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ON A PROBLEM OF ONO AND QUADRATIC NON-RESIDUES

MING-GUANG LEU

§ 0. Introduction

Let k be a quadratic field, Δk the discriminant and Mk the Minkowski
constant:

— \lΔk if k is real,

— \l — Δk if k is imaginary.

π

Consider the finite set of prime numbers

Πk = {p, rational prime; p < Mk}.

There are exactly 8 fields for which Πk = 0. They make up an exceptional
family:

E, = {k - QWm); m = - 1 , ±2, ±3, 5, - 7 , 13}.

For any k, let %fc denote the Kronecker character. The character splits
Πk into 3 disjoint parts:

Πk ={peΠk; Zfc(p)= -1},

Πϊ = {peΠk; 3Cfc(p)= +1}.

We remind the reader that for a positive prime integer p

(A) if p :£ 2,

0

Consider, next, the 3 families of fields:
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K° = {k; Πk = IPk}>

K~ ={k; Πk = Πk},

K+ ={k; Πt = Πϊ}.

Ono's problem in [4] is to determine explicitly the 3 families. Since

E8 is common to all 3 families, it is enough to determine K° — E8,

K—E8,K
+ — E8, respectively. In the first case, the equality K° — E8

= {k = QWm); m = - 5 , ±6, 7, 15, ±30}1} is settled in [4]. In the second

case, the equality K~ - E8 = {k = QWm); m = - 1 1 , -19, - 4 3 , -67,

-163, 21, 29, 53, 77, 173, 293, 437} is almost settled by H.M. Stark [6] and

M.-G. Leu [3]. (For more details, see [4].)

In this paper, we shall consider the third case and prove that

K+ - E8 = {k = QWm); m == -15, -23, -47, - 7 1 , -119, 17, 33, 73, 97}

which is the equality (5) in [4] hinted by the machine computations.

Since Xk(2) = 0 for m = 2, 3 (mod 4), Xk(2) = - 1 for m = 5 (mod 8), and

Xk(2) = 1 for m = 1 (mod 8), we have m = 1 (mod 8) for k = QWm) in

K+ — E8. So the problem to determine K+ — E8 is reduced to prove that

Mk is larger than the least quadratic non-residue modulo \m\ for certain

numbers m of type m = 1 (mod 8). For £ = QWm), we define the fol-

lowing 3 disjoint classes:

C = {rceZ; *fc(n) = 0},

C 1 = = { Λ 6 Z ; Zfc(n)= - 1 } ,

C2 = {τi6Z; Zfc(n)= +1} .

In the sequel, ί —) will denote the Jacobi symbol, where Q denotes

a positive odd integer and n is an integer such that (n, Q) = 1. Note

that Xk(ή) = (—^—) when Jfc = 1 (mod 4) and (n, Δk) = 1. Furthermore, m
^ IΛI /

will denote a square-free integer = 1 (mod 8), [x] the integral part of a

positive real number x, q the least positive integer belonging to Cx and

P9 Pu Pi the positive prime numbers.

We shall divide our argument into two parts. In § 1 we shall

consider the case m < 0 and in § 2 the case m > 0. Before the main

argument, we prove the following lemma which enables us to consider

iy In [4] Ono included erroneously m—10 in the set K°—Es. This was pointed out by
M. Ishibashi.
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only the cases where either m is a prime number or a product of two

prime numbers.

LEMMA 1. If k = Q(</m) eK+ - EB, then

(1) for m > 0, either m = p or m = PiP2,

and

(2) for m < 0, either m = —p or m = —PiP2.

Proof. Suppose that m > 0 and m = PiP2p3 p n , ft > 3, where p f is

prime for i — 1, 2, , n. Without loss of generality, one can assume

that px = min{pt, p2, > pM} Then we have p^ < pxp2 p j 4 which im-

plies that pt < Mfc. Since %fc(p!) = 0, we have 77fc Φ Π£ and so ^ = Q(\/m)

£ Kf — J?8 which proves the assertion in the case (1). Similarly one

proves the assertion in the case (2), Q.E.D.

§ 1. The case m < 0

Case 1. m = —AA, AA = 7 (mod 8).

Without loss of generality, we can assume that p1 < p2. Since Pi >
O . 2. 2

vPiP2 for ^ = Q(V—PiP2)e i ί + — i?8, we have p 2 < —A-
7Γ 4

We first prove the following lemma.

