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ON THE UNRAMIFIED EXTENSIONS OF THE PRIME

CYCLOTOMIC NUMBER FIELD AND

ITS QUADRATIC EXTENSIONS

NORIKATA NAKAGOSHI

§ 1. Introduction

It is interesting to know what kinds of primes are the factors of the
class number of an algebraic number field, and especially to find ones
being prime to the degree. About this matter it is desirable to construct
the unramified Abelian extensions plainly. In this paper we shall show
some of them for the prime cyclotomic number field and its quadratic
extensions using the units of subfields.

Let I be an odd prime and ζ be a primitive /-th root of unity. Let
k = Q(ζ) be the /-th cyclotomic number field over the field Q of rationals.
If / is irregular, then there is an even integer r with 2 <L r <L / — 3 such
that the Bernoulli number Bι_1_r is divisible by /. In § 3 it will be
proved that the existence of this even index r is equivalent to that of
the cyclotomic unit in the subfield of k, of degree (/ — l)/(r, / — 1), giving
the unramified extension of k, of degree / by adjunction of its Z-tb root
to k, under the assumption of Vandiver's conjecture on the second factor
of the class number. When I ~ 1 (mod 4), this equivalence is related to
N.C. Ankeny, E. Artin and S.D. Chowla's conjecture that u ^ 0 (mod /)
for the fundamental unit εt = (t + uV I )/2 > 1 of Q(</Ύ) which is not
yet proved. We shall give in detail that u = 0 (mod /) if and only if
k(V £t) is unramified of degree / over k without Vandiver's conjecture.

In § 4 we shall consider a relative quadratic extension K = k(V d)
where d is a square free rational integer prime to /. Let /* = (—l)α~1)/2Z.
If d is a quadratic residue modulo Z2, then we shall give the elementary
conditions to obtain the unramified Abelian extensions of degree / and
Z2 over K by adjunctions of the /-th roots of the real units of Q(V /*, V d)
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without any assumption on the class numbers of K and its subfield.

Some examples satisfying these conditions are shown in § 5. In order to

get these conditions we utilize the structure of the prime residue class

groups modulo the Z-th powers of the prime divisors of K lying above Z.

This elementary construction of unramified extensions is nowhere to be

seen.

Here we call to mind some papers dealing with the class numbers

of relative quadratic extensions. M. Gut [4] proved that if an algebraic

number field F contains ζ and has a prime divisor lying above Z, of

absolute degree 1, then there exist infinitely many relative quadratic

extensions of F whose class numbers are multiples of Z and their primi-

tive elements are quadratic units over F. 0. Neumann [7] constructed

infinitely many quadratic extensions whose class numbers are divisible

by 3, over an algebraic number field whose class number is prime to 3.

G. Gras [3] showed that if the class number of Q(V'd) is divided by Z,

then there exists a unit ξ of kQ((ζ — ζ'^Vd) such that k(Vd,Vξ) is

unramified over k(Vd) where kQ is the maximal real subfield of k. C.J.

Parry [8], [9] denoted the necessary and sufficient conditions that the

class number of Q(V 5 , V d) is divisible by 5. G. Gras' and C.J. Parry's

results are based on the class number relations and the "Spiegelungssatz"

for Jfe(Vd).
I am thankful to Prof. H. Yokoi for his pertinent suggestion.

§ 2. Preliminaries

Let K = &(V d) be a quadratic extension of the Z-th cyclotomic

number field k where d is a square free rational integer prime to Z. We

assume that d is a quadratic residue modulo Z. Let λ = 1 — ζ be a

generator of the prime ideal of k lying above Z. Then the ideal (λ) splits

completely in K, say (X) = βjSa where £x ψ 22. If there is a unit ε of K

such that ε is an Z-th power residue modulo ίH\ for i = 1, 2, then K(V e )

is unramified over K. Since the prime residue class group modulo Z\

is of type (Z - 1, Z, , Z) for each i = 1, 2 (cf. Theorem 3 of [6]), we

can choose Takagi's basis {κa}izazι-i f° r their Sylow Z-subgroups (cf. [10]):

