Y. Kitaoka Nagoya Math. J. Vol. 115 (1989), 23-41

SOME REMARKS ON REPRESENTATIONS OF POSITIVE DEFINITE QUADRATIC FORMS

YOSHIYUKI KITAOKA

Let S, T be positive definite integral symmetric matrices of degree m, n respectively and let us consider the quadratic diophantine equation S[X] = T. We know already [1] that the following assertion $(A)_{m,n}$ is true for $m \ge 2n + 3$.

 $(A)_{m,n}$: There exists a constant c(S) such that S[X] = T has an integral solution $X \in M_{m,n}(Z)$ if S[X] = T has an integral solution $X \in M_{m,n}(Z_p)$ for every prime p and min T > c(S).

In the above, min T denotes the minimum of T[x] for all non-zero integral vectors x. The basic question is whether the number 2n + 3 is best possible or not. As facts which suggest that 2n + 3 is best, we can enumerate the following (i), (ii), (iii):

(i) When n = 1, it is the case.

(ii) From the quantitative viewpoint, the Siegel's weighted average of the numbers of solutions of $S_i[X] = T$ where S_i runs over a complete set of representatives of the classes in the genus of S, is expected to be not few if $(A)_{m,n}$ is true. By a Siegel's formula [9], the weighted average is $|T|^{(m-n-1)/2}$ times the infinite product of local densities $\alpha_p(s, T)$ up to the elementary constant depending only on S and n, and it is known [2] that there is a positive constant $c_i(s)$ such that the infinite product of local densities is larger than $c_i(S)$ as far as T is represented by S over Z_p for every prime p if and only if $m \geq 2n + 3$.

(iii) The condition $m \ge 2n + 3$ appears often naturally at an analytic approach.

Next, let us look at the problem from another viewpoint which leads us to the suggestion incompatible with the above observation for n > 1. It is known [2] that $(A)_{m,n}$ does not hold for m = n + 3. It is the best for all n till now, as far as the author knows. When m = n + 3, we

Received June 9, 1988.

constructed counterexamples by the following idea. Suppose S[X] = T for $X \in M_{m,n}(Z)$; writing X = YZ with a primitive matrix $Y \in M_{m,n}(Z)$ and $Z \in M_{n,n}(Z)$, $\overline{T} := T[Z^{-1}] = S[Y]$ is (primitively represented globally by S and hence) primitively represented by S over Z_p , and it yields that min \overline{T} is less than min S. This is a contradiction.

Now the following problem emerges along this line: Let S, T, m, n be those as above, S[X] = T is soluble over Z_p for every prime p, and min T is large. Then for every matrix \overline{T} which satisfies

(i) $S[X] = \overline{T}$ has a primitive solution over Z_p for every prime p, and

(ii) $\overline{T}[X] = T$ is soluble for $X \in M_{n,n}(Z)$, is min \overline{T} small?

We have obtained counterexamples for m = n + 3 by showing the affirmative of this question. If it is affirmative for m = 2n + 2, then, reforming S, we must construct a counterexample for $(A)_{2n+2,n}$. When m = 2n + 2 and n = 1, it is affirmative and we have a counterexample for $(A)_{4,1}$. However it turns out to be negative for m = 2n + 2, $n \ge 2$, which is an aim of this paper, that is the following assertion $(R)_{m,n}$ is true for m = 2n + 2, $n \ge 2$ (Theorem in 1 in the text):

 $(R)_{m,n}$: Let S, T, m, n be those as above and suppose that S[X] = T is soluble over Z_p for every prime p. Then there exists a positive integral matrix \overline{T} of degree n satisfying

(i) $S[X] = \overline{T}$ has a primitive solution X over Z_p for every prime p,

(ii) $\overline{T}[X] = T$ is soluble for $X \in M_{n,n}(Z)$, and

(iii) if min T is large, then min \overline{T} is also large.

Moreover in connection with primitiveness in (i), let us consider the following assertions:

 $(AP)_{m,n}$: There exists a constant c'(S) such that S[X] = T has a primitive integral solution $X \in M_{m,n}(Z)$ if S[X] = T has a primitive integral solution $X \in M_{m,n}(Z_p)$ for every prime p and min T > c'(S).

 $(APW)_{m,n}$: The weaker assertion than $(AP)_{m,n}$ which does not require the primitiveness of global solution.

Since $(A)_{2n+3,n}$ is true and $(APW)_{m,n}$ has a stronger assumption than $(A)_{m,n}$, one may expect the validity of $(APW)_{2n+2,n}$ or strongly $(AP)_{2n+2,n}$, taking account of the validity of $(AP)_{4,1}$ and hence $(APW)_{4,1}$. The weak assertion $(APW)_{2n+2,n}$ implies the assertion $(A)_{2n+2,n}$ by virtue of the validity of $(R)_{2n+2,n}$ for $n \geq 2$. If, hence $(A)_{2n+2,n}$ is false for $n \geq 2$, then

 $(AP)_{2n+2,n}$ and $(APW)_{2n+2,n}$ are also false. Here we note again that $(R)_{4,1}$ is false and it yields immediately the falsehood of $(A)_{4,1}$ but $(AP)_{4,1}$ (and hence $(APW)_{4,1}$) is true. Results here and [3], [5], [6] may suggest the validity of $(A)_{2n+2,n}$ for $n \ge 2$. This dennies the suggestion at the beginning that 2n + 3 is best possible for $n \ge 2$. Which is plausible? In **2** in the text, we show that $(R)_{m,n}$ $(m \ge n + 3$ and $n \ge 3$) is valid for scalings of a fixed T_0 with small limitation. It shows that it is hard to construct counterexamples for $(A)_{m,n}$ for $m \ge n + 3$, $n \ge 3$ by a special sequence of T which are scalings of some fixed T_0 .

Let us discuss the case of $m = 2n + 2 \ge 6$ from the analytic viewpoint in passing. We put a fundamental assumption that for every Siegel modular form $f(Z) = \sum a(T) \exp(2\pi i \operatorname{tr} TZ)$ of degree n, weight n + 1 and some level, whose constant term vanishes at each cusp, the estimate $a(T) = O((\min T)^{-\varepsilon} |T|^{(n+1)/2})$ holds for some positive ε if min T is larger than some constant independent of f(Z). To verify the assertion $(A)_{2n+2,n}$ it is sufficient to do the assertion $(APW)_{2n+2,n}$ as above. Suppose that S[X] = T has a primitive solution $X = X_p \in M_{m,n}(Z_p)$ for every prime p. Let $r_{pr}(T, S)$ be the number of integral primitive solutions of S[X] = T. As in § 1.7 in [3] we have

$$r_{
m pr}(T,S) = SW_p(T) + O((\min T)^{-\varepsilon_2} |T|^{(n+1)/2})$$

where $SW_p(T)$ is a quantity defined there so that

$$SW_{p}(T) \gg n(T)^{-\varepsilon_{1}}|T|^{(n+1)/2} > (\min T)^{-\varepsilon_{1}}|T|^{(n+1)/2}$$

and $\varepsilon_1, \varepsilon_2$ are any positive small number, and hence it gives an asymptotic formula for $r_{pr}(T, S)$ when min T tends to the infinity and therefore $r_{pr}(T, S) > 0$ when min T is sufficiently large, and thus the above assumption on estimates of a(T) yields an asymptotic formula for $r_{pr}(T, S)$ and the truth of the assertion $(A)_{2n+2,n}$. Let us refer to an asymptotic formula for the number of solutions r(T, S) of S[X] = T. Denote by Pa set of primes p such that the Witt index of S over Q_p is equal to n-1. The assumption on a(T) yields an asymptotic formula for r(T, S)if P is empty. Otherwise it depends on estimates of local densities from below for every prime $p \in P$ and the explicit value of ε whether it gives an asymptotic formula or not. The existence of an asymptotic formula may be harmonious.

