M. Takeuchi Nagoya Math. J. Vol. 115 (1989), 43-46

TWO-NUMBER OF SYMMETRIC R-SPACES

MASARU TAKEUCHI

Dedicated to Professor Shingo Murakami on his sixtieth birthday

Introduction

Chen-Nagano [2] introduced a Riemannian geometric invariant $\nu(M)$, called the 2-number, for a compact (connected) symmetric space M: Points $p, q \in M$ are said to be antipodal to each other, if p = q or there is a closed geodesic of M on which p and q are antipodal to each other. A subset A of M is called an antipodal subset if every pair of points of A are antipodal to each other. Now the 2-number $\nu(M)$ is defined as the maximum possible cardinality |A| of an antipodal subset A of M. The 2-number is finite.

In this note we will prove the following

THEOREM. If M is a symmetric R-space (See §1 for the definition), we have

$$\nu(M) = \dim H(M, Z_2),$$

where $H(M, Z_2)$ denotes the homology group of M with coefficients Z_2 .

§1. Symmetric *R*-spaces

A compact symmetric space M is said to have a *cubic lattice* if a maximal torus of M is isometric to the quotient of \mathbf{R}^r by a lattice of \mathbf{R}^r generated by an orthogonal basis of the same length. A Riemannian product of several compact symmetric spaces with cubic lattices is called a *symmetric R-space*. We here recall some properties of symmetric R-spaces (cf. Takeuchi [4], [6], Loos [2]).

A symmetric *R*-space *M* has the complexification \overline{M} : There exists uniquely a connected complex projective algebraic manifold \overline{M} defined over *R* such that the set $\overline{M}(R)$ of *R*-rational points of \overline{M} is identified

Received July 22, 1988.

with M. The group Aut \overline{M} of holomorphic automorphisms of \overline{M} is a complex linear algebraic group defined over R. The identity component G of $(\operatorname{Aut} \overline{M})(R)$ is a semi-simple Lie group without compact factors and acts on M effectively and transitively. The identity component K of the group I(M) of isometries of M is a maximal compact subgroup of G. Thus there is an involutive automorphism τ of G such that

$$K = \{g \in G; \tau(g) = g\}$$

We fix a point $o \in M$ once and for all, and set

$$U=\{g\in G;\,g\cdot o=o\}\,,\qquad K_{\scriptscriptstyle 0}=K\cap\,U\,.$$

Thus we have identifications: $M = G/U = K/K_0$. Let

$$\mathfrak{g} = \mathfrak{k} + \mathfrak{p}, \quad \mathfrak{k} = \operatorname{Lie} K$$

be the eigenspace decomposition of $\mathfrak{g} = \operatorname{Lie} G$ with respect to the differential of τ . Then there exists uniquely an element $E \in \mathfrak{p}$ such that $\mathfrak{u} =$ Lie U is given by

$$\mathfrak{u}=\mathfrak{g}_0+\mathfrak{g}_1,$$

where \mathfrak{g}_p denotes the *p*-eigenspace of ad *E*. Furthermore the subgroup K_0 coincides with the centralizer of *E* in *K*, and so *M* is imbedded into \mathfrak{p} as the *K*-orbit through *E*. We choose a maximal abelian subalgebra a in \mathfrak{p} with $E \in \mathfrak{a}$ and set

$$W = N_{\scriptscriptstyle K}(\mathfrak{a})/Z_{\scriptscriptstyle K}(\mathfrak{a})\,, \qquad W_{\scriptscriptstyle 0} = N_{\scriptscriptstyle K_{\scriptscriptstyle 0}}(\mathfrak{a})/Z_{\scriptscriptstyle K_{\scriptscriptstyle 0}}(\mathfrak{a})\,,$$

where $N_{K}(\alpha)$ (resp. $N_{K_{0}}(\alpha)$) and $Z_{K}(\alpha)$ (resp. $Z_{K_{0}}(\alpha)$) denote the normalizer and the centralizer in K (resp. in K_{0}) of α . We may regard W_{0} as a subgroup of W. These groups W and W_{0} are finite groups called Weyl groups of \mathfrak{g} and \mathfrak{g}_{0} . We define a subset A of M by

$$A=N_{\kappa}(\mathfrak{a})\cdot o.$$

Since $A \cong N_{\kappa}(\mathfrak{a})/N_{\kappa_0}(\mathfrak{a}) \cong W/W_0$, we have

$$|A| = |W/W_0|$$

THEOREM 1. (Bott-Samelson [1]).

$$\dim H(M, \mathbb{Z}_2) = |W/W_0|.$$

THEOREM 2 (Takeuchi [4]). Let M_1, \dots, M_s be the connected compo-

nents of fixed point set of the symmetry of M at o. Thus each M_i is a compact symmetric space with respect to the Riemannian metric induced from that of M. Then

- (i) Each M_i is also a symmetric R-space; and
- (ii) dim $H(M, Z_2) = \sum_{i=1}^{s} \dim H(M_i, Z_2)$.

THEOREM 3 (Takeuchi [4], [5]). There exists a maximal torus of M through o which includes antipodal points a_i $(1 \le i \le s)$ to o such that

$$A = N_{{\scriptscriptstyle K}_0}(\mathfrak{a}) \cdot \{a_1, \cdots, a_s\}.$$

§2. Proof of Theorem

We first show that the subset A is an antipodal subset. We remark that since $K_0 \subset I(M)$ and $N_{K_0}(a) \cdot o = \{o\}$, by Theorem 3 each point of A is antipodal to o. Let $p, q \in A$ be arbitrary. Since $A = N_K(a) \cdot o$, there is $k \in N_K(a)$ such that $k \cdot p = o$. By the above remark the point $k \cdot q \in A$ is antipodal to $o = k \cdot p$. It follows by $k \in I(M)$ that q is antipodal to p. This proves the claim. Now, together with Theorem 1 this implies the inequality:

$$\dim H(M, \mathbb{Z}_2) \leq \nu(M)$$

We will prove Theorem by induction on $\dim M$. We make use of the inequality in Chen-Nagano [2]:

$$u(M) \leq \sum_{i=1}^s
u(M_i)$$
 ,

which holds for a general compact symmetric space. By Theorem 2 (i) and the assumption of the induction we have that $\nu(M_i) = \dim H(M_i, Z_i)$ for each *i*, and hence

$$u(M) \leq \sum_{i=1}^s \dim H(M_i, Z_2).$$

But the right hand side is equal to dim $H(M, \mathbb{Z}_2)$ by Theorem 2 (ii), and so we obtain the inequality:

$$\nu(M) \leq \dim H(M, \mathbb{Z}_2) \,.$$

Together with the previous opposite inequality we get

$$\nu(M) = \dim H(M, \mathbb{Z}_2).$$

MASARU TAKEUCHI

References

- R. Bott and H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math., 80 (1958), 964-1029.
- [2] B.-Y. Chen and T. Nagano, A Riemannian geometric invariant and its applications to a problem of Borel and Serre, Trans. Amer. Math. Soc., 308 (1988), 273-297.
- [3] O. Loos, Charakterisierung symmetrischer R-Räume durch ihre Einheitsgitter, Math. Z., 189 (1985), 211-226.
- [4] M. Takeuchi, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo, 12 (1965), 81–192.
- [5] —, On orbits in a compact hermitian symmetric space, Amer. J. Math., 90 (1968), 657-680.
- [6] —, Basic transformations of symmetric *R*-spaces, Osaka J. Math., 25 (1988), 259–297.

Department of Mathematics College of General Education Osaka University Toyonaka 560, Japan