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SOME REMARKS ON REPRESENTATIONS OF POSITIVE

DEFINITE QUADRATIC FORMS

YOSHIYUKI KITAOKA

Let S, T be positive definite integral symmetric matrices of degree
m, n respectively and let us consider the quadratic diophantine equation
S[X] = T. We know already [1] that the following assertion (A)m,n is
true for m > 2n + 3.

(A)m>n: There exists a constant c(S) such that S[X] = T has an in-
tegral solution XeMm>n(Z) if S[X] = T has an integral solution Xe
Mm>n(Zp) for every prime p and min T > c(S).

In the above, min T denotes the minimum of T[x] for all non-zero
integral vectors x. The basic question is whether the number 2n + 3 is
best possible or not. As facts which suggest that 2n + 3 is best, we can
enumerate the following (i), (ii), (iii):

( i ) When n = 1, it is the case.
(ii) From the quantitative viewpoint, the SiegeΓs weighted average

of the numbers of solutions of St[X] = T where St runs over a complete
set of representatives of the classes in the genus of S, is expected to be
not few if (A)m>n is true. By a SiegeΓs formula [9], the weighted average
is \T\{m~n-1)/2 times the infinite product of local densities ap(s, T) up to
the elementary constant depending only on S and n, and it is known [2]
that there is a positive constant c^s) such that the infinite product of
local densities is larger than c^S) as far as T is represented by S over
Zp for every prime p if and only if m > 2n + 3.

(iii) The condition m > 2n + 3 appears often naturally at an ana-
lytic approach.

Next, let us look at the problem from another viewpoint which leads
us to the suggestion incompatible with the above observation for n > 1.
It is known [2] that (A)m>n does not hold for m = n + 3. It is the best
for all n till now, as far as the author knows. When m = n + 3, we

Received June 9, 1988.

23



24 YOSHIYUKI KITAOKA

constructed counterexamples by the following idea. Suppose S[X] = T

for XeMm,n(Z); writing X = YZ with a primitive matrix YeMm,n(Z) and

ZeMn>n(Z), T : = ΓtZ"1] = S[Y] is (primitively represented globally by S

and hence) primitively represented by S over Zp, and it yields that min T

is less than min S. This is a contradiction.

Now the following problem emerges along this line: Let S, T myn be

those as above, S[X] = Γ is soluble over Z p for every prime p, and

min T is large. Then for every matrix T which satisfies

( i ) S[X] — T has a primitive solution over Zp for every prime p,

and

(ii) T[X] = T is soluble for XeAf M (Z),

is min T small?

We have obtained counterexamples for m = n + 3 by showing the

affirmative of this question. If it is affirmative for m = 2n + 2, then,

reforming S, we must construct a counterexample for (A)2n+2)K. When

m = 2n + 2 and ra = 1, it is affirmative and we have a counterexample

for (A)4>1. However it turns out to be negative for m = 2n + 2, n > 2,

which is an aim of this paper, that is the following assertion (R)m,n is

true for m = 2n + 2, n > 2 (Theorem in 1 in the text):

(R)m,n: Let S, T m, n be those as above and suppose that S[X] — T is

soluble over Zv for every prime p. Then there exists a positive integral

matrix T of degree n satisfying

( i ) S[X] = T has a primitive solution X over Z p for every prime p,

(ii) f [X] = Γ is soluble for X e M ^ Z ) , and

(iii) if min ϊ 7 is large, then min T is also large.

Moreover in connection with primitiveness in (i), let us consider the

following assertions:

(AP)m,n: There exists a constant c'(S) such that S[X] = T has a

primitive integral solution XeMmtn(Z) if S[X] = ϊ 7 has a primitive in-

tegral solution Xe Mmi7l(Zp) for every prime p and min T > c'(S).

(APW)m,n: The weaker assertion than (AP)mt7l which does not require

the primitiveness of global solution.

Since (A)2n+^n is true and (APW)m>n has a stronger assumption than

(A)m,n, one may expect the validity of (APW)2n+2,n or strongly (AP)2n+2,n,

taking account of the validity of (AP)4fl and hence (APW)Atl. The weak

assertion (APW)2n+2>n implies the assertion (A)27l+2,7l by virtue of the va-

lidity of (R)2n+2fn for n > 2. If, hence (A)2n + 2>n is false for n > 2, then
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(AP)2n+2tn and (APW)2n+2>n are also false. Here we note again that (i?)4)1

is false and it yields immediately the falsehood of (A)M but (AP)iΛ (and

hence (APW)±Λ) is true. Results here and [3], [5], [6] may suggest the

validity of (A)2n+2ιn for n > 2. This dennies the suggestion at the begin-

ning that 2ft + 3 is best possible for n > 2. Which is plausible? In 2

in the text, we show that (R)m,n (m> n + 3 and n > 3) is valid for scal-

ings of a fixed Γo with small limitation. It shows that it is hard to

construct counterexamples for (A)mt7l for m > n + 3, n > 3 by a special

sequence of T which are scalings of some fixed To.