LEMMA 2. For k = Q(V—PiP2) e K+ — E8, we have q < ^ ^ 2 i/ pjp2

8
> 3000.

Proo/. Suppose, on the contrary, that # > PlPi for some Pip2 > 3000,
8

/ 23 \
since px < p 2 < 3px, we have 23 < p x < g. So ( 1 = 1 by the mini-

\ P1P21

mality of q. Since Pl^2 — Pί^2 — s for some positive real number
L 24 J 24

s < 1, we have

< AA for A A > 3000.
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AASo we have 23 PίP2 = pxp2 — x for some integer x, 1 < x <
L 24 J 8

Since ^ ^ 2 = PlP2 — s Φ apx or bp2 for any integers a, b (otherwise,

we have

ί
px(p2 - 24α)

or > 24,

- 246)
a contradiction), we have ( X , A A ) = l Furthermore, ^ ^ 2

q. Hence, we have

2 3 )(IΨ1
p,p2 A A A

AA

= — 1, a contradiction, Q.E.D.

Now we can prove Theorem 1 after the model of the proof of the

theorem in [2]2)

THEOREM 1. For k = ^ ( V ^ ^ A A ) eK+ — E8, we have pxp2 < 360000.

Proof, Since <f2(Pίp2)
2/* + 8 ( A A ) 1 / 5 + 18 < — V A A = Mk for A A >

π
360000, it suffices to prove that

(1.1) q < /2~(AA)2/5 + 8(AA)1/5 + 18

for k = Q(V-P1P2) 6 K+ - EQ and AP 2 > 360000.

2) In p. 108 of [2], there seems to be a gap of arguments in the choice of a and the
choice of a there. So we make our argument slightly different from [2], Our inequality
(1.1) is weaker than that of Hudson and Williams in [2] (the inequality (2.1)), but our
(1.1) is enough to prove our theorems.
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Assume, on the contrary, that

(1.2) q > VΓ2"(p1p2)
2/5 + 8 (AP 2 ) 1 / 5 + 18, for some p,p2 > 360000.

Since Ap2 == 7 (mod 8), we have (—^-Λ = 1 and ( - — ~ ) = - 1 = χ f c (-l) .
V P1P2 / V P1P21

By Lemma 2, we have q < ^^2 and so the integers
8

(1.3) A A - 8(<? - 1), A p2 - 8(g - 2), • ,AA - 8

are all positive and belong to C or CΊ.

Let r be an odd positive integer of the form

(1.4) r

where a is a positive integer < 4 to be chosen later.

Since

(1.5) | ( A A ) 1 / 5 < r < -ί(AA)1 '5 + 4

9

and px > Mfc = —v P1P2 as A = QW — P1P2) £ K+ — E8, we must have

(1.6) r < p, and r < q - 1.

Let h be the unique integer satisfying

(1.7) 8ft ΞΞ 8g - PiP2 (mod r), l< h<r.

By (1.7), we may define an integer n by

(1.8) n -
r

From (1.6) and (1.7), we have 1 < ft < q — 1 and 1 < ft < p1 ? and so the

numerator in (1.8) is one of the integers in (1.3), and hence n is positive.

Now, let I = [2(p!p2)
1/5] + 8 so that

(1.9) 2 ( p l P 2 r + 7 < / < 2(Pίp2y> + 8.

Further, put

(1.10) a = [n1/2] + 1 .

Then nm < a < ri/2 + 1 so that (a - I)2 < n < a2. Finally, choose a such

that
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either r = 1 (mod 8) or r = 5 (mod 8).

Case (I) r = 1 (mod 8).

(1.11) (a) a = 0 or 3 (mod 4).