We denote by Z, Q, Z_p and Q_p the ring of rational integers, the field

of rational numbers and their *p*-adic completions respectively. Terminology and notations on quadratic forms are generally those from [6] and they are also used for symmetric matrices corresponding to quadratic forms. For example, for a quadratic lattice M over Z, nM is the norm of M, i.e., $nM = Z\{Q(x) | x \in M\}$, and for a basis $\{v_i\}$ of M we write M = $\langle (B(v_i, v_j)) \rangle$. By a positive lattice we mean a lattice on a positive definite quadratic space over Q. For a positive lattice M, min M denotes the minimum of $\{Q(x) | x \in M, x \neq 0\}$, where Q(x) = B(x, x) is the quadratic form of M.

§1.

In this section we prove the following

THEOREM. Let m, n be integers such that m = 2n + 2 and $n \ge 2$ and let M be a positive lattice of rank M = m with $nM \subset 2Z$. Let N be a positive lattice of rank N = n such that Z_pN is represented by Z_pM for each prime p. Put nN = 2qZ for a natural number q and decompose qas $q = q_0q_1$ so that, for a prime divisor p of q, p divides q_0 if and only if the Witt index of Q_pM is equal to n - 1. Then there exists a positive lattice \overline{N} on QN such that $\overline{N} \supset N$, $\min \overline{N} > c(M)\sqrt{\overline{q_0}}^{-1}\min N$ and $Z_p\overline{N}$ is primitively represented by Z_pM for each prime p where c(M) is a positive constant dependent only on M.

COROLLARY. If $m = 2n + 2 \ge 6$, then the assertion $(APW)_{2n+2,n}$ yields $(A)_{2n+2,n}$.

Before the proof of Theorem, we note that if we put $N = \langle qT \rangle$ where T is an integral positive matrix, then min $N = q(\min T)$ and hence min $\overline{N} > c(M)\sqrt{q_0}q_1 \min T$. Thus min \overline{N} is large if min N is large.

LEMMA 1. Let a, u be real numbers such that a > 1 and $\sqrt{a}/4 < u < \sqrt{a}$. Put $f(x, y) = (ax - uy)^2 + y^2$. Then the minimum of $\{f(x, y) | x, y \in Z, (x, y) \neq (0, 0)\}$ is larger than a/16.

Proof. $f(0, 1) = u^2 + 1 > u^2 > a/16$ and $f(1, 0) = a^2 > a/16$ are clear. Suppose $x, y \in \mathbb{Z}$ and $xy \neq 0$. If $|y| > \sqrt{a}/4$, then $f(x, y) \ge y^2 > a/16$. Assume $|y| \le \sqrt{a}/4$. Since it implies |uy| < a/4, the minimum of |ax - uy| $(x \in \mathbb{Z})$ is equal to |uy|. Hence $f(x, y) > (ax - uy)^2 \ge (uy)^2 \ge u^2 > a/16$ holds, which completes the proof of Lemma 1.

LEMMA 2. Let p be a prime and $n \ge 2$. Let $T = p^{2b+c}T_0$ $(0 < b \in Z, c = 0, 1)$ be an integral positive definite matrix of degree n and suppose $p^b \ge 36$, $nT_0 \subset 2Z$ and $(nT_0)Z_p = 2Z_p$. Then there exists a positive constant C(n, p) dependent on n and p for which there exists H in $M_n(Z)$ satisfying that det H is a power of p, min $T[H^{-1}] \ge C(n, p)p^{b+c} \min T_0, T[H^{-1}] \not\equiv 0 \mod 8p^{1+c}$ and $n(T[H^{-1}]) \subset 2Z$.

Proof. Put G = SL(n, Z), $G' = \{g \in G | g \equiv 1_n \mod 8pZ_p\}$, take and fix representatives $\{U_i\}$ of G/G' once and for all and let C'(n, p) be a positive number such that ${}^{\iota}U_iU_i > C'(n, p)1_n$ for all *i*. Without loss of generality we may assume that T_0 is reduced in the sense of Minkowski and hence, as is well known, $T_0 > C_n(\min T_0)1_n$ holds for some absolute constant C_n . Since $(nT_0)Z_p = 2Z_p$, we can choose $V \in SL(n, Z_p)$ so that $T_0[V] = \begin{pmatrix} T_1 & 0\\ 0 & * \end{pmatrix}$ where

$$egin{aligned} T_{\scriptscriptstyle 1} &= egin{pmatrix} 2h & 0 \ 0 & 2k \end{pmatrix} \quad h \in Z_p^{ imes}, \ k \in Z_p \ , \ & egin{pmatrix} 2h & k \ k & 2hk^2 \end{pmatrix} = egin{pmatrix} 2h & 1 \ 1 & 2h \end{pmatrix} iggin{pmatrix} \left(egin{pmatrix} 1 & 0 \ 0 & k \end{pmatrix}
ight] \quad h = 0, \, 1, \ k \in Z_p^{ imes} \quad ext{if } p = 2 \, , \end{aligned}$$

or

$$egin{pmatrix} 2h & 0 & 0 \ 0 & \ 2^i inom{2k}{2k} & 1 \ 1 & 2k \end{pmatrix} \hspace{0.5cm} h \in {m Z}_p^{ imes}, \; k=0,1,\; i\geq 2 \; \; ext{if} \; p=2 \; .$$

Take a representative $U = U_i$ of G/G' so that $U \equiv V \mod 8pZ_p$; then we have $T_0[U] > C_n(\min T_0)\mathbf{1}_n[U] > C_nC'(n,p)(\min T_0)\mathbf{1}_n$, and putting $A = \begin{pmatrix} \begin{pmatrix} 1 & u \\ 0 & p^b \end{pmatrix} \\ & 1_{n-2} \end{pmatrix}$ and hence

$$p^{b}A^{-1} = egin{pmatrix} p^{b} & -u \ 0 & 1 \end{pmatrix} \ & p^{b}1_{n-2} \end{pmatrix},$$

we have

$$\min T[UA^{-1}] = \min p^{2b+c} T_0[UA^{-1}] \\ > C_n C'(n, p) p^c(\min T_0) \min (1_n [p^b A^{-1}]) \\ = C_n C'(n, p) p^c(\min T_0) \min \{(p^b x - uy)^2 + y^2, p^{2b}\}$$

where x, y run over integers not all zero, and by Lemma 1

 $> C_n C'(n, p) p^c(\min T_0) p^b/16$

if $\sqrt{p_b}/4 < u < \sqrt{p_b}$.

Putting $H = AU^{-1}$, $C(n, p) = C_n C'(n, p)/16$, we have $\min T[H^{-1}] > C(n, p)p^{b+c} \min T_n$.

Since $T[H^{-1}] = p^c T_0[U][p^b A^{-1}]$ and $nT_0 \subset 2Z$, we have $nT[H^{-1}] \subset 2p^c Z$ $\subset 2Z$. The (2, 2) entry of $T[H^{-1}]$ is equal mod $8p^{1+c}Z_p$ to

 $2p^{c}(hu^{2}+k), \ 2p^{c}(hu^{2}-ku+hk^{2}), \ 2p^{c}(hu^{2}+2^{i}k)$

according to the order of above canonical forms of T_1 and hence to complete the proof, it is enough to show that they are not zero modulo $8p^{1+c}$ for some u with $\sqrt{p^b}/4 < u < \sqrt{p^b}$. Noting $\sqrt{p^b} - \sqrt{p^b}/4 > 4$ because of $p^b \ge 36$, we have only to choose $u \in \mathbb{Z}$ with $\sqrt{p^b}/4 < u < \sqrt{p^b}$ so that (u, p) = 1 if $k \in p\mathbb{Z}_p$, and $hu^2 + k \not\equiv 0 \mod p$ if $k \in \mathbb{Z}_p^{\times}$ in the left case; $2 \not\mid u$ if h = 0, and $2 \mid u$ if h = 1 in the middle case: $2 \not\mid u$ in the right case. Thus we have proved Lemma 2.