Let us discuss the case of m = 2n + 2 > 6 from the analytic view-

point in passing. We put a fundamental assumption that for every Siegel

modular form f(Z) = Σa(T) exp (2πi tr TZ) of degree n, weight n + 1 and

some level, whose constant term vanishes at each cusp, the estimate

a(T) = O((minT)-ε\T\{n+1)/2) holds for some positive ε if min T is larger

than some constant independent of f(Z). To verify the assertion (A)2n+2tΐl

it is sufficient to do the assertion (APW)2n+2,n as above. Suppose that

S[X] = T has a primitive solution X = XpeMmtn(Zp) for every prime p.

Let rpr(T, S) be the number of integral primitive solutions of S[X] = T.

As in § 1.7 in [3] we have

r p r(Γ, S) = SWP(T) + O((min Γ)—|Γ | ( Λ + 1 ^)

where SWP(Γ) is a quantity defined there so that

SWP(T) >

and εj, ε2 are any positive small number, and hence it gives an asymptotic

formula for rpr (Γ, S) when min T tends to the infinity and therefore

rpr (T, S) > 0 when min T is sufficiently large, and thus the above as-

sumption on estimates of a(T) yields an asymptotic formula for rpr (Γ, S)

and the truth of the assertion (A)2n+2>n. Let us refer to an asymptotic

formula for the number of solutions r(T, S) of S[X] = T. Denote by P

a set of primes p such that the Witt index of S over Qp is equal to

n — 1. The assumption on a(T) yields an asymptotic formula for r{T, S)

if P is empty. Otherwise it depends on estimates of local densities

from below for every prime p e P and the explicit value of ε whether it

gives an asymptotic formula or not. The existence of an asymptotic

formula may be harmonious.

We denote by Z, Q, Zv and Qp the ring of rational integers, the field
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of rational numbers and their p-adic completions respectively. Termi-

nology and notations on quadratic forms are generally those from [6] and

they are also used for symmetric matrices corresponding to quadratic

forms. For example, for a quadratic lattice M over Z, nM is the norm

of M, i.e., nM = Z{Q(x)\xe M}, and for a basis {uj of M we write M —

((B(vi9 Vj))}. By a positive lattice we mean a lattice on a positive defi-

nite quadratic space over Q. For a positive lattice M, minM denotes

the minimum of {Q(x)\xeM, x Φ 0}, where Q(x) = B(x, x) is the quadratic

form of M.

§1-

In this section we prove the following

THEOREM. Let m, n be integers such that m = In + 2 and n > 2 and

let M be a positive lattice of rank M = m u ίίΛ π-M C 2Z. Lβί N be a

positive lattice of rank N = n such that ZPN is represented by ZPM for

each prime p. Put nN — 2qZ for a natural number q and decompose q

as q = qoqί so that, for a prime divisor p of q, p divides qQ if and only if

the Witt index of QVM is equal to n — 1. Then there exists a positive

lattice N on QN such that N D N, minN> c{M)^~qQX minN and ZPN is

primitively represented by ZPM for each prime p where c{M) is a positive

constant dependent only on M.

COROLLARY. If m = 2n + 2 > 6, then the assertion (APW)2n+2,n yields

Before the proof of Theorem, we note that if we put N = {qT}

where T is an integral positive matrix, then min N = q(min T) and hence

min N > c(M)V~9o9i min T. Thus min N is large if min N is large.

LEMMA 1. Let a, u be real numbers such that a > 1 and <sj~a\^ < u <

*J~ά. Put f(x,y) — (ax — uy)2 + y2. Then the minimum of {f(x,y)\x,yeZ,

(x, y) Φ (0, 0)} is larger than a/16.

Proof. /(0,1) = u2 + 1 > u2 > a/16 and /(I, 0) = a2 > a/16 are clear.

Suppose x,yeZ and xy Φ 0. If |y| > ^~a/4, then f(x>y)>y2> a/16. As-
sume \y\< Λ/~OΊ4. Since it implies \uy\ < α/4, the minimum of \ax — uy\

(x e Z) is equal to \uy\. Hence f(x, y) > (ax — uy)2 > (uy)2 > u2 > α/16

holds, which completes the proof of Lemma 1.
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LEMMA 2. Let p be a prime and n>2. Let T = p2b + cTQ (0 < b e Z,

c — 0,1) be an integral positive definite matrix of degree n and suppose

pb > 36, nT0 c 2Z and (nTQ)Zp = 2ZP. Then there exists a positive constant

C(n, p) dependent on n and p for which there exists H in Mn(Z) satisfying

that detH is a power of p, min T[H~ι] > C(n,p)pb+e min TO, TIH'1] & 0

mod8p1 + c and n{T[H-χ]) a 2Z.

Proof. Put G = SL(n, Z), Gf ^{geG\g~ln mod 8pZp}, take and fix

representatives {£/J of G/G/ once and for all and let C\n,p) be a positive

number such that tUiUi> C'(n,p)ln for all ί. Without loss of generality

we may assume that TQ is reduced in the sense of Minkowski and hence,

as is well known, To > Cn(min T0)ln holds for some absolute constant Cn.