As we verify it soon, we have

(1.12) (n + 81- 8)r < p,p2 - 8,

and so the integers nr, (n + 8)r, , (n + 8/ — 8)r appear in the'sequence

(1.3) (c.f. (1.8)) and the I integers

(1.13) n , n + 8, >- ,n + 8 1 - 8 ,

belong either to C or to CΊ because (—-—) = 1. These integers are = 7
\ P1P2 '

(mod 8). Now, the condition (1.12) is satisfied because by (1.2), (1.5), (1.7),
(1.8) and (1.9), we have

(n + 81 - 8)r < p,p2 - 8q+ 8r+ 8r(2(p1p2)
1/5 + 8) - 8r

+ 8)

<Pίp2 - 8 V T ( A A ) 2 / 5 - 64(AP2)1/5 - 144

+ 8(AA)2/5 + 96(AA)1/5 + 256

- P1P2 - 8 ( A A ) 2 / 5 ( V T - 1) + 32(AP2) 1 / 5 + 112 < AA - 8.

ffc = 0 (mod 4), we consider the sequence of integers

(1.14) (a + l)(σ - 1), (a + 3)(α ~ 3), ., (a + 2b - l)(α - 2 6 + 1 )

where b is the largest integer such that

(1.15) (a + 26 - l)(α - 26 + 1) > (a - I)2;

if a Ξ 3 (mod 4), we consider the sequence of integers

(1.16) (a + 2)σ, (o + 4)(α - 2), . ., (a + 2c)(o - 2c + 2)

where c is the largest integer such that

(1.17) (α + 2c)(α - 2c + 2) > (a - I) 2 .

Since the integers in (1.14) and in (1.16) are = 7 (mod 8), we see that

the integers in (1.13) are in the same residue class modulo 8 as those

in (1.14) and as those in (1.16).
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Next, we have (a - I)2 < n < - ^ * - < 2(p1p2)
4/5, so α < Λ/T

r
1 < A Then we have

α + 26 - 1 < α + V2α~-T < VT(PiA)2/5 + V Y V T ( ( A P 2 ) 1 / 5 +

?!, g ) ,

by (1.2) and by the inequalities, pxp2 > 360000, pί > — VAA,. Therefore

• π

the integers in (1.14) belong to C2. Similarly the integers in (1.16) belong

to C2.

Thus, subdividing the integer interval

[(a - I)2, (a - I)2 + 1, , α2 - 2, a2 - 1] if a = 0 (mod 4),

[(α - I)2, (a - I)2 + 1, , a2 + 2α - 1, α2 + 2α] if α ΞΞ 3 (mod 4)

by the integers in (1.14) and (1.16), respectively, we see, by (1.13), that

81 — 8 is less than the maximum difference between integers in the sub-

divided interval. This gives the required contradiction; we just give the

details for a = 3 (mod 4). In this case, the difference between integers

in (1.16) in the subdivided interval of [(a - I)2, (a - I)2 + 1, , α2 + 2a

— 1, a2 + 2a] is at most

(a + 2c)(a - 2c + 2) ~ (a + 2c + 2)(a - 2c) = 8c

< 4 + 8α1/2

< 16(AP2)
1/5 + 20

< 8/ - 8.

(b) a ΞΞ 1 or 2 (mod 4).

If a ΞΞ 2 (mod 4), we consider the sequence of integers

(1.14)' (α + 3)(α + 1), (a + 5)(α - 1), , (a + 26 + l)(α - 26 + 3),

where 6 is the largest integer such that

(1.15)' (a + 26 - l)(α - 26 + 1) > (a - I)2;

if a ΞΞ 1 (mod 4), we consider the sequence of integers

(1.16/ (a + 6)α, (α + 8)(α - 2), . . ., (a + 2c)(a - 2c + 6)

where c is the largest integer such that
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(1.17) (a + 2c)(α - 2c + 2) > (α - I)2.

By a similar argument as in (a), we also get a contradiction.
Similarly one will get a contradiction for Case (II) where r = 5 (mod 8),

Q.E.D.

Case 2. m = — p, p = 7 (mod 8).
By almost the same argument as in the proof of Theorem 1, we have

the following theorem.

THEOREM 1'. For k = Qψ^p)eK+ - E8, we have p < 360000.

According to Case 1 and Case 2, for m < 0 and k = Q(^fm) e K+ — E89

— m must be < 360000. By the help of a computer in our department,
we obtain that m = -15, -23, -47, -71, -119. (See table).

§ 2. The case m > 0

Case 1. m — p, p = 1 (mod 8).

By applying a theorem of L. Redei [5], we shall prove Proposition 1

below which will provide ^2- as an upper bound for the least quadratic-

nonresidue of a prime p = 1 (mod 8) for p > 97.