Remark. In the above proof, all but (2, 2) entries of $T[H^{-1}]$ are divided by p^{b+c} , and if T_1 is of the first canonical form, then $T[H^{-1}]$ represents $2p^c h = p^{-2b} \times (1, 1)$ entry of T[V] over Z_p if either $p \neq 2, k \in pZ_p$ or $p = 2, k \in 8Z_2$.

Proof of Theorem. First we note that for a positive lattice $K' \supset K$, $\min K' \ge [K':K]^{-2} \min K$ holds, since $[K':K]K' \subset K$ implies $\min [K':K]K' \subset K$ $K]K' \ge \min K$. Let M, N be those in Theorem. If a prime p does not divide dM, then Z_pM is unimodular and $nZ_pM = 2Z_p$. Hence Z_p contains a submodule isometric to $\perp \left\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle$ as an orthogonal component. Therefore Z_pN is primitively represented Z_pM . If $p \mid dM$ and $\operatorname{ind} Q_pM \geq n$, then by virtue of Theorem 2 in [4] there is an isometry u from Z_pN to Z_pM such that $[Q_pu(Z_pN) \cap Z_pM_p:u(Z_pN)]$ is bounded by a number C_p dependent only on Z_pM . Hence $\overline{N}_p = u^{-1}(Q_pu(Z_pN) \cap Z_pM) \ (\supset Z_pN)$ is primitively represented by Z_pM , and enlarging N to N'' so that $Z_pN'' =$ $\overline{N}_p, \ Z_p N''$ is primitively represented by $Z_p M$ and $\min N'' \geq C_p^{-2} \min N.$ Suppose that $p \mid dM$ and ind $Q_p M = n - 1$. We fix a $2p^{k_p} Z_p$ -maximal sublattice K of Z_pM for some k_p once and for all. If $nZ_pN \supset 2p^{2+k_p}Z_p$, then there is an isometry u from Z_pN to Z_pM such that $[Q_pu(Z_pN) \cap$ $Z_{p}M: u(Z_{p}N)$ is bounded by a number C_{p} dependent only on k_{p} and $Z_{\nu}M$, applying the theorem referred above where N_1 there, should be the first Jordan component of $Z_p N$, and nothing that the number of distinct isometry classes by $O(Z_pM)$ of modular submodules of Z_pM with $n \supset 2p^{2+k_p}Z_p$ is finite. In this case we have obtained an enlarged quadratic lattice of N at p which contains N with index dependent only on k_p and Z_pM and is primitively represented by M over Z_p . Finally we deal with the case that $p \mid dM$, ind $Q_pM = n - 1$ and $nZ_pN \subset 2p^{2+k_p}Z_p$. Put $N = \langle p^{2b+c+k_p}T_0 \rangle$ where $0 < b \in Z$, c = 0, 1 and $nT_0 \subset 2Z$, $(nT_0)Z_p = 2Z_p$. By virtue of Lemma 2, there exists a matrix H in $M_n(Z)$ such that det H is a power of p,

$$egin{array}{l} \min p^{2b+c}T_{0}[H^{-1}] > C(n,p)p^{b+c}\min T_{0} \ , \ p^{2b+c}T_{0}[H^{-1}]
ot\equiv 0 mod 8p^{1+c} mod n(p^{2b+c}T_{0}[H^{-1}]) \subset 2Z \ . \end{array}$$

Taking a quadratic lattice $N' (\supset N)$ corresponding to H, N' satisfies $n(\mathbb{Z}_pN') \subset 2p^{k_p}\mathbb{Z}_p = nK$, $n(\mathbb{Z}_pN') \not\subset 8p^{1+c+k_p}\mathbb{Z}_p$ and $\min N' > C(n, p)p^{b+c+k_p}$ min $T_0 \geq C(n, p)p^{(2b+c+k_p)/2} \min T_0 = C(n, p)p^{-(\operatorname{ord}_p q_0)/2} \min N$. Since $\mathbb{Q}_pN' = \mathbb{Q}_pN$ is represented by $\mathbb{Q}_pM = \mathbb{Q}_pK$, \mathbb{Z}_pN' is represented by the maximal lattice K and hence by \mathbb{Z}_pM . Applying the argument in the case of $p \mid 2dM$, $n\mathbb{Z}_pN \supset 2p^{2+k_p}\mathbb{Z}_p$ to N', M, noting $n(\mathbb{Z}_pN') \not\subset 8p^{1+c+k_p}\mathbb{Z}_p$, there is a lattice $N'' (\supset N')$ such that [N'':N'] is a power of p bounded by a number dependent on k_p and \mathbb{Z}_pM , and \mathbb{Z}_pN'' is primitively represented by \mathbb{Z}_pM . Iterating the construction of N'' for primes p dividing dM, we complete the proof of Theorem.

Remark. Let us consider the case m = 2n + 1. Let M be a positive lattice of $\operatorname{rk} M = m$ and N a positive lattice of $\operatorname{rk} N = n$ which is represented by gen M. It is easy to see that the assertion similar to Theorem holds, using Lemma 2 and its remark, provided that for every prime pfor which ind $Q_pM = n - 1$ holds and Z_pN has a Jordan splitting $Z_pN =$ $\langle a \rangle \perp N_1$ where $\operatorname{ord}_p a$ is bounded but $\operatorname{ord}_p nN_1$ is large, there is a lattice \overline{N} such that $[\overline{N}: N]$ is a power of p, $Z_p\overline{N}$ is represented by Z_pM , $Z_p\overline{N}$ contains a binary lattice B with $\operatorname{ord}_p dB$ bounded and $\min \overline{N}$ is large.

This condition is not necessarily satisfied for n = 2 as follows: For $N = \langle a \rangle \perp \langle p^r \rangle$ with (a, p) = 1, $\overline{N} = \langle a \rangle \perp \langle p^{r-2t} \rangle$ holds if $[\overline{N}: N] = p^t$. Thus min \overline{N} is small if $\operatorname{ord}_p \overline{N}$ is small. This leads us to a falsehood of the assertion $(A)_{m,n}$ when m = 2n + 1 = n + 3, n = 2, as in [2].

§ 2.

We have observed that it is important whether for a given sequence $\{N_t\}$ of positive lattices represented by gen M with min $N_t \to \infty$, there is

a lattice \overline{N}_t with min \overline{N}_t large which contains N_t and is primitively represented at every spot by gen M or not. If there is no such \overline{N}_t , then we must deduce a falsehood of the assertion $(A)_{m,n}$.

In this section we show that it is hard to construct such a sequence by scalings of a fixed lattice by giving the following

PROPOSITION. Let M, N be positive lattices of $\operatorname{rk} M = m \geq \operatorname{rk} N + 3$, $\operatorname{rk} N = n \geq 3$. We fix representatives $\{N_i\}$ of classes in the genus of Nonce and for all, and take a finite set $S \ (\ni 2)$ of primes such that if $p \notin S$, then $Z_p N_i = Z_p N$ holds for all i and $Z_p M$, $Z_p N$ are unimodular. For any given number C_1 , there is a positive number $C_2 = C_2(C_1, M, N)$ such that if a natural number $a \ (\geq C_2)$ is not divided by any prime in S and the scaling N(a) of N by a is locally represented by M, then there is a lattice \overline{N}_a with $\min \overline{N}_a \geq C_1$ which contains N(a) and $Z_p \overline{N}_a$ is primitively represented by $Z_p M$ for every prime p.