κa (1 ^ a ^ Z — 1) are integers of k defined uniquely by

: = 4 α (mod ^ί+1)
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where g is a primitive root modulo Z and a = (ζ -> ζ*) is a generator of

the Galois group of k over Q. For any number μ of K which is prime

to Sj we let 2α(μ) be the exponents determined by the congruence

(*) μ = μιμίl(μ) /fc l (/0 (mod fi{).

If μ is in £, then £α(μ) are given by Rummer's logarithmic derivatives.

For an algebraic number field F, numbers a, β and an ideal 21 of F

we use the notation a = β in F, and α = θ (mod 21) in F, if α/θ is an

Z-th power of a number of Ff and a/β is congruent to an Z-th power of a

number of F modulo 2ί, respectively.

Now we look through the exponents ta(μ) of the congruence (*). Let
/* = (-i)«-υ/2/β

LEMMA 1, (i) If μ is a unit of k and congruent to a rational integer

modulo λ\ then μ = 1 (mod λι) in k.
(0

(ii) If μ is in Q(V I*) and prime to λy then ta(μ) = 0 for a with

1 <̂  a < I — 1 cmd a Φ (I — l)/2. In particular, if μ is a unit of Q(V /*),

_i(//) = 0.

Proof, (i) Let μ = r (mod ^0 with a rational integer r. Since there

is a rational integer u such that μι = u (mod Z"1), it follows from (*)

with respect to the modulus λι~ι that r = y Π 4α(/t) (mod^^1)- By the

(/ — l)st power of this congruence we have (Z — ΐ)ta(μ) ~ 0 (mod Z), also

ία(μ) = 0 for α = 1, . - . , / - 2.

For the unit μ of k we have ^ ( μ ) = (1 - Nk/Q(μ))ll = 0 (mod Z) (cf. [10]).

Thus M = 1 (mod Aθ
(I)

(ii) Let ̂  be a primitive root modulo I and σ = (ζ —> ζ^) be a gen-

erator of the Galois group of k over Q.

Let μ = x + ;yΛ/Z* with rational numbers x and j>. From the con-

gruence (*) with respect to the modulus λι it follows σ(μ) ~ (σ(μ))1 Π κlata<iμ)

a
(mod λι). Since V7^ = 2 (— )Cδ where (—) are Legendre's symbols, we

have σ(VT^) == (MΛ^J*= —VT*. Hence we have

x _ y V7*"= (x - 3/Λ/7*)ί Π 4αία(/1) ( m o d *ι)
<x

Therefore
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NQ(vT*)/Q(μ) = x2 - /*/ = (x2 - Z*/)1 Π *£1 +*' ) t β ( ' l ) (mod /)

where (x2 - Z*/)'"1 = 1 (mod Λ1'1)- Thus (1 + gαX0ι) ΞΞ 0 (mod Z) for

α = 1, . . ., Z — 2, also ta(μ) = 0 for α with 1 <: α < Z - 1 and a Φ (I - l)/2.

If μ is a unit of Q(V7*), then ^ ( μ ) = 0.

LEMMA 2. Lei d be a square free rational integer prime to Z. Assume

that d is a quadratic residue modulo Z.

(i) If μ is in Q(V d), prime to 2U then ta(μ) = 0 for a = 1, , Z — 2.

(ii) Lei Z*d > 0 and μ 6e a unit of Q(V7*cZ). Tλerc ta(μ) = 0 for a

with 1 <; a <; Z - 1 a/icZ a Φ (I — l)/2.

Proof We also denote by σ = (ζ —> ζ*") a generator of the Galois

group of i£ over Q(Vd).