Since (nTΰ)Zp = 2ZP, we can choose VeSL(n,Zp) so that TQ[V] =

where

)2k

(2h k \ ( 2 h 1 U / 1 OXΊ Λ β O f l f Λ e Z x if 2 >

Vλ; 2MV \ 1 2/ι/LVθ ft/J ^

or

heZ*, k = 0,1, i> 2 if p = 2 .

Take a representative U= Ut of G/G' so that [7= ymodδpZ^; then we

have TQ[U] > Cn(min Tύ)ln[U] > CnC
f(n,p)(min T0)ln, and putting A =

K1 u\
\0 p")

\
and hence

[(p» -u\
p'A-1 = \0 1 /

we have

min T[UA-1] =

> CnC'(n, p)p°(min To) min (l.Lp Λ"1])

= CnC'(n,p)p'(win To) min{(p6x - uyf

where x, y run over integers not all zero, and by Lemma 1
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> CnC'(n,p)pc(mmT0)pbll6

if Vΐ̂ /4 < u <
Putting H= AU'\ C(n,p) = CnC'(n,p)ll6, we have

min T[Hι] > C{n,p)ph+C min Γo.

Since T[H~ι] = peT{\U][pbA'γ\ and ΛTΌ C 2Z, we have TIΪΊΉ"" 1] c 2pcZ

C2Z. The (2,2) entry of T[H~ι] is equal moάSpι + cZp to

2pc(/m2 + A), 2pc(hu2 - ku + hk2), 2pc(hu2 + 2<ft)

according to the order of above canonical forms of Tx and hence to com-

plete the proof, it is enough to show that they are not zero modulo

8pί+c for some u with Vΐ^/4 < u < Vϊ^ Noting VP* — VP^/4 > 4 be-

cause of pb > 36, we have only to choose ueZ with Vϊ^/4 < w < VP*

so that (u,p) — 1 if kepZp9 and /m2 + k =/Ξ Omodp if keZ* in the left

case 2\u if h = 0, and 2 ] w if /ι = 1 in the middle case: 2\ u in the

right case. Thus we have proved Lemma 2.

Remark. In the above proof, all but (2, 2) entries of T[H~ι] are

divided by pb+c, and if TΊ is of the first canonical form, then TiH'1]

represents 2pch = p" 2 δ X (1, 1) entry of T[V] over Z p if either p Φ 2, ke

pZp or p = 2, ft e 8Z2.

Proof of Theorem. First we note that for a positive lattice if7 z> if,

min iΓ > [iΓ: if]"2 min JK" holds, since [KΊ K]Kf c iΓ implies min [if:

i ί ] ^ 7 > min K. Let M, 2V be those in Theorem. If a prime p does not

divide dM, then ZPM is unimodular and nZpM = 2ZP. Hence Z p contains

a submodule isometric to _ L ( ( I Q ) ) as an orthogonal component.

Therefore ZPN is primitively represented ZPM. If p \ dM and ind QPM > 72,

then by virtue of Theorem 2 in [4] there is an isometry u from ZPN to

ZPM such that [Qpu(ZpN) Π ZPMP: u(ZpZV)] is bounded by a number Cp

dependent only on ZPM. Hence Np = u-\Qpu{ZpN) Π ZPM) (=) ZpiV) is

primitively represented by ZPM, and enlarging N to iV^ so that ZPN" =

Np, ZPN" is primitively represented by ZPM and min N" > C~2 min JV.

Suppose that p\dM and indQpM=n—l. We fix a 2p^Zp-maximal

sublattice K of ZPM for some kp once and for all. If nZpNlD 2p2+k*Zp,

then there is an isometry u from ZPN to ZPM such that [Qpu(ZpN) Π

ZPM: u(ZpN)] is bounded by a number C^ dependent only on kp and

ZPM, applying the theorem referred above where Nx there, should be the

first Jordan component of ZVN, and nothing that the number of distinct
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isometry classes by O(ZPM) of modular submodules of ZPM with n ~D

2p2^kpZp is finite. In this case we have obtained an enlarged quadratic

lattice of N at p which contains N with index dependent only on kp

and ZPM and is primitively represented by M over Zp. Finally we deal

with the case that p\dM, ind QPM = n - 1 and nZpN a 2p2+IC*Zp. Put

JV= <p2& + c + ̂ Γ0> where 0 < b eZ, c = 0,1 and nT0 c 2Z, (nT0)Zp = 2ZP.

By virtue of Lemma 2, there exists a matrix ff in Mn(Z) such that det if

is a power of p,

> C(n,p)pb + C min Γ o ,

p2b+cTQ[H~ι] Έβ 0moά8pί+c and i i Q ^ + Totff-1]) c 2 Z .