COROLLARY. For the above special sequence $\{N(a)\}$, the assertion $(APW)_{m,n}$ implies the assertion $(A)_{m,n}$.

This follows trivially and to prove Proposition, we must prepare the following

THEOREM. Let L be a positive lattice of nL = 2Z and $\operatorname{rk} L = m \ge 2$. For a prime p we define an integer a_p by the following:

If $m \geq 3$ and the Jordan splitting is of form

$$oldsymbol{Z}_p L = \langle 2 arepsilon_1
angle ot \langle 2 arepsilon_2 p^{a_p}
angle ot \cdots \qquad p \geq 2 \,,$$

or

$$ig \langle 2 arepsilon_1
ight
angle ot \left \langle 2^{a_2} igg(egin{array}{cc} 2c & 1 \ 1 & 2c \end{array} ig)
ight
angle ot \cdots \qquad p=2\,,$$

where $\varepsilon_1, \varepsilon_2 \in \mathbb{Z}_p^{\times}$ and c = 0 or 1, then a_p is given as in the above, otherwise $a_p = 0$. Then there is a lattice M in the genus of L such that

$$\min M \gg (dL)^{1/m-arepsilon} (\prod_{p\mid 2dL} p^{a_p})^{-1/m}$$

where ε is any positive number and $A \gg B$ means A > cB for a constant c dependent only on ε and m.

Remark. min $L \ll (dL)^{1/m}$ is well known.

Before the proof of Theorem we show that Proposition follows from Theorem.

Let M, N, N_i , S be those in Proposition. For a prime p, let $K = Z_p[e, f]$ be a quadratic lattice over Z_p defined by Q(e) = Q(f) = 0, B(e, f) = a. Then $\overline{K} = Z_p[a^{-1}e, f] = \langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle$ is clear. Hence for a prime p dividing a we can take a lattice \overline{N}_p which contains $Z_pN(a)$ and is isometric to an orthogonal sum of a unimodular lattice of rk = n - 1 or n - 2 and an aZ_p -modular lattice of rk = 1 or 2, enlarging binary hyperbolic aZ_p modular lattices to unimodular lattices as above. Let N' be a lattice which is isometric to \overline{N}_p for $p \mid a$ and to $Z_pN(a)$ for $p \nmid a$ and has a large minimum by virtue of Theorem. Since there is an isometry from $Z_pN(a)$ to Z_pN' for every prime and QN(a) = QN', N' contains a lattice which is isometric to $N_i(a)$ for some i. Pulling back N', there is a lattice N''such that min N'' is large, $N'' \supset N_i(a)$, $Z_pN'' = Z_pN_i(a)$ for $p \nmid a$ and Z_pN'' has a unimodular component of rk = n - 1 or n - 2 for $p \mid a$. Define a new lattice \overline{N} by $Z_p\overline{N} = Z_pN(a)$ for $p \nmid a$ and $Z_p\overline{N} = Z_pN''$ for $p \mid a$. By definition \overline{N} contains N(a) and $Z_p\overline{N} = Z_pN'''$ if $p \notin S$ and $p \nmid a$. Since

$$egin{aligned} & [\overline{N}\colon\overline{N}\cap\,N'']=\;\prod\,[oldsymbol{Z}_p\overline{N}\colonoldsymbol{Z}_p\overline{N}\cap\,oldsymbol{Z}_pN'']=&\prod_{p\in S}\,[oldsymbol{Z}_p\overline{N}(a)\colonoldsymbol{Z}_pN(a)\capoldsymbol{Z}_pN_i(a)]=\,[N\colon N\cap\,N_i] \ &=\;\prod_{p\in S}\,[oldsymbol{Z}_pN(a)\colonoldsymbol{Z}_pN(a)\capoldsymbol{Z}_pN_i(a)]=\,[N\colon N\cap\,N_i] \end{aligned}$$

and $[\overline{N}: \overline{N} \cap N'']^2 \min \overline{N} \ge \min (\overline{N} \cap N'')$, we have $\min \overline{N} \ge [N: N \cap N_i]^{-2} \times \min (\overline{N} \cap N'') \ge [N: N \cap N_i]^{-2} \min N''$. Thus we have constructed a lattice \overline{N} which contains N(a), has a large minimum and satisfies that $Z_p \overline{N} = Z_p N(a)$ for $p \nmid a$ and $Z_p \overline{N}$ has a unimodular component of $\operatorname{rk} = n - 1$ or n - 2 for $p \mid a$. By assumption, N(a) is represented by M locally and $Z_p N$, $Z_p M$ are unimodular if $p \notin S$. Hence $Z_p \overline{N}$ is primitively represented by $Z_p M$ if $p \notin S$ and $p \nmid a$. If $p \mid a$, then by cancellation of a unimodular component of $Z_p N$ from $Z_p \overline{N}$ and $Z_p M$ and hence $Z_p \overline{N}$ is primitively represented by $Z_p M$. Enlarging \overline{N} for every prime $p \in S$ we get a lattice \overline{N}_a which contains N(a), is primitively represented by M locally and has a large minimum since $[\overline{N}_a:\overline{N}] = \prod_{p \in S} [Z_p \overline{N}_a: Z_p N(a)]$ is bounded by a number depending on N and M. Thus we have completed the proof of Proposition, assuming Theorem.

Proof of Theorem. We divide the proof to two cases m = 2 and $m \ge 3$. First we treat the case m = 2.

LEMMA. For given natural numbers a and D, the number of b, c

which satisfy $0 \le b \le a \le c$ and $D = 4ac - b^2$, is $O(a^{\epsilon}(D, a)^{1/2})$ where ϵ is any positive number.

Proof. The number of b, c is less than or equal to $\#\{b \mod 4a | b^2 \equiv -D \mod 4a\}$. First we show, for a prime power p^n , $\#\{x \mod p^n | x^2 \equiv -D \mod p^n\} \leq 4(D, p^n)^{1/2}$. Put $d = \operatorname{ord}_p D$. If $d \geq n$, then $\#\{x \mod p^n | x^2 \equiv -D \mod p^n\} = \#\{x \mod p^n | x^2 \equiv 0 \mod p^n\} = p^{\lfloor n/2 \rfloor} < 4(D, p^n)^{1/2}$ holds, where [r] means the largest integer which does not exceed r. Suppose d < n. If $x^2 \equiv -D \mod p^n$, then d is even and $x = p^{d/2}y$ for an integer y satisfying $y^2 \equiv -Dp^{-d} \mod p^{n-d}$. The number of solutions modulo p^{n-d} for $y^2 \equiv -Dp^{-d} \mod p^{n-d}$. The number of solutions modulo p^{n-d} for $y^2 \equiv -Dp^{-d} \mod p^{n-d}$ is at most four, and for each $y, x = p^{d/2}(y + p^{n-d}z)$ $(z \mod p^{d/2})$ is a solution. This completes the above inequality. Hence $\#\{b \mod 4a | b^2 \equiv -D \mod 4a\} \leq (\prod_{p \mid 4a} 4)(D, 4a)^{1/2} \ll a^{\varepsilon}(D, a)^{1/2}$.