THEOREM (L. Redei [5]). For 41 p — 1, /Λe density δ2 of the quadratic
residues, and also the density δx of the non-residues (mod p) in the interval

[1, V7Π is grater than 7— and less than 1 —
4 + 2VΊΓ 4 + 2VT

PROPOSITION 1. For p = 1 (mod 8) and p > 240000 then q<Mk =
'Δ

Proof. Suppose, on the contrary, that there exists a prime p0 = 1

(mod 8), p0 > 240000 such that q > ^Po .

Let x = [Λ/~P^]} the integral part of VAΓ Then one observes the
following four cases.

( i ) There are at least x ~~ a integers < ^^Q- which are quadratic

residues (mod p0), where a is an integer, 0 < a < 1, such that x ~ a is
Ci

an integer.

(ii) There are at least (x — X ) / 2 even integers in the inter-
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val ( ^ °̂ I, [ V A Ί L which are quadratic residues (modp0), where o! is

x A- ofan integer, 0 < a' < 3, such that x — ——— is an even integer. (Note
LA

that for an even integer 26 < *J~p^, we have b < — V AT and so b is a

quadratic residue.)

(iii) There are at least (x~~ b - x + b'\ A odd integers with 3 as
\ o b / /

a factor in the interval M ̂ °̂ \, W^]\ which are quadratic residues

(mod p0), where b, bf are integers, 0 < b, br < 5, such that x ~" b, x + b'
3 6

and ( x b X+ 6 Ί /( x ~ b - X + 6 Ί / 2 are integers.
\ 3 6 //

(iv) There are at least —(( x ~ c - x + c ) - d) odd integers rela-
3 l\ 5 10 / J

tively prime to 3 with 5 as a prime factor in the interval M ^ °̂ , [VAΓM?

which are quadratic residues (mod p0), where c, & and d are integers,
0 < c, c' < 9, 0 < d < 2, such that

and If (1
3 IV5 10 3 l\ 5 10

are integers.
From (i), (ii), (iii) and (iv), we see that there are at least

N= χ - a
 A

distinct integers in the interval [1, VpQ], which are quadratic residues
(mod po) We have

52a: - 244
60
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So the density δ2 of quadratic residues in [1, VAΠ > — > —^52 - — V
x 60 \ x /

Since γ= > —, we have
4 + 2j2 7

KO Jίi /lO/i 1708

* * > X f o r P» > 2 4 0 0 0 0 '

a contradiction, Q.E.D.

Case 2. m = p ^ , pλp2 = 1 (mod 8).
Without loss of generality, one can assume that px < p2. Since

Mfc = ^-ψ^ for A = Q(VAA) e i£+ - JÊ , we have p2 <
Δ

For p^ = 1 (mod 8), px < p2 < 4p! and pxp2 > 300, by a theorem of

Thue [1], the congruence x = ny (mod P!p2) has non-trivial solutions x, y

for which | * | < VP1P2 and |y| < VP1P2 We can choose a positive integer

7i such that n <PiP 2 , (ft, P1P2) = 1, n^ +1 (mod p2) and (—-—) = — I.
V P1P2 /

By the choice of n, we see that one of the numbers x and y> say x, must

belong to Cx. (Note that p1 < VP1P2 < 2p1? so neither |x| nor \y\ equal

to Pi, because otherwise n= + 1 or — 1 (mod p2), which contradicts the

choice of ra.) Since ( — — ) = — 1, we have ( ~~x ) = — 1. So there ex-
^ P1P2 * \ P1P2 *

ists a positive integer x < y' pλp2 such that (—-—) = — 1. Denote by vt

\ pίp2 1

the number of elements in Ci9 ί = 1, 2, which lie in the interval [1, ΛJpxp2]-

Furthermore, since ( ) = 1, we see that 1̂  Φ 0, ί = 1, 2, for £ =
+ — £78 and p xp2 > 300. We have ^ + u2 = [ V P Ϊ A Ί — 1 be-

cause PJ < ΛJ pxpι. Denote by δί = — u* the density of the class
WP1P2] - 1

Ci in the interval [1, ^/p1p2], for i .= 1, 2. Now we are ready to prove

Theorem 2 which is similar to a theorem of Redei [5].