(i) Since Sj is an ambiguous ideal with respect to <y>, it follows

from (*) that

σ(μ) = (σ(μ))1 Π i ί β t β ^ (mod β{),

that is,

/ i Ξ / ί ' Π ΛΓ ω (mod £0.
α

Hence (ga - 1) iα(^) = 0 (mod Z) for α = 1, . Z - 1, also ta(μ) = 0 for

o = 1, , Z - 2.

(ii) Let μ be a unit of the real quadratic number field Q(V Z^cί).

From the congruence (*) we have

σ(μ) =
α

Since

j" ^C") = NQUϊ*d)/Q(μ) = ± 1 ,

we have

±JM-1 Ξ (±/£-1)ϊ Π ^ α ( / ί ) ( m o d

Therefore (1 + ^α) *α(^) = 0 (mod Z) for a = 1, , Z - 1, also *α(μ) = 0

for a with 1 <[ a <ί Z — 1 and a Φ (I — l)/2. The lemma is proved.

Now the system of the fundamental units of Q(V Z*, V"3) is composed

of those of its real quadratic subfields, or the 2nd roots of their products.

When we wish to obtain the unramified extensions of K, of degree Z using

the Z-th roots of the units of Q(V I*, V d), it is sufficient to examine

the fundamental unit of each quadratic subfield, taking into account of
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Lemmas 1 and 2. If μ is the fundamental unit of Q(V d) or Q(V l*d),

then Lemma 2 does not make the exponent tt_x{μ) or ta_1)β(μ) clear. In

§ 4 we shall show that if d is a quadratic residue modulo Z2, then the

exponents ta(μ) for μ of Q(V I*, V d) are all determined by Rummer's

logarithmic derivatives in k.

§ 3. Unramified extensions and prime cylotomic units

Let Bi be the Bernoulli numbers defined in a power series about the

origin of x/(ex — 1). Let g be a primitive root modulo Z and a = (ζ —> ζg)

be a generator of the Galois group of k over Q. For a positive divisor

r0 of (Z — 1) we denote by krQ the fixed field to the subgroup <<7r°), which

is of degree r0 over Q.

Let A(r) = f] ( — I be cyclotomic units of k for positive integers
α=l \ 1 — ζ /

r. When rQ is a positive divisor of (Z — 1), we define ε(r/rQ) = Nk/kro(A(r)).

We let /ι+ be the class number of the maximal real subfield of k. Van-

diver's conjecture is that h+ -φ. 0 (mod Z).

THEOREM 1. Lei r (2 <J r <I I — 3) 6e an, euβn integer and dQ = (r, I — 1)

6e £/ιe greatest common divisor of r and I — 1.

-i-r = 0 (mod Z) i/ a îd only if ^(Vε(r/r0)) is unramified over k

where rQ = (Z - l)/d0. If h+ Ξ£ 0 (mod Z), ίλen [*(V^r/^)): A] = Z.

Proo/. Since 2] a r Ξ 0 (mod Z) and r r0 = 0 (mod Z — 1), we have

α = l

I -

(I) 6=1 \ 1 — ζ / (0

Therefore

(i)

also fe(Vε(r/r0)) = fe(VA(r)). If Bt_^r = 0 (mod Z), then by Theorem 2 of

[12] we find that A(r) ΞΞΞ 1 (mod λι+% and thus k(VA(r)) is unramified

over k.
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Conversely, suppose that k(Vε(r/r0)) is unramified over k. Then

ε(rlr0) = 1 (mod λι) and A(r) = 1 (mod Λθ. Since the Z-th power of an
(I) (I)

integer of A is congruent to a rational integer modulo λι~\ A(r) is con-

gruent to a rational integer modulo λι~K Thus Bι_x_r = 0 (mod Z) by

Theorem 2 of [12].