Let L be a binary positive lattice with nL = 2Z, dL = D, and denote by h the number of isometry classes in gen L. Every binary even positive lattice corresponds to the only one reduced matrix $\begin{pmatrix} 2a & b \\ b & 2c \end{pmatrix} 0 \le b \le a \le c$. Hence we have

$$\sum_{a=1}^k {}^{\sharp} \{M \in \operatorname{gen} L/\operatorname{cls} | \min M = 2a\}$$

 $\ll \sum_{a=1}^k a^{\epsilon}(D, a)^{1/2}$
 $\ll \sum_{s|D} \sum_{1 \le t \le k/s} (st)^{\epsilon} s^{1/2}$
 $\ll \sum_{s|D} s^{1/2 + \epsilon} (k/s)^{1 + \epsilon}$
 $= k^{1 + \epsilon} \sum_{s|D} s^{-1/2} \ll k^{1 + \epsilon} D^{\epsilon}$.

Thus there is a number c dependent only on ε so that

$$\sum_{a=1}^k {\sharp\{M \in \operatorname{gen} L/\operatorname{cls} | \min M = 2a\}} < ck^{{\scriptscriptstyle 1+arepsilon}} D^arepsilon$$

If the class number h of gen L is greater than $ck^{1+\varepsilon}D^{\varepsilon}$, then there is a lattice $M \in \text{gen } L$ such that $\min M > k$. By Siegel, $h \gg D^{1/2-\varepsilon}$ is well known. Noting that ε 's are any positive numbers, we have $\min M \gg D^{1/2-\varepsilon}$ for any $\varepsilon > 0$, which completes the proof in the case m = 2.

To treat the case $m \ge 3$, we prepare several lemmas. Let us denote by p a prime number.

Lemma 1. Let a and b be integers and $a \ge b \ge 0$. For $\alpha \in Z_p$ with

 $\operatorname{ord}_p \alpha = b$, the number t of solutions modulo p^a of $x^2 \equiv \alpha \mod p^a$ is $O(p^{b/2})$.

Proof. Suppose a = b; then t is equal to $\#\{x \mod p^a \mid x^2 \equiv 0 \mod p^a\}$ = $p^{[a/2]} \leq p^{b/2}$. Suppose a > b. If b is odd, then there is no solution and hence t = 0. If b is even and b = 2d, then t is equal to

$$egin{aligned} & \#\{y \ \mathrm{mod} \ p^{a-d} \,|\, y^2 \equiv lpha p^{-2d} \ \mathrm{mod} \ p^{a-2d} \} \ &= p^d \, \#\{y \ \mathrm{mod} \ p^{a-2d} \,|\, y^2 \equiv lpha p^{-2d} \ \mathrm{mod} \ p^{a-2d} \} \ &\leq 4p^d \,= \, O(p^{b/2}) \,. \end{aligned}$$

LEMMA 2. For $0 \le a \le h - 1$, $\varepsilon \in \mathbb{Z}_p^{\times}$ and $\alpha \in \mathbb{Z}_p$, we put $t = \#\{x \mod p^h, y \mod p^{h-a} | x^2 + \varepsilon p^a y^2 \equiv \alpha \mod p^h$, $(x, y) = 1\}$. Then $t = O(p^{h-a/2})$ holds.

Proof. Let t_1 (resp. t_2) be the number of solutions under an additional condition $p \mid y$ (resp. $p \nmid y$). $t = t_1 + t_2$ is clear. Without loss of generality we may put $\alpha = \delta p^c$, $\delta \in \mathbb{Z}_p^{\times}$, $0 \leq c \leq h$. Then t_1 is equal to

 $\sharp \{x \bmod p^h, \ y \bmod p^{h-a-1} | \ x^2 + \varepsilon p^{a+2} y^2 \equiv \alpha \bmod p^h, \ p \not\mid x \}.$

If c > 0 i.e., $p | \alpha$, then $t_1 = 0$ holds. If c = 0, then $\alpha - \varepsilon p^{\alpha+2}y^2$ is in Z_p^{\times} and hence $t_1 = O(p^{n-\alpha-1}) = O(p^{n-\alpha/2})$. t_2 is equal to

$$\sum_{\substack{x^2 \equiv \delta p^c \mod p^a \ x^2 \equiv \delta p^c \mod p^a}} \# \{y \mod p^{h-a} \, | \, \varepsilon p^a y^2 \equiv \delta p^c - x^2 \mod p^h, \ p
eq y \} \, .$$
 $= \sum_{\substack{x^2 \equiv \delta p^c \mod p^a \ x^2 \equiv \delta p^c \mod p^a}} \# \{y \mod p^{h-a} \, | \, y^2 \equiv (\varepsilon p^a)^{-1} (\delta p^c - x^2) \mod p^{h-a}, \ p
eq y \}$
 $\ll \# \{x \mod p^h_{\cdot} \mid \operatorname{ord}_p (x^2 - \delta p^c) = a\} \, .$

We show that this is $O(p^{h-a/2})$ in each case of $c \ge a$, c < a. Suppose $c \ge a$; then $t_2 \ll \# \{x \mod p^h | x^2 \equiv 0 \mod p^a\} = p^{h-\lfloor (a+1)/2 \rfloor} \le p^{h-a/2}$. Suppose c < a. If $x^2 - \delta p^c \equiv 0 \mod p^a$ is soluble, then 2 | c and $x = p^{c/2} z$ for some $z \in Z_p$. Hence t_2 is less than

$$egin{aligned} & \#\{z \mod p^{h-c/2} | \operatorname{ord}_p \left(p^c (z^2 - \delta)
ight) = a \} \ & \leq \#\{z \mod p^{h-c/2} | z^2 \equiv \delta \mod p^{a-c} \} \ & = p^{h-c/2-(a-c)} \, \#\{z \mod p^{a-c} | z^2 \equiv \delta \mod p^{a-c} \} \ & = O(p^{h-a+c/2}) = O(p^{h-a/2}) \,. \end{aligned}$$

Thus we have completed the proof.

LEMMA 3. For integers a, c and h satisfying $0 \le a \le h-1$ and $0 \le c \le h$ and for ε , $\delta \in \mathbb{Z}_p^{\times}$, we put

$$t = \#\{x \bmod p^h, \ y \bmod p^{h-a} \mid x^2 + \varepsilon p^a y^2 \equiv \delta p^c \bmod p^h\}$$

Then we have $t = O(hp^{h-a/2})$.

Proof. t is equal to

$$\sum_{0 \le i \le h-a} \#\{x \bmod p^h, \ y \bmod p^{h-a} \,|\, x^2 + \varepsilon p^a y^2 \equiv \delta p^c \bmod p^h, \ (x, y) = p^i\}$$
$$= t_1 + t_2 + t_3,$$

where t_1 , t_2 and t_3 are partial sums under conditions 2i < c, 2i = c and 2i > c respectively. Further we divide t_1 to the sum of $t_{1,1}$ and $t_{1,2}$ where $t_{1,1}$, $t_{1,2}$ are partial sums under conditions i < (h - a)/2, $i \ge (h - a)/2$ respectively. $t_{1,1}$ is equal to

$$\sum_{\substack{0 \le i < (h-a)/2 \\ i < c/2}} \#\{x \bmod p^{h-i}, y \bmod p^{h-a-i} | x^2 + \varepsilon p^a y^2 \equiv \delta p^{e-2i} \bmod p^{h-2i}, (x, y) = 1\}$$

and considering $x \mod p^{h-2i}$, $y \mod p^{h-a-2i}$ and using Lemma 2 we have $t_{1,1} \ll \sum_{\substack{0 \le i < (h-a)/2 \\ i < c/2}}^{0 \le i < (h-a)/2} p^{2i+(h-2i-a/2)} < hp^{h-a/2}$. $t_{1,2}$ is equal to

$$\sum_{\substack{(h-a)/2 \le i \le h-a \ i < c/2}} \#\{x \mod p^{h-i}, \ y \mod p^{h-a-i} \, | \, x^2 + \varepsilon p^a y^2 \equiv \delta p^{c-2i} \mod p^{h-2i}, \ (x, y) = 1\}$$