Taking a quadratic lattice iV7 (Z) iV) corresponding to if, JV7 satisfies

niZpN') a 2pk*Zp = nK, n{ZpN') ς£ 8pι+c+k*Zp and miniV' > C(n,p)pb + e+k>

min y0 > C(n,p)plU¥e+k^ min To - C(n,p)p-{orύ*>qo)/2 minN. Since QPΛP =

QpΛT" is represented by QPM = Qpiί, Z îV' is represented by the maximal

lattice K and hence by ZPM. Applying the argument in the case of

p\2dM, nZpNZD 2p2+k^Zp to N', M, noting n{ZpN') ςt 8pί+c+k*>Zpy there is a

lattice N" (D iVO such that [N":Nf] is a power of p bounded by a

number dependent on kp and ZPM, and Ẑ A/"̂  is primitively represented

by ZPM. Iterating the construction of N" for primes p dividing dM, we

complete the proof of Theorem. •

Remark. Let us consider the case m =. 2n + 1. Let M be a positive

lattice of rk M = m and N a positive lattice of rk N = n which is repre-

sented by gen M. It is easy to see that the assertion similar to Theorem

holds, using Lemma 2 and its remark, provided that for every prime p

for which ind QPM = n — 1 holds and ZPN has a Jordan splitting Ẑ Λ/" =

(α> _]_ iVi where oτάp a is bounded but ordp nNx is large, there is a lattice

iV such that [N: N] is a power of p, ZPΛΓ is represented by ZPM, ZPN

contains a binary lattice B with oτάp dB bounded and min N is large.

This condition is not necessarily satisfied for n — 2 as follows: For

N - <α> J_ <Pr> with (α,p) = 1, N - <α> J_ <Pr"2ί> holds if [N: N] = p f .

Thus min ΛT̂  is small if ordp N is small. This leads us to a falsehood of

the assertion (A)m n when m = 2n + 1 = n + 3, n = 2, as in [2].

§2.

We have observed that it is important whether for a given sequenc3

{iVt} of positive lattices represented by genM with miniVί -> oo, there is
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a lattice Nt with miniV, large which contains Nt and is primitively re-

presented at every spot by gen M or not. If there is no such Nt, then

we must deduce a falsehood of the assertion (A)m,n.

In this section we show that it is hard to construct such a sequence

by scalings of a fixed lattice by giving the following

PROPOSITION. Let M, N be positive lattices of rk M =. m > rk N + 3,

rk N — n > 3. We fix representatives {JVJ of classes in the genus of N

once and for all, and take a finite set S (9 2) of primes such that if p & S,

then ZpNi = ZPN holds for all ί and ZPM, ZPN are unimodular. For any

given number C19 there is a positive number C2 = C2(Cl9 M, N) such that

if a natural number a (> C2) is not divided by any prime in S and the

scaling N(a) of N by a is locally represented by M, then there is a lat-

tice Na with min iVα > Cί which contains N(a) and ZpNa is primitively

represented by ZPM for every prime p.

COROLLARY. For the above special sequence {N(ά)}, the assertion

(APW)m>n implies the assertion (A)m>n.

This follows trivially and to prove Proposition, we must prepare the

following

THEOREM. Let L be a positive lattice of nL = 2Z and rk L — m > 2.

For a prime p we define an integer ap by the following:

If m > 3 and the Jordan splitting is of form

ZPL = <2£l> _L <2e2p*»> _L P > 2 ,

or

where εl9 ε2 6 Z* and c — 0 or 1, then ap is given as in the above, other-

wise ap — 0. Then there is a lattice M in the genus of L such that

m i n M > (dL)1/7ϊl-ε( ]~\ p^)-^
p}2dL

where ε is any positive number and A > B means A > cB for a constant

c dependent only on ε and m.

Remark, min L < (dL)ί/m is well known.

Before the proof of Theorem we show that Proposition follows from

Theorem.
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Let M, N, Nί9 S be those in Proposition. For a prime p, let K = Zp[e, f]

be a quadratic lattice over Zp defined by Q(e) = Q(f) = 0, B(e, f) = α.

Then if = Zpfα^e,/] = U i Q ) ) is clear. Hence for a prime p dividing

α we can take a lattice Np which contains ZpN(ά) and is isometric to

an orthogonal sum of a unimodular lattice of rk = n — 1 or n — 2 and

an αZp-modular lattice of rk = 1 or 2, enlarging binary hyperbolic aZp-

modular lattices to unimodular lattices as above. Let Nf be a lattice

which is isometric to Np for p \ a and to ZpN(ά) for p \ a and has a large

minimum by virtue of Theorem. Since there is an isometry from ZpN(ά) to

ZpN
f for every prime and QN(a) = QN\ N' contains a lattice which is

isometric to N^a) for some i. Pulling back N', there is a lattice N"