Let σa — (ζ -^Ca) be elements of the Galois group of k over Q and

α=l \ I — ζ

be the cyclotomic units defined in Chapter 8 of [11] for even r with

2 < r < I — 3. Then we have as above

π(τ
(ί) 6=1 \ 1 -

1-1

= Π
(I) l
(I) α=l \ 1 — ζ / (0

If h+ =jέ 0 (mod Z), then Sι_1_r =£ 1 in A by Corollary 8.15 of [11], and

therefore [&(Vε(r/r0)): A] = Z.

Remark. If r is a positive integer and r0 is a positive divisor of

Z — 1 such that rr0 Ξ£ 0 (mod Z — 1). Then e(r/r0) = Nk/krQA(r) = 1 in A,

because 2 J ^ i ( l~1~ r o ) r = 0 (mod Z).

In Table 1 we show some irregular primes Z for which

do = (r, Z - 1 - r) > 2 and r0 = (Z - l)/d0 < (Z - l)/2.

Let 1=1 (mod 4) and consider whether k{\/εt) is unramified over k

by the fundamental unit εt of Q(V Z).

PROPOSITION 1. Lei Z = 1 (mod 4) αrccZ e ι = (t + uVT)/2 > 1 be the

fundamental unit of Q(V Z). TTiera k(V εt) is an unramified extension of

degree I over k if and only if u = 0 (mod Z).

Proof First we can prove that εz ^ 1 in A. Indeed, if εt = 2Z for

some 2 of A, then iVfc/Q(Λ/τ)ει = 2', also elι~1)/2 = z\ where zt = Nlc/Q{^T)z.

Hence ^ is a unit of Q(V Z) and we have εt — ε\jε\~ι = (εjz2)1. Since εj

is the fundamental unit of Q(V Z), there is a rational integer c such that

εL!z2 = ±εj. It then follows that ελ = ±εf which is impossible.
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It follows from Lemma 1 that

Now suppose that k(V εt)jk is unramified. Then εt ΞΞ 1 (mod λι), so ta_1)/2(ει)

= 0. Since there is a rational integer aι such that ε\ ΞΞ α̂  (mod λ1'1), we

have βi ΞΞ at (mod ^"O and hence uV I ΞΞ 2αz — t (mod Λ'"1) which implies

2at — ί ΞΞ 0 (mod Z), so UΛ/Ύ = 0 (mod ^~ 1). Thus w ΞΞ 0 (mod I).

Conversely, suppose that u ΞΞ 0 (mod Z). Then εt ΞΞ ί/2 (mod Aθ It

then follows from Lemma 1 that εt ΞΞ 1 (mod λι) and k(Vεt) is unramified

over /?.

Now it is known in [5] and [1] that

— Λ(Q( ^)) — -B(ί-i)/2 (mod Z)

where Λ(Q(VT)) is the class number of Q(vΠΓ) and h(Q(VΎ)) < I This

shows that w ΞΞ 0 (mod Z) is equivalent to B(I_1)/2 ΞΞ 0 (mod Z).

We note that

_ 2-1 i-1 / 1 pa\(a/l)
FT /I fa\(a/l) ΓT

— 11 v 1 — <9 / — 11Π ( C) Π ( 7
α=l α = l \ 1 — ζ

=A((/-l)/2),

because (a/1) = o ( ί " l ί / 2 (mod Z).

Remark. We have no primes Z ΞΞ 1 (mod 4) such that Ba_1)/2 ΞΞ 0

(mod Z) for Z < 6,270,713 (cf. [2]).

§ 4. Relative quadratic extensions

Let d be a square free rational integer prime to Z and K = (̂V d).

We shall give the sufficient conditions of a unit ε ofQ(\/Z*, Vd) making

it possible that K(V ε ) is an unramified extension of K, of degree Z,

PROPOSITION 2. Lei d be a square free rational integer such that

d=x\ (mod Z2) TOZΛ α rational integer xQj prime to I. Let

ε = α 0

6e α zmiί o/ Q(V Z*, V d) wίίλ ^ € Q. Lei r = (Vci->—Vd) 6e α gen-

erator o/ ί/ie Galois group of Q(V d) over Q.
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Suppose that (i) ε ψ 1 in K, (ii) ε τ(ε) = 1 in Q(V I*),
ω a)

(iii) ta_1)/2(a0 + α2x0 + Oi + α3*o)V I*) = 0,

(iv) {(α0 + α2x0)
2 - l*(a, + α3x0)

2}α-1)/2 = 1 (mod Z2).