 $\leq \sum_{\substack{(h-a)/2 \le i < c/2}} \#\{x \mod p^{h-i}, \ y \mod p^{h-a-i} \, | \, x^2 \equiv \delta p^{c-2i} \mod p^{h-2i}, \ (x, y) = 1\}$

because of $h - 2i \leq a$,

$$<\sum_{(h-a)/2\leq i < c/2} p^{h-a-i} \# \{x \mod p^{h-i} | x^2 \equiv \delta p^{c-2i} \mod p^{h-2i} \}$$

 $=\sum_{(h-a)/2\leq i < c/2} p^{h-a} \# \{x \mod p^{h-2i} | x^2 \equiv \delta p^{c-2i} \mod p^{h-2i} \}$
 $\ll p^{h-a} \sum_{(h-a)/2\leq i < c/2} p^{(c-2i)/2} \qquad ext{(by Lemma 1)}$
 $< p^{h-a+c/2} \sum_{(h-a)/2\leq i} p^{-i}$
 $\ll p^{h-a+c/2-(h-a)/2} \leq p^{h-a/2}.$

Since t_2 is zero if $2 \nmid c$, we may assume $2 \mid c$ and hence we have $0 \leq c/2 \leq h-a$. t_2 is equal to

$$\begin{array}{l} \#\{x \bmod p^{h-c/2}, \ y \bmod p^{h-a-c/2} | \ x^2 + \varepsilon p^a \ y^2 \equiv \delta \bmod p^{h-c}, \ (x, \ y) = 1 \} \\ = p^{c/2} \ \#\{x \bmod p^{h-c}, \ y \bmod p^{h-a-c/2} | \ x^2 + \varepsilon p^a \ y^2 \equiv \delta \bmod p^{h-c}, \ (x, \ y) = 1 \}. \end{array}$$

If a = 0, then t_2 is equal to

$$p^{c} # \{x, y \mod p^{h-c} | x^{2} + \varepsilon y^{2} \equiv \delta \mod p^{h-c}, (x, y) = 1\}$$

 $\ll p^{h}$ (by Lemma 2) $= p^{h-a/2}$.

If a > 0, then t_2 is less than or equal to

$$p^{c/2}\sum_{\substack{y \bmod p^{h-a}-c/2 \ y \in c/2+h-a-c/2}} \#\{x \bmod p^{h-c} \mid x^2 \equiv \delta - \varepsilon p^a y^2 \mod p^{h-c}\}$$

 $\ll p^{c/2+h-a-c/2}$ (by Lemma 1)
 $< p^{h-a/2}.$

If c < h, then t_3 is equal to 0, and hence we may put c = h. Then t_3 is equal to

$$\sum_{h/2 < i \le h-a} \# \{x \mod p^h, \ y \mod p^{h-a} | (x, y) = p^i \}$$

 $< \sum_{i > h/2} p^{(h-i)+(h-a-i)} \ll p^{2h-a-h} < p^{h-a/2}.$

Summing up, we complete the proof.

LEMMA 4. Put $t = \#\{x, y \mod 2^h | xy \equiv a \mod 2^h\}$ for an integer a. Then $t \ll h \cdot 2^h$ holds.

Proof. t is equal to

$$\sum_{0 \le i \le h} \# \{x \mod 2^{h-i}, \ y \mod 2^h | 2^i xy \equiv a \mod 2^h, \ 2
eq x \} = \sum_{0 \le i \le h} \varphi(2^{h-i}) \# \{y \mod 2^h | 2^i y \equiv a \mod 2^h \},$$

where φ means the Euler's function

$$\leq \sum\limits_{0\leq i\leq h} 2^{h-i} \cdot 2^i \leq (h+1) 2^h \ll h \cdot 2^h$$
 .

LEMMA 5. Put $t = \#\{x, y \mod 2^n | x^2 + xy + y^2 \equiv a \mod 2^n\}$ for an integer a. Then $t \ll 2^n$ holds.

Proof. Put $a = b \cdot 2^c$, $2 \nmid b$, and note that $x^2 + xy + y^2 \equiv 0 \mod 2^n$ implies $x^2 \equiv y^2 \equiv 0 \mod 2^n$. If $c \ge h$, then t is equal to

 $\label{eq:started} egin{aligned} & \#\{x, \, y \ \mathrm{mod} \ 2^h \, | \, x^2 + \, xy + \, y^2 \equiv 0 \ \mathrm{mod} \ 2^h \} \ & \leq \#\{x, \, y \ \mathrm{mod} \ 2^h \, | \, x^2 \equiv \, y^2 \equiv 0 \ \mathrm{mod} \ 2^h \} \ & \ll \ 2^h \; . \end{aligned}$

If c < h and $2 \nmid c$, then we have t = 0. Suppose c < h and $2 \mid c$; then t is equal to

$$\begin{aligned} & \#\{x, y \mod 2^{h-c/2} | x^2 + xy + y^2 \equiv b \mod 2^{h-c}\} \\ & = 2^c \, \#\{x, y \mod 2^{h-c} | x^2 + xy + y^2 \equiv b \mod 2^{h-c}\} \\ & \leq 2^{c+1} \, \#\{x, y \mod 2^{h-c} | x^2 + xy + y^2 \equiv b \mod 2^{h-c}, \, 2 \not \mid y\}. \end{aligned}$$

Here we claim that there is at most 2 solutions of x for $x^2 + xy + y^2 \equiv b \mod 2^{h-c}$ for an odd y. Suppose that x_1, x_2 are solutions. Then $(x_1 - x_2)(x_1 + x_2 + y) \equiv 0 \mod 2^{h-c}$ holds. Since only one of $x_1 - x_2, x_1 + x_2 + y$ is odd, only one of $x_1 - x_2 \equiv 0 \mod 2^{h-c}$ or $x_1 + x_2 + y \equiv 0 \mod 2^{h-c}$ can occur, and hence the number of solutions is at most 2. Thus $t \leq 2^{c+2}\varphi(2^{h-c}) \ll 2^h$ holds.

LEMMA 6. For $h > a \ge 1$ put

$$t = \# \{x \mod 2^{h-1}, y, z \mod 2^{h-a} | 2x^2 + 2^{a+1}yz \equiv b \mod 2^{h+1} \}$$

for an integer b. Then $t \ll h \cdot 2^{2h-3a/2}$ holds.

Proof. If b is odd, then t is clearly zero, and hence we may put $b = d \cdot 2^{c+1}, 2 \nmid d, c \ge 0$. Then t is equal to

$$\sum_{x \bmod 2^{h-1}} \#\{y, z \bmod 2^{h-a} | 2^a yz \equiv d \cdot 2^c - x^2 \mod 2^h\} \\ = \sum_{\substack{x \bmod 2^{h-1} \\ x^2 \equiv d \cdot 2^c \mod 2^a}} \#\{y, z \mod 2^{h-a} | yz \equiv 2^{-a}(d \cdot 2^c - x^2) \mod 2^{h-a}\} \\ \ll (h-a)2^{h-a} \#\{x \mod 2^{h-1} | x^2 \equiv d \cdot 2^c \mod 2^a\} \quad \text{(by Lemma 4)} \\ < h \cdot 2^{2(h-a)} \#\{x \mod 2^a | x^2 \equiv d \cdot 2^c \mod 2^a\} \\ \ll h \cdot 2^{2(h-a) + \min(c, a)/2} \quad \text{(by Lemma 1)} \\ < h \cdot 2^{2h-3a/2}.$$

LEMMA 7. For $h > a \ge 1$ put

 $t = \#\{x \mod 2^{h-1}, \ y, z \mod 2^{h-a} | 2x^2 + 2^{a+1}(y^2 + yz + z^2) \equiv b \mod 2^{h+1}\}.$ Then we have $t \ll 2^{2h-3a/2}$.