such that min N" is large, iV" 3 Nt{a\ ZPN" = Zp2V,(α) for p | α and ZpiV77

has a unimodular component of rk = n — 1 or n — 2 for p | α. Define a

new lattice N by ZPΪV = ZpN(a) for p | a and Z îV = ZpiV77 for p\a. By

definition iV contains N(ά) and Z P N — ZPN" if p g S and p | α. Since

[N: N Π N"\ = Π [ZPN: ZPΪV Π ZpN''] - Π [ZJ^\ ZPN Π

5

and [ΛΓ: ΪV Π iV7/]2 min ΪV > min (N (Ί iV'O, we have min ΪV > [ΛΓ: N Π iV,]'2

Xmin(ΪVn iV/;) > [iV: N Π ΛΓJ"2 miniV^. Thus we have constructed a

lattice iV which contains N(a), has a large minimum and satisfies that

ZPN = ZpN(ά) for p ^ α and ZpiV has a unimodular component of

rk — n — 1 or n — 2 for p ] α. By assumption, iV(α) is represented by M

locally and ZPN, ZPM are unimodular if p g S. Hence ZPΪV is primitively

represented by ZPM if p g S and p \ α. If p | α, then by cancellation of a

unimodular component of ZPN from ZpΐV and ZPM, the remaining part of

ZPN is primitively represented by the one of ZPM and hence ZPN is

primitively represented by ZPM. Enlarging N for every prime p e S we

get a lattice iVα which contains N(a), is primitively represented by M

locally and has a large minimum since [ΛΓα:ΪV] = X\VQS[ZvNa\ ZpN(a)] is

bounded by a number depending on N and M. Thus we have completed

the proof of Proposition, assuming Theorem.

Proof of Theorem. We divide the proof to two cases m = 2 and

m > 3. First we treat the case m = 2.

LEMMA. For giι>βτι natural numbers a and D, the number of 6, c
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which satisfy 0 < b < a < c and D = 4ac — b2, is O(aε(D, α)1/2) where ε is

any positive number.

Proof. The number of 6, c is less than or equal to #{6mod4α|62 =

— Dmod4α}. First we show, for a prime power pn, §{xmodpn\x2 = —

D modpw} < 4(D, pn)ί/2. Put d = ordp D. If d > n, then # {x modp71 \ x2 =

- Dmoάp*} = %{xm°άPn\χ2 = Omodpw} = p [ w / 2 ] < A(D,pn)lβ holds, where

[r] means the largest integer which does not exceed r. Suppose d < n.

If x2 = — Dmodp71, then d is even and x = pd/2y for an integer y satis-

fying y2 = — Dp"** modpr i~d. The number of solutions modulo pn~d for

y2 = — Dp"d m o d p 7 ^ is at most four, and for each y, x = pd/2(y + pn~dz)

(zmodpd / 2) is a solution. This completes the above inequality. Hence

#{6mod4α|δ2 = - Dmod4α} < (\\pl4a4)(D, 4α)1/2 < aε(D,a)ί/2. •

Let L be a binary positive lattice with nL = 2Z, dL = D, and denote

by h the number of isometry classes in gen L. Every binary even posi-

tive lattice corresponds to the only one reduced matrix ί ? o ) 0 < 6

< a < c. Hence we have

f] # {M e gen L/cls | min M = 2α}

λ;

I α ε ( A α)1''

«Σ Σ

s\D

s\D

Thus there is a number c dependent only on e so that

k

= 1
Σ t { M e gen L/cls | min M = 2a} < ckί+εDε.

If the class number h of genL is greater than ckί+εDε, then there is a

lattice M e genL such that minΛf>&. By Siegel, h > D1/2~ε is well

known. Noting that ε's are any positive numbers, we have min M >

£i/2-s for a n y ε > o, which completes the proof in the case m = 2.

To treat the case m > 3, we prepare several lemmas. Let us denote

by p a prime number.

LEMMA 1. Let a and b be integers and a > b > 0. For aeZp with
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oτdpa — b, the number t of solutions modulo pa of x2 = amodpa is

O(p»<2).

Proof. Suppose a = b; then t is equal to %{xmodpa\x2 = Omodpα}

= p [ α / 2 ] < pδ / 2. Suppose a> b. If 6 is odd, then there is no solution and

hence t = 0. If 6 is even and b = 2d, then t is equal to

#{j> mod pa~d\y2 = ap~M modpa-M}

= p d # { y m o d p a - 2 d | y = ap~2d modpa~2d}

< Apd =

LEMMA 2. For 0<a<h — 1, seZ p

x ami a e Zp, we pwί ί = #{x modpΛ,
a|Λ:2 + εpay2 = «modp f t, («,y) = 1}. TΛerc ί = O(ph~a/2) holds.

Proof. Let ίj (resp. t2) be the number of solutions under an addi-

tional condition p\y (resp. p\y). t = tt + t2 is clear. Without loss of

generality we may put a — dp% δ eZ p

x , 0 < c < h. Then tx is equal to

f{jcmodpft, y m o d p ^ - 1 ! * 2 + εpa+2y2 ΞΞ amodph, p \x} .

If c > 0 i.e., p|«τ, then t, = 0 holds. If c = 0, then α - εp α + 2 / is in Z^

and hence tλ = Oίp^"^ 1) = O(pΛ"α/2). ί2 is equal to

Σ %{ymodph-a\εp«y2 = <5pc - x2

a? mod p Λ

a;2 = δpc mod p α

Σ #{ymodpΛ-< I |3'2Ξ(εp' I)-1(^c

Λ; mod p ' 1

a?2 s δ p c mod p α

< # {x modp7:1 ordp (JC2 - δpc) = α} .