2%eτι K(V ε) is an unramίfied extension of K, of degree I.

Proof. We identify τ with a generator of the Galois group of K over

k. Let £2 == τίfii). Since Z == (21S2)
Z-1, we have

d - χl = (V^d - xM~d + x0) = 0 (mod CSAΓ-'O

where 2(Z - 1) ^ Z. If V"? - x0 = 0 (mod S ^ ) , then r(V~d — Λ0) = 0

(mod 2^2) and also x0 = 0 (mod Z) which is contrary to the assumption.

Hence we may assume that V d = x0 (mod SO- Then

e = α0 + ax\l I* + a2\l d + a3V Z*d

= α0 + a2x0 + (<*! + azxQ)*/~W (mod β{).

Put f = a0 + a2x0 + (di + α3x0)V7* which is a number of Q(V Z )̂, prime to

λ. For this number ξ we can obtain the exponents ta_1)β(ξ) and ^_i(f) by

Rummer's logarithmic derivatives. It then follows from Lemma 1

(**) ξ = fVaLi^^^Li^^ (mod £0

If *«-,)/*(£) = 0 and ^..(f) = (1 - Nk/Q(ξ))ll = (1 - Λ W W f ) ™ ) / / - 0

(mod Z), then ε = ξ = 1 (mod S{) Moreover, if ε τ(ε) = 1 in Q(V7*), then
(I) (0

by (**) we have

τ(ε) = (τίfWVaLiJjSf̂ ΛrίLi1^ (mod SJ),

also

ε"1 = (ε-O^^V/I^^Li^^ (mod SJ).
(O

If the conditions (ii), (iii) and (iv) are satisfied by the unit ε, then ε = 1

(mod fi ) for i = 1, 2. Thus K(V ε) is unramified over K. Finally, if

ε Φ 1 in K, then [K(VT)ι K] = Z.
(2)

THEOREM 2. Let d be a square free rational integer such that d = x2

0

(mod Z2) iί;iί/ι α rational integer xQ prime to I.

(I) Let d > 0 and εd = a0 + a2V d > 1 be the fundamental unit of

Q(V d ) (a0, a2 e Q). // (a0 + az^o)1"1 = 1 (mod Z2). ί/iβn if(V εd) is an unrami-

fied extension of K, of degree I.
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(Π) Let l*d > 0 and εt*d = α0 + a%\l l*d > 1 be the fundamental unit

of QW~ΐ*d) (α0, α 3eQ). If t(ι_1)/2(aQ + azxJΊ*) = 0, then K(VΊ^) is an

unramified extension of K, of degree Z.

According to H. Yokoi [13] we know that (i) if d — bHk + 4 is square

free for a rational integer b > 0, then (bl2 + y/bΨ + 4)/2 is the funda-

mental unit of Q(V d); (ii) if d = 62Z4 + 1 is square free for a rational

integer 6 > 0, then ε̂  = bP + V&2Z4 + 1 is the fundamental unit of

These units satisfy the condition of (I) of this Theorem. Some pairs

(Z, d) satisfying the condition of (I) are also shown in Table 2.