 $\begin{array}{l} \textit{Proof.} \quad \mathrm{Put} \ b = d \cdot 2^{c+1}, \ 2 \nmid d, \ c \geq 0; \ \text{then} \ t \ \text{is equal to} \\ & \sum\limits_{\substack{x \ mod \ 2^{h-1} \\ x^2 \equiv d \cdot 2^c \ \mathrm{mod} \ 2^a}} \# \{y, \ z \ \mathrm{mod} \ 2^{h-a} \ | \ y^2 + \ yz + \ z^2 \equiv 2^{-a} (d \cdot 2^c - \ x^2) \ \mathrm{mod} \ 2^{h-a} \} \\ & \ll 2^{h-a} \ \# \{x \ \mathrm{mod} \ 2^{h-1} \ | \ x^2 \equiv d \cdot 2^c \ \mathrm{mod} \ 2^a \} \qquad (by \ \text{Lemma 5}) \\ & \ll 2^{2(h-a)} \ \# \{x \ \mathrm{mod} \ 2^a \ | \ x^2 \equiv d \cdot 2^c \ \mathrm{mod} \ 2^a \} \\ & \ll 2^{2h-3a/2} \end{array}$

as in the proof of Lemma 6.

Recall that L is a positive lattice of nL = 2Z, $\operatorname{rk} L = m \geq 3$.

LEMMA 8. We have $\prod_{p \geq 2dL} \alpha_p(t, L) \ll (tdL)^{\varepsilon}$ for a natural number t and any positive number ε where α_p is the local density.

Proof. For a prime number p not dividing 2dL we put $\delta = \delta_p = \chi((-1)^{m/2}dL)$ (resp. $\chi((-1)^{(m-1)/2}tp^{-e}dL)$, $r = r_p = p^{1-m/2}$ (resp. p^{2-m}) for 2|m (resp. $2 \nmid m$), where χ is the quadratic residue symbol for p and $e = e_p = \operatorname{ord}_p t$.

By Hilfssatz 16 in [9], $\alpha_p(t, L)$ is equal to

$$(1 - \delta p^{-m/2})(1 + \delta r + \cdots + (\delta r)^e)$$
 $2 \mid m$,

$$(1-p^{1-m})(1+r+\cdots+r^{(e-1)/2})$$
 $2 \not| e, 2 \not| m,$

$$(1-p^{1-m})\{1+r+\cdots+r^{e/2-1}+r^{e/2}(1-\delta p^{(1-m)/2})^{-1}\}=2\,|\,e,\,2
aturn\,m\,.$$

If m is even, then we have

$$egin{aligned} lpha_p(t,L) &\leq (1+p^{-m/2})\sum\limits_{k\geq 0}r^k \ &= (1+p^{-m/2})(1-p^{1-m/2})^{-1}\,. \end{aligned}$$

Hence for an even integer $m \ge 3$ we have

$$\prod_{p \nmid 2dL} lpha_p(t,L) < \prod_{p \nmid 2dL} (1+p^{-m/2}) \prod_{p \mid t} (1-p^{1-m/2})^{-1} \ \ll \prod_{p \mid t} (1-p^{1-m/2})^{-1} \le \prod_{p \mid t} (1-p^{-1})^{-1} \ll t^{\epsilon}$$

for any positive ε , since $\varphi(t) > ct(\log \log t)^{-1}$ for $t \ge 3$ and some positive number c.

Suppose $2 \nmid m$. If $2 \nmid e$, then we have

$$lpha_p(t,L) = (1-p^{1-m})(1-p^{(2-m)(e+1)/2})(1-p^{2-m})^{-1} \ < (1-p^{2-m})^{-1} < (1-p^{2-m})^{-1}(1-p^{(1-m)/2})^{-1} \,.$$

If e = 0, then we have $\alpha_p(t, L) < (1 - \delta p^{(1-m)/2})^{-1}$. Suppose 2|e, e > 0; then $\alpha_p(t, L)$ is less than or equal to

$$egin{aligned} &(1-p^{1^{-m}})(1-p^{(2^{-m})\,e/2})(1-p^{2^{-m}})^{-1}\ &+p^{(2^{-m})\,e/2}(1-p^{1^{-m}})(1-p^{(1^{-m})/2})^{-1}\ &=(1-p^{1^{-m}})(1-p^{2^{-m}})^{-1}(1-p^{(1^{-m})/2})^{-1}\ & imes\{1-p^{(1^{-m})/2}+p^{(1^{-m})/2+(2^{-m})\,e/2}-p^{(2^{-m})\,(e/2+1)}\}\ &<(1-p^{1^{-m}})(1-p^{2^{-m}})^{-1}(1-p^{(1^{-m})/2})^{-1}(1-p^{(2^{-m})\,(e/2+1)})\ &<(1-p^{2^{-m}})^{-1}(1-p^{(1^{-m})/2})^{-1}\,. \end{aligned}$$

Thus we have, for odd m

$$\prod_{p \nmid 2dL} \alpha_p(t,L) < \prod_{p \mid 2tdL} (1 - \delta_p p^{(1-m)/2})^{-1} \cdot \prod_{p \mid t} (1 - p^{2-m})^{-1} (1 - p^{(1-m)/2})^{-1}.$$

Therefore for odd $m \ge 5$ we have $\prod_{p \nmid 2dL} \alpha_p(t, L) \ll 1$, and for m = 3,

$$\prod\limits_{p \nmid 2dL} lpha_p(t,L) < \prod\limits_{p \nmid 2tdL} (1 - \delta_p p^{-1})^{-1} \cdot \prod\limits_{p \mid t} (1 - p^{-1})^{-2} \ \ll (tdL)^{\varepsilon},$$

which completes the proof of Lemma 8.

LEMMA 9. For a natural number t we have

$$lpha_p(t,L) \leq 2^{\delta_{2,p}}(1-p^{2-m})^{-1} \max d_p(b,L),$$

where b runs over non-zero integers, d_p denotes the primitive local density and δ is the Kronecker's delta function.

Proof. It is known [7], [2] that for $a \not\equiv 0 \mod p$ and $r \ge 0$,

$$egin{aligned} lpha_p(ap^r,L) &= 2^{\delta_{2,p}} \sum\limits_{0 \leq k \leq r/2} p^{k(2-m)} d_p(ap^{r-2k},L) \ &< 2^{\delta_{2,p}} \{ \max_b d_p(b,L) \} \sum\limits_{k \geq 0} p^{k(2-m)} \ &= 2^{\delta_{2,p}} (1-p^{2-m})^{-1} \max d_p(b,L) \,. \end{aligned}$$

÷.,

LEMMA 10. For a natural number t we have

$$\prod_{p} \alpha_{p}(t, L) \ll (tdL)^{\varepsilon} \prod_{p \mid 2dL} \{ \max_{0 \neq b \in \mathbf{Z}} d_{p}(b, L) \}$$

for any positive number ε .