THEOREM 2. For k = QΛJ~pjh), if pxp2 = 1 (mod 8), px <p2 < 4p: and

Pi > 265, then we have — < δ19 δ2 < 1 — —.
7 7

Proof. Since (px — l)(p2 — l)/2 is the number of incongruent elements

(mod pxp2) in Cd, d = 1, 2, for aeCλ with α ^ ± 1 (mod p2), there exist x,
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y, x e C?> y e Cp iφj, 1 < x, y < VPiA* such that O I E I O Γ — ̂ - (mod
x x

PίPί)- From this, we have

(2.1) 2(u,u2 + u ^ ) > (Pi - IXP2 - 1) _ 2 P2(u,u2 + u ^ ) >
Lt

where 2p1 is the number of elements in the set

{neN; n < AA, n = + 1 or —1

Then since vx + v2 — [ V A A ] — 1? °ne has, by (2.1),

(2.2) ί A + δA >x (x= to*

(2.3) 3t + δ2 = 1.

Consider the equations:

(2.4) 2wu = x,

(2.5) K + 1; = 1.

One solution for (2.4), (2.5) is

(2.6)

by which the square root may be chosen positive because 2x < 1 for

A > 265.

We set

(2.7) a, = -Γ7=^Λ = u + au 32= r-j^Λ, Γ = υ + a2

where au a2 are real numbers. By (2.3), (2.5) we have

(2.8) a, + a2 = 0.

Furthermore, it follows from (2.2) that

i.e., by (2.3), 3? + δl < 1 - x.

By (2.7) we have

+ 2va2 + (a\ + o&) < 1 - x.
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Since u2 + υ2 = 1 — x by (2.6) and a\ + a\ > 0, we have 2uax + 2ί; 2̂ < 0.

By (2.8), we also have 2uax — 2υax < 0. On the other hand it follows

from (2.6) that u — υ > 0, and so ax < 0, i.e., by (2.7), δt < u. Because

the conditions (2.2), (2.3) are symmetric in δ19 δ2, one has δ{ < u, i = 1, 2.

Furthermore, we have ( [ V P I A ] — I)2 < [(.Pi — 1 ) (A — 1) — 4pJ because
64

on

p, > 265 and, by (2.2), we have 2x > —. Therefore, by (2.6), we have
65

« 0.8562 .

< ! _ ! _ « 0.8571
~~ 7

where ί = 1, 2, Q.E.D.

By the similar argument as the proof of Proposition 1, we have the

following proposition:

PROPOSITION 2. Assume that k = QWPiPi), P1P2 = 1 (mod 8), p, < p2

< 4A, PI > 265 cmd Ap 2 > 240000. Then q < Mk =

According to Proposition 1 and Proposition 2, we see that for m > 0

and A = Q(^/m)eK+ - E8, m must be less than 290000. With the help

of computer, we obtain that m = 17, 33, 73, 97. (See table.)

Combining the results in § 1 and § 2, we have proved that

K+ - E8 = {k = Q(Vm); m - -15, -23, -47, - 7 1 , -119, 17, 33, 73, 97}.
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Table3)

197

TO = 0

17

41

73

89

97

ίl3

137

193

233

241

257

281

m> 0

q

—

3

—

3

—

3

3

5

3

7

3

3

TO = PiPi

33

65

161

209

377

473

481

697

713

817

1073

1081

—

3

3

3

3

3

7

5

3

5

3

7

— TO — p

23

31

47

71

79

103

127

151

167

191

199

223

TO<0

q

—

3

—

—

3

3

3

3

5

7

3

3

-m=p
x
p
1

15

55

119

143

247

391

527

551

703

943

1247

1271

q

—

3

—

5

3

3

5

11

3

3

5

7

239641

239689

239713

239737

239753

239849

239857

239873

239929

239977

240017

240041

7

11

5

5

3

3

5

3

11

5

3

3

239969

240809

241697

243721

244921

251089

254321

258529

259313

260633

271153

273257

3

3

3

19

7

7

3

7

3

3

5

3

359311

359327

359407

359479

359599

359663

359719

359767

359783

359911

360007

360023

3

5

3

3

3

5

3

3

5

3

3

5

356047

356359

356519

356639

357191

357407

358151

358871

359039

359831

359903

359999

... c
o

3

7

19

7

5

17

7

7

19

5

17

3) In the column "q" of the table, the smallest odd prime q < Mk such that χk(q) = — 1
is given. Since the complete table would occupy at least 20 pages long, we only show the
beginning and the end of the original table.
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