz = +(x 2 /+ 3 6 /2
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So the density §, of quadratic residues in [1, 4/ p,] > N > l<52 — ?jl_‘%)
x

60 x
Since ——1— > l, we have
4+2/2 7
1 52 — 2t 424 — T8
1= - X > 1 for 240000,
51+52>7+ 0 150 > or p, >
a contradiction, Q.E.D.

Case 2. m = p,p,, p,p, = 1 (mod 8).
Without loss of generality, one can assume that p, < p,. Since p, >

M, = 14%‘& for k = Q(4/ p.p;) e K* — E,, we have p, < 4p,.

For p,p, =1 (mod 8), p, < p, < 4p, and p,p, > 300, by a theorem of
Thue [1], the congruence x = ny (mod p,p,) has non-trivial solutions x, y
for which |x| < 4/ p,p; and |y| < 4/ D.p.. We can choose a positive integer

n such that n <p,p,, (n, pip;) =1, n# +1 (mod p,) and ( . ) =t
2V %)

By the choice of n, we see that one of the numbers x and y, say x, must
belong to C,. (Note that p, < 4/ pp. < 2p,, so neither |x| nor |y| equal
to p,, because otherwise n = +1 or —1 (mod p,), which contradicts the

) = —1, we have (

choice of n.) Since ( —x ) = —1. So there ex-

DP1D;
X

D1
the number of elements in C,, i = 1, 2, which lie in the interval [1, v/ p.p; ]

DD,

ists a positive integer x < 4/ p,p; such that < ) = —1. Denote by v,

Furthermore, since ( ) =1, we see that v, +0, i=1, 2, for k=

DP1D;
Q(WDpp,)e K* — E; and p,p, > 300. We have v, + v, = [y pip.] — 1 be-
cause p, < /P;p;. Denote by 6, = — " the density of the class
VPP ] — 1

C; in the interval [1, v/ D,p;], for i = 1, 2. Now we are ready to prove
Theorem 2 which is similar to a theorem of Rédei [5].

THEOREM 2. For k = Q+/ p.p;), if p.p, = 1 (mod 8), p, < p, < 4p, and

D, > 265, then we have % <0,0,<1— %—

Proof. Since (p, — 1)(p, — 1)/2 is the number of incongruent elemsnts
(mod p,p,) in C,, d =1,2, for «c C, with & # +1 (mod p,), there exist x,
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y,x€C,, yeC,, i #£j, 1< x,y<4pPip;, such that a=2L or -2 (mod
x x

p.p.). From this, we have

@D 2(v,v, + vvy) > (p, — 1)2(p2 ) — 2p,

where 2p, is the number of elements in the set
{(neN; n<pp, n= +1 or —1 (mod p,)}.
Then since v, + v, = [/ pp:] — 1, one has, by (2.1),

_ (o= (p. — 1) — 4p,
(2.2) 00, + 0,01 = X (x - A/ Pp,] — 1) )

2.3 0+ 0, =1.

Consider the equations:
(2.4) 2uv = x,
(2.5) ut+v=1.
One solution for (2.4), (2.5) is

2.6) g 1+ V1—2x pe 1= V1—2

2 ’ 2

by which the square root may be chosen positive because 2x < 1 for
p; > 265,

We set

en b= Y —uta, =% _yta
" Wepl—1 ' " Wil —1 '

where «,, a, are real numbers. By (2.3), (2.5) we have
(2.8) a, + oy = 0.
Furthermore, it follows from (2.2) that

20,0, > x,

ie., by (23), ¥+ 0i <1 — x.
By (2.7) we have

u 4+ U4 2ua; + 200, + (2 + o)) <1 — x.
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Since u’ 4+ v* =1 — x by (2.6) and & + o2 > 0, we have 2ua, + 2va, < 0.
By (2.8), we also have 2uw, — 2ve; < 0. On the other hand it follows
from (2.6) that u — v > 0, and so «, < 0, i.e., by (2.7), §, < u. Because
the conditions (2.2), (2.3) are symmetric in §,, §,, one has §, < u, i = 1, 2.

Furthermore, we have ([4/ p.p;] — 1)* < %Z—Kp’ — D(p, — 1) — 4p,] because

p1 > 265 and, by (2.2), we have 2x > % Therefore, by (2.6), we have

33

5, < g(l \/._>/2
“ R
~ 0.8562 - - .

g1—%z0.8571--.

where [ = 1, 2, Q.E.D.

By the similar argument as the proof of Proposition 1, we have the
following proposition:

ProrosiTioN 2. Assume that k = Q(4/ D.p.), p,p. = 1 (mod 8), p, < p,
< 4p,, p,> 265 and p,p, > 240000. Then q < M, = l%’ﬁ_.

According to Proposition 1 and Proposition 2, we see that for m > 0
and & = Q(y/m)e K* — E;, m must be less than 290000. With the help
of computer, we obtain that m = 17, 33, 73, 97. (See table.)

Combining the results in § 1 and § 2, we have proved that

K* — E, = {k = QYm); m = —15, —23, —47, —71, —119, 17, 33, 73, 97}.
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Table®
m>0 m<O0

m =0 qg |m=pp.| ¢q —m=p| q |—m=pp;| q
17 | — 33 | — 23 | — 15 | —

41 3 65 3 31 3 55 3

3 | — 161 3 47 | — 119 | —

89 3 209 3 | — 143 5

97 | — 377 3 79 3 247 3

113 3 473 3 103 3 391 3
137 3 481 7 127 3 527 5
193 5 697 5 151 3 551 | 11
233 3 713 3 167 5 703 3
241 7 817 5 191 7 943 3
257 3 1073 3 199 3 1247 5
281 3 1081 7 223 3 1271 7
239641 7 239969 3 359311 3 356047 3
239689 | 11 240809 3 359327 5 356359 3
239713 5 241697 3 359407 3 356519 7
239737 5 243721 | 19 359479 3 356639 | 19
239753 3 244921 7 359599 3 357191 7
239849 3 251089 7 359663 5 357407 5
239857 5 254321 3 359719 3 358151 | 17
239873 3 258529 7 359767 3 358871 7
239929 | 11 259313 3 359783 5 359039 7
239977 5 260633 3 359911 3 359831 | 19
240017 3 271153 5 360007 3 359903 5
240041 3 273257 3 360023 5 359999 | 17

® In the column “q’’ of the table, the smallest odd prime g < M; such that xx(q) = —1
is given. Since the complete table would occupy at least 20 pages long, we only show the
beginning and the end of the original table.
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