We show that this is O(ph~aβ) in each case of c > α, c < α. Suppose

c > α; then ί2 < #{x modpΛ | x2 = 0 modpα} = pft-c(a+D/23 < p*-«i\ Suppose

c < a. If x2 — δpc = 0modpα is soluble, then 2|c and x — pc/2z for some

zeZp. Hence t2 is less than

#{2modpΛ~c / 2 |ordp(pc(22 - δ)) = α}

= O(pΛ"α + c / 2) -

Thus we have completed the proof. •

LEMMA 3. For integers a, c and h satisfying 0 < a < h — 1 cmcϊ 0 <

c < h and for ε, δ e Z*, a>
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t = #{xmodp\ ymodph-a\x2 + εpay2 = δp'modp71}.

Then we have t = O(hph~a/2).

Proof, t is equal to

{Λ modp\ y modph~a \ x2 + εpay2 = Spc modp\ (x, y) = p'}Σ

where tl9 t2 and t3 are partial sums under conditions 2i < c, 2i = c and

2? > c respectively. Further we divide tx to the sum of tlΛ and tu2 where

tltU tlf2 are partial sums under conditions i < (h — α)/2, i> (h — α)/2 re-

spectively. tltl is equal to

-0-*!*2 + ε p α / Ξ 3pe-"modp f t-2 <, (*,y) - 1}
< ( ) / 2
i<c/2

and considering xmoάph-2ί, ymoάph-a'u and using Lemma 2 we have

*i.i < Σo<i<(,-α)/2P
2ί + (Λ-2ί-α/2) < ΛpΛ"α/2. ίlf2 is equal to

i / 2

Σ #{ p ^ ^ x 2 + εpαy == δpc~2ί moάph'2ί,
(lι-a)/2<i<h-a ^ Ί

i<c/2 (χ9 y) == 1}

< Σ #{xmodpΛ-% ^modp^^- ' lx 2 = ^p c" 2 i modp*"2*, (x,y) =
(Λ-α)/2<t<c/2

because of Λ — 2i < α,

Σ P
(/ι-α)/2<i<c/2

Σ Ph~a

< ph~a Σ p ( c - 2 < ) / 2 (by Lemma 1)
( Λ ) / 2 ί / 2

pA-α+β/2-(ft-a)/2

Since ί2 is zero if 21 c, we may assume 21 c and hence we have 0 < c/2

< Λ — α. ί2 is equal to

α-c/2|Λ:2 + εpay* = δmodph-% (x,y) == 1}.

If α = 0, then t2 is equal to

pc # {ac, y modp f t" c Ix2 + ef = a modp*-, (x, y) = 1}

< p Λ (by Lemma 2) = ph~a/2.
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If a > 0, then t2 is less than or equal to

Pc/2 Σ
y mod ph-a-c/i

<pc/2 + h-a-c/2

<ph~a/2.

If c < h, then /3 is equal to 0, and hence we may put c = h. Then t3 is

equal to

Σ #{xmodpΛ, ymoάph-*\(x,y) = p*}
h/2<i<h-a

Summing up, we complete the proof. •

LEMMA 4. Put t — # {x, y mod 2h \ xy = a mod 2Λ} /or an integer a.

t < h 2h holds.

Proof, t is equal to

Σ #{xmod2 f t-\ y mod 2h \ 2ιxy ΞΞ a mod 2\ 2J(x}

= Σ ^(S71-*) # {y mod 2h \ 2ιy = a mod 2h},
0<i<h

where ψ means the Euler's function

LEMMA 5. Put t = #{x, y mod 2711 x2 + xy + / ΞΞ α mod 2Λ} /or an in-

teger a. Then t < 2h holds.

Proof. Put a = b-2c, 2J(b, and note that x2 + xy + / = 0mod2K

implies x2 = y2 = 0 mod 2\ If c > Λ, then t is equal to

#{x, y mod 2Λ | x2 + xy + y2 = 0 mod 2h)

< #{x, y mod 2h|x2 = y2 = 0mod271}

« 2 * .

If c < Λ and 2/fc, then we have t = 0. Suppose c < h and 2|c; then ί

is equal to

#{x,ymod2Λ-c / 2 |x2 + xy + y2 ΞΞ 6mod2Λ"c}

= 2 c#{x,ymod2Λ- c |x 2 + xy + y2 =Ξ 6mod2Λ~c}

< 2c + 1#{x,ymod2 f t-c |x2 + xy + y2 ΞΞ 6mod2 f t-c, 2)fy}.
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Here we claim that there is at most 2 solutions of x for x2 + xy + y2

= 6mod2 f t" c for an odd y. Suppose that xu x2 are solutions. Then

(Xi — x2)(xi + #2 + y) ΞΞ 0mod2Λ~c holds. Since only one of x1 — x2, xx +

%2 + y is odd, only one of x1 — x2 = 0 mod 2Λ~C or xx + x2 + y = 0mod2ft~c

can occur, and hence the number of solutions is at most 2. Thus t <

2c+2φ(2h~c) < 2Λ holds. •

LEMMA 6. For Λ > a > 1 pwί

t = #{xmod2Λ~1, y, 2:mod2ft~a|2x2 + 2 α + 1 ^ = 6mod2Λ+1}

/or an integer 6. ΓΛen ί < h-22h-Za/2 holds.