Proof, (I) Suppose that εd = wι for some w in K. Then Nκm4/j^εd

= NKJQ{/ά^w\ also ε^1 = ^ where wd = NKm^w* We see that wd is a

unit of Q(V d). Since εd — εye^"1 = (εd!wd)
1 and εd is the fundamental

unit of Q (V d) , it is a contradiction. Thus εd Φ 1 in K

We let εd be ε of Proposition 2 with αx = α3 = 0. Then

ed-τ(εd) = NQ(Λ/-j)/Qεd = ± 1 = ( ± 1 ^ and ta_1)β(a0 + a2xΰ) = 0,

because α0 + α2#o is a rational number prime to /. Thus, if (α0 + ^Xo)'"1 = 1

(mod Z2), then by Proposition 2 we see that K(Vεd) is an unramified

extension of K, of degree I.

(II) Let Z*d > 0 and ε M be the fundamental unit of Q(VT*d). Then

it can be proved that ε ^ Φ 1 in K as above. We let ει#d be ε of Pro-
(O

position 2 with αx = α2 = 0. It then follows that

f ± 1 - (±1)*, if / = 1 (mod 4) and d > 0,

i + 1 = ( + 1)1, if I = - 1 (mod 4) and d < 0.

Since C ! Ξ X § (mod Z2), we have a2

0 — I*deft = a2

0 — l*a\xl (mod I2), and then

(αj _ Z*α^D(Z~1)/2 Ξ 1 (mod Z2). Thus the conditions (i), (ii) and (iv) of

Proposition 2 are satisfied by ε = εt*d. If ta_υ/2(ao + azx0V /*) = 0, then

UL(V εt*d) is an unramified extension of K, of degree Z, as desired.

PROPOSITION 3. Let d be a square free rational integer prime to

I. Let l*d > 0 and εt*d = α0 + α3Λ/ Z*d > 1 6e ί/ie fundamental unit of

QW~ΐ*d) (α0, α 3eQ).

If al"1 = 1 (mod Z2) α^id α3 = 0 (mod Z), ίΛeM K(\Jεt*d) is an unramified

extension of K, of degree L
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Proof. Let β be a prime divisor of K lying above Z and τ — (V d —•

— V d) be a generator of the Galois group of K over k. Since β and

τ(β) are unramified over k and εt*d Φ 1 in K, it is enough to show that
(O

ε^d is the Z-th power residue modulo β' and τ(β)*. Under the assumption

of Proposition 3 it follows that εt*d = α0 (mod βJ) where a0 Ξ ύφ^-Ί1'^

(mod Λz) and tt_x(a,) = (1 - Nk/Q(a0))/l = (1 - αj-1)/* = 0 (mod Z). Therefore

ε M — 1 (mod β*) and ±(ει*d)~1 = 1 (mod r(β)0> as was to be shown.
(I) (I)

For example, let Z ΞΞ 1 (mod 4) and b Ξ£ 0 (mod Z). If d = &(6Z3 ± 2)

is square free for 6 > 0 and if εld = 6Z3 ± 1 + Wbl(bP ± 2) is the funda-

mental unit of Q(V Id), then if(Vεlcz) is unramified over if, of degree Z.

There are some examples of Z and d satisfying the conditions of

Proposition 3 which are shown in Table 3.

COROLLARY. Let I = 1 (mod 4), d > 0 and d = x2

0 (mod Z2) with a

rational integer x0 prime to I. Let εd = aOί + α2 V d > 1, ε^ = α02 + az\l Id

y 1 be the fundamental unit of Q(V d) and Q(V Id), respectively.

If (#oi + G^O)*" 1 = 1 (mod Z2), alϊ1 = 1 (mod Z2) and a% = 0 (mod I),

then K(V εd, V εld) is an unramified extension of K whose Galois group over

K is of type (I, I).

We have some pairs (Z, d) satisfying these conditions which are

shown in Table 4.

Proof. From the 1st assertion (I) of Theorem 2 and Propositon 3 it

follows that K(\/εd) and K(Vειd) are both unramified extensions of K,

of degree Z. It is enough to show that εd Φ εld in K. Suppose that

ed = eιdω
ι for some ω in K. Since σ(εld) = α02 — α3 V Id and NK/Q^T^d) =

A /̂Qt/djtadCoO, we have εjf1 = (±l) σ " 1 ) / 2 ω^ = <4 where ωd = iVjp/β(/j)(ω) and

(Z - l)/2 ΞΞ 0 (mod 2). Then ωd is a unit of Q(V~d) and εd = ε^/ε^1 =

i^dlo)d)
1 which is impossible, because εd is the fundamental unit of Q(V d).