Proof. If 6 is odd, then t is clearly zero, and hence we may put

b = d-2c+\ 2J(d9 c > 0. Then t is equal to

Σ #{y, 2 mod 2Λ-α 12αy2? ΞΞ d . 2C - x2 mod 2Λ}
Λ; mod 2h -1

= Σ #{;y,2mod2Λ-α|;y2ΞΞ 2-α(d 2c - x2)mod2Λ-α}
a mod 2&-1

a;2=cί 2Cmod2α

< (Λ - α)2Λ"α #{x mod 2Λ"11 x2 ΞΞ d 2C mod 2α} (by Lemma 4)

< Λ. 22 ( Λ"α ) #{x mod 2α | x2 = d 2C mod 2α}

c ^. 2

2 ( / i - α ) + m i n ( c ' α ) / 2 (by Lemma 1)

LEMMA 7. For h > a > 1

t = #{xmod2/ι~1, y, zmod2/ι~α |2x2 + 2α+1(y2 + yz + z2) ΞΞ 6mod2Λ + 1}.

Then we have t < 22ft~3α/2.

Proo/. Put 6 = d-2c+\ 2\d, c > 0; then * is equal to

2 #{y, <εmod2/ i-α |y2 + y^ + z2 ΞΞ 2~α(d 2c —

< 2h~a #{x mod 2h-' I x2 ΞΞ d 2C mod 2α} (by Lemma 5)

< 2 2 ( Λ"α ) #{x mod 2α I x2 ΞΞ cί 2C mod 2a}

^ 22 Λ"3 α / 2

as in the proof of Lemma 6. •

Recall t h a t L is a positive lattice of nL = 2Z, rk L = m > 3.

LEMMA 8. We Λαz e Π P ^ Z , αP(ί, ί») < (tdL)ε for a natural number t

and any positive number ε where av is the local density.
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Proof. For a prime number p not dividing 2dL we put δ — δp =

X((- ϊ)m/2dL) (resp. %((- l) ( w"1 ) / 2ίp-edL), r = rp -=p^^ (resp. p2"771) for 2\m

(resp. 2 /f m), where 1 is the quadratic residue symbol for p and e — ep =

ordp L

By Hilfssatz 16 in [9], ap(t, L) is equal to

(1 - δp-m/2)(l + δr + + (δr)e) 2\m,

(1 - pι-mXl + r+ -" + r(e"1)/2) 2 |e , 2 | m ,

(1 - p1-771)^ + r + + r6'2"1 + re / 2(l - <5p(1-m)/2)-1} 2 | e, 2 | m .

If m is even, then we have

= (1 + p " w / 2 ) ( l -p 1- 7 7 1/ 2)- 1.

Hence for an even integer m ( > 3) we have

Π ap(t,L) < Π (1 +P'm/2) Π (1 - P 1 - ^ 2 ) - 1

« π a -pi-™<ri < π a -p'T1«ίs

for any positive ε, since φ(t) > ctfjίoglogt)'1 for ί > 3 and some positive

number c.

Suppose 2Jfm. lί 2J(e, then we have

ap(t, L)=r(l- pλ~m)(l - p ( 2-wx e + 1)/ 2)(l - p2-m)-i

< (1 - p 2—)" x < (1 - p2-771)-1^ - p ( 1 " w ί^)- 1 .

If e = 0, then we have ap(t, L) < (1 - J p 0 " ^ 2 ) - 1 .

Suppose 2|e, e > 0; then ap(t, L) is less than or equal to

(1 - p'-'ΌOL - p(2"w>e/2)(l - p2-mYι

- (1 -p1-™)(1 - p 2 — )-χi - p t 1 — v2)-1

y M p(l-m)/2 i p(l-m)/2 + (2-m)e/2 p(2-m)(e/2 + l ) |

Thus we have, for odd

Π ap(f, Π ( p p Π
p\2tdL p\t

Therefore for odd m > 5 we have \]p!ί2dLap(t, L) < 1, and for m = 3,
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Π ap(t,L)< Π (l-dpP-
1)-'- Π ( l - P ' ) 2

p\2dL p\2tdL p\t

< (tdLY,

which completes the proof of Lemma 8. •

LEMMA 9. For a natural number t we have

ajtt, L) < 2 M 1 - P2-my> max dp(b, L),

where b runs over non-zero integers, dp denotes the primitive local density

and d is the Kronecker's delta function.

Proof. It is known [7], [2] that for α ̂  0 modp and r > 0,

αp(αp', L) = 2*.* Σ Pm~m)dp{ap^\L)

< 2S2 *{max dr(b, L)} Σpw-™>

= 2ί2-Kl - p 2 -" 1 )- ' max dp{b, L). •

LEMMA 10. For a natural number t we have

Π ocv(t, L) < (tdLY Π {max dp(b, L)}
p p\2dL OΦbβZ

for any positive number e.

Proof. By virtue of Lemmas 8, 9, we have

Π« p ( ί ,L)<( ίdL) Π (l-p 2-™)- 1 Π {maxdp(6,L)}
p p\2dL p\2dL b

<V(dLr Π {maxdp(b,L)}. M
p\2dL

LEMMA 11. For a natural number t we have

Π α,(ί, L) < (tdLY
p

where ε is any positive number and ap is the integer defined in Theorem,

Proof. We have only to prove

where Ce depends only on e, since Y\p\2dL Cε < (dL)ε. Let h be an integer

such that phn(U) c 2pZp. It is known [2]

dp(b, L) = portpdL+Λα-

where
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D(b, L;ph) = {xe ZpLjphZpV \ Q(x) = b mod 2phZp, x e pZp}.

Let an orthogonal splitting of ZPL be Lx \_ J_ Ls where L, is pai-

modular for i > 2 and α2 < < as and a Jordan splitting of ,Lj j _ L2

gives a Jordan splitting of ZPL; then we can put h = αs + 2 == O(p ε o r d 3 ) d L),

and we have

< Σ itίyeUIPhUIQ(y) = 6 - Q(at)mod2p*Zp}
XGLLi/ph-HLi

^pSi^^-^^^maxjfίy eLt/p^lQίy) = cmoά2phZp}
cez

and hence we have

dp(b, L) < pordpdLx + Λd-rk̂ ) m a χ # { y 6 ^/p*^ | Q(y) = C Πlθd 2

Suppose ZPL = <2£l> _L <2p%> J_ , εu ε2 eZ%, a > 0 (Jordan split-

ting). We put Lj = <2ε1>.JL <2pαε2>; then we have

# {y e Lλlp
hL\ \ Q(y) = c mod 2pΛZp}

= %{umodph-\ vmoάp^o-t^u2 + 2paε2v
2 ΞΞ cmoά2phZp},

where δ = d2>p

= O(hph-a/2) by Lemma 3. Thus we have

dp(6, L) <Cpa-h'hph-a/2 < kpa/2 ^p'θripdL+a/2 #

Next we suppose that p = 2 and Z2L = <2ε> _L ( ^ ( ^ 2d)) -L ' * ' '

ε e Z*, α > 2, d = 0,1. Putting L1 = <2ε> J_ (wfif £&, we have

= c mod 2*+1Z2}

-1, u, M;mod2Λ-α |2εw2 + 2α + 1(dι/ + i α; + do;2) = cmod2 Λ + 1 }

< h 22h-ia/2 (by Lemmas 6, 7) .

Hence we have d2(6, L) < 21+2a-2h-h'22h-*a/2 < 2a/2+έoτά*dL as above.

Lastly we suppose p = 2 and Z2L = (( i od)/ -"- ' # # ' d == 0 or 1 by

which we exhaust all types of Jordan splittings. Putting Lx = (i ^ od)\

we have

%{yeLJ2hH\Q(y) = cmod2Λ+1Z2}

= # {u, v mod 2h 12(dtf2 + uυ + dv2) = c mod 2ft+1}

< A 2Λ (by Lemmas 4, 5).
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Therefore we have d2(b, L) < 2~h'h 2h < 2ε o r d 2 ώ L, and it completes the

proof of Lemma. •

Now we can prove Theorem, following an idea due to Conway,

Thompson on p. 46 in [7]. Put

{ Σ
NGgenL

and

r(t, gen L) = Σ w(N)r(t, N)
NβgenL

where N's run over representatives of isometry classes in the genus of

L and O(N) is the group of isometries of N and r(t, N) = %{xeN\

Q(x) = t}. It is known [9] that r(t, genL) = c(dL)-yHm/2-χ \[p ap(t, L) for

some constant c and hence we have

έ r(t, gen L) < (dL)~1/2 Σ tm/2-\tdL)ε \\ Vp^ (by Lemma 11)
ί l ί l |2dZ

( Π
p\2dL

Suppose 2]ϊ=i r(ί> -M) > 0 f° r every M in genL; then we have

i>(*,genL)= Σ w(M)ibr(t,M)> Σ w(M) = 1,
ί l i t ί e l ί l Λ f β /

and hence km/2+£ > (dL)1/2"ε
 Π P I M W P " " ' - Therefore λ = Ce(dL)(1/2"ε)/(w/2+ε)

•(Πpi2<*z,P~α201/(m+2ε) for some Cε is contradictory for any positive number

ε. Thus 2f=i r(t, M) = 0 holds for some M e genL and the above k and

this yields min M > k. Since (1/2 — ε)/(m/2 + ε) tends to 1/m from below

as ε -> 0 and — (/n + 2ε)~1 > — m"1, this means

minM > (dL)1/m"ε( Π p^)" 1 / m for any ε > 0
p\2dL

and completes the proof of Theorem. •
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