Thus we have the corollary.

Remark. If d is prime to Z and if there is a real unit ε of Q(VT*, Λ/ d)

such that ε is the Z-th power residue modulo the Z-th power of each

prime divisor of K lying above Z, then K(V ε) is unramified over K, even

though d is not a quadratic residue modulo Z2. For examples, if d = bΨ ± 2

is square free for b> 0 and εd = 62Z4 ± 1 + bl2jbΨ ± 2 is the funda-

mental unit of Q(V d), then ed = 1 (mod Z2), so K(\/εd) is unramified

over K, of degree Z.
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§ 5. Examples

In the following Tables 2, 3 and 4 we denote by hm the class number
of a quadratic number field Q(Vm). The odd prime factors of the class
number of Q(V mx, V^ 2 ) &re those of the class number of its quadratic
subfields.

I am grateful to Y. Kida of Kanazawa Univ., giving me these many
examples using a computer with his excellent programs.

Table 1 (Examples for Theorem 1)

/

37
103
421
491
613
631
647
673
761
929
1129
1983
2017
2357
2441
2861
3329
3433
3617
4003
4027
4523
4951
6263
6529
6871
7309

l-l-r

32
24
240
336
522
80
272
408
260
520
348
1058
1204
2204
366
352
1378
1300
16

2610
2332
456
1914
3286
1564
2010
324

r

4
78
180
154
90
550
374
264
500
408
780
874
812
152

2074
2508
1950
2132
3600
1392
1694
4066
3036
2976
4934
4860
6984

d,=(r, 7-1)

4
6
60
14
18
10
34
24
20
8
12
46
28
76
122
44
26
52
16
58
22
38
66
62
68
30
36

r,=(Z-l)/d,

9
17
7
35
34
63
19
28
38
116
94
42
72
31
20
65
128
66
113
69
183
119
75
101
96
229
203
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Table 2 (Examples for (I) of Theorem 2)

I
3

*o

1

2

4

d

82

58

43

h
a

4

2

1

12

12

12

1
2

3

4

6

7

8

9

11

51
629

109

191

161

574

39

581

271

2
2

1

1

1

6

2

1

1

4
4

2

2

2

4

4

2

2
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Table 3 (Examples for Proposition 3)

hd

1

2

3

4

5

6

8

9

10

11

12

13

15

16

17

18

19

20

22

23

24

295

494

303

751

74

771

505

179

149

23

2594

218

470

403

583

1353

1194

449

1121

1754

1311

2

2

2

1

2

2

4
1

1

1

2

2

2

2

2
2

2

1

1

2

4

4

40

40

32

16

40

28

32

8

16

160

48

64

32

48

72

48

56

56

80

48

I
3

5

d

-26

-53

-107

14

23

26

31

123

127

129

l*d

78

159

321

70

115

130

155

615

635

645

K
6

6

3

1

1

2

1

2

1

1

h
ιtt

2

2

3

2

2

4

2

4

2

2

I

7

13

d

-34

-73

-118

61

l*d

238

511

826

793

h
d

4

4

6

1

2

2

2

4
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Table 4 (Examples for Corollary).

x0 d Id hd ht.d

2 4

2 4

1 4

1 2

2 4

6 4

1 10

1 2

1 4

1 4

1
2
3

4
6

7
8
9
11
12

426
629

509
191

2386
574
1389

581

2671
3169

2130
3145

2545

955
11930
2870

6945
2905

13355
15845

13 1

9
12

23830

9883

2003

309790

128479

26039

2

1
1

4

2

6
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