Proof. By virtue of Lemmas 8, 9, we have

$$egin{array}{l} &\prod \limits_{p} lpha_{p}(t,L) \ll (tdL)^{\epsilon} \prod \limits_{p \mid 2dL} (1-p^{2-m})^{-1} \prod \limits_{p \mid 2dL} \{\max \ b \ d_{p}(b,L)\} \ &\ll t^{\epsilon} (dL)^{2\epsilon} \prod \limits_{p \mid 2dL} \{\max \ d_{p}(b,L)\} \,. \end{array}$$

LEMMA 11. For a natural number t we have

$$\prod\limits_{p} \, lpha_{p}(t,L) \ll (tdL)^{\epsilon} \prod\limits_{p \mid 2dL} \sqrt{p^{a_{p}}}$$

where ε is any positive number and a_p is the integer defined in Theorem.

Proof. We have only to prove

$$d_p(b,L) < C_{\varepsilon} p^{\varepsilon \operatorname{ord}_p dL + a_p/2}$$
,

where C_{ε} depends only on ε , since $\prod_{p|2dL} C_{\varepsilon} \ll (dL)^{\varepsilon}$. Let *h* be an integer such that $p^{h}n(L^{\sharp}) \subset 2pZ_{p}$. It is known [2]

$$d_{p}(b, L) = p^{\operatorname{ord}_{p} dL + h(1-m)} \ \# D(b, L; p^{h}),$$

where

$$D(b, L; p^h) = \{x \in \mathbb{Z}_p L | p^h \mathbb{Z}_p L^* | Q(x) \equiv b \mod 2p^h \mathbb{Z}_p, \ x \notin p\mathbb{Z}_p\}.$$

Let an orthogonal splitting of Z_pL be $L_1 \perp \cdots \perp L_s$ where L_i is p^{a_i} modular for $i \geq 2$ and $a_2 \leq \cdots \leq a_s$ and a Jordan splitting of $L_1 \perp L_2$ gives a Jordan splitting of Z_pL ; then we can put $h = a_s + 2 = O(p^{\epsilon \operatorname{ord}_p dL})$, and we have

$$egin{aligned} & \#D(b,\,L;\,p^{\hbar}) \ &\leq \sum_{\substack{x \in oxedsymbol{\perp}L_i/p^{\hbar}-a_i\,L_i \ i \geq 2}} & \#\{y \in L_1/p^{\hbar}L_1^* | \, Q(y) \equiv b - Q(x) ext{ mod } 2p^{\hbar} Z_p\} \ &\leq p^{\sum_{i \geq 2}(h-a_i)\operatorname{rk}L_i} \max_{c \in Z} & \#\{y \in L_1/p^{\hbar}L_1^* | \, Q(y) \equiv c ext{ mod } 2p^{\hbar} Z_p\} \end{aligned}$$

and hence we have

$$d_p(b,L) \leq p^{\operatorname{ord}_p dL_1 + h(1 - \operatorname{rk} L_1)} \max_{c \in Z} \# \{ y \in L_1/p^h L_1^* | Q(y) \equiv c \mod 2p^h Z_p \}.$$

Suppose $Z_pL = \langle 2\varepsilon_1 \rangle \perp \langle 2p^a \varepsilon_2 \rangle \perp \cdots$, ε_1 , $\varepsilon_2 \in Z_a^{\times}$, $a \ge 0$ (Jordan splitting). We put $L_1 = \langle 2\varepsilon_1 \rangle \perp \langle 2p^a \varepsilon_2 \rangle$; then we have

$$rac{1}{p^{h}L_{1}^{*}|Q(y)\equiv c \mod 2p^{h}Z_{p}} = rac{1}{q} \{u \mod p^{h-\delta}, \ v \mod p^{h-a-\delta}|2\varepsilon_{1}u^{2}+2p^{a}\varepsilon_{2}v^{2}\equiv c \mod 2p^{h}Z_{p}\},$$

where $\delta = \delta_{2,p}$

 $= O(hp^{h-a/2})$ by Lemma 3. Thus we have

$$d_p(b,L) \ll p^{a-h} \cdot h p^{h-a/2} < h p^{a/2} \ll p^{\varepsilon \operatorname{ord}_p dL + a/2}$$

Next we suppose that p = 2 and $Z_2L = \langle 2\epsilon \rangle \perp \left\langle 2^a \begin{pmatrix} 2d & 1 \\ 1 & 2d \end{pmatrix} \right\rangle \perp \cdots$, $\epsilon \in Z_p^{\times}$, $a \ge 2$, d = 0, 1. Putting $L_1 = \langle 2\epsilon \rangle \perp \left\langle 2^a \begin{pmatrix} 2d & 1 \\ 1 & 2d \end{pmatrix} \right\rangle$, we have

$$\begin{aligned} & \#\{y \in L_1/p^h L_1^* | Q(y) \equiv c \mod 2^{h+1} Z_2 \} \\ &= \#\{u \mod 2^{h-1}, v, w \mod 2^{h-a} | 2\varepsilon u^2 + 2^{a+1} (dv^2 + vw + dw^2) \equiv c \mod 2^{h+1} \} \\ & \ll h \cdot 2^{2h-3a/2} \qquad \text{(by Lemmas 6, 7)}. \end{aligned}$$

Hence we have $d_2(b, L) \ll 2^{1+2a-2h} \cdot h \cdot 2^{2h-3a/2} \ll 2^{a/2+\epsilon \operatorname{ord}_2 dL}$ as above.

Lastly we suppose p = 2 and $Z_2L = \left\langle \begin{pmatrix} 2d & 1 \\ 1 & 2d \end{pmatrix} \right\rangle \perp \cdots$, d = 0 or 1 by which we exhaust all types of Jordan splittings. Putting $L_1 = \left\langle \begin{pmatrix} 2d & 1 \\ 1 & 2d \end{pmatrix} \right\rangle$, we have

$$\begin{array}{l} \# \{ y \in L_1/2^h L_1^* | Q(y) \equiv c \mod 2^{h+1} Z_2 \} \\ = \# \{ u, v \mod 2^h | 2(du^2 + uv + dv^2) \equiv c \mod 2^{h+1} \} \\ \ll h \cdot 2^h \qquad \text{(by Lemmas 4, 5).} \end{array}$$

Therefore we have $d_2(b, L) \ll 2^{-h} \cdot h \cdot 2^h \ll 2^{\epsilon \operatorname{ord}_2 dL}$, and it completes the proof of Lemma.

Now we can prove Theorem, following an idea due to Conway, Thompson on p. 46 in [7]. Put

$$w(M) = \{\sum_{N \in \text{gen } L} (\# O(N))^{-1}\}^{-1} \cdot (\# O(M))^{-1}$$

and

$$r(t, \operatorname{gen} L) = \sum_{N \in \operatorname{gen} L} w(N) r(t, N)$$

where N's run over representatives of isometry classes in the genus of L and O(N) is the group of isometries of N and $r(t, N) = \#\{x \in N | Q(x) = t\}$. It is known [9] that $r(t, \text{gen } L) = c(dL)^{-1/2}t^{m/2-1} \prod_{p} \alpha_{p}(t, L)$ for some constant c and hence we have

$$\sum_{t=1}^{k} r(t, \text{gen } L) \ll (dL)^{-1/2} \sum_{t=1}^{k} t^{m/2-1} (tdL)^{\varepsilon} \prod_{p \mid 2dL} \sqrt{p^{a_p}} \qquad \text{(by Lemma 11)}$$
$$\ll (dL)^{\varepsilon - 1/2} \prod_{p \mid 2dL} \sqrt{p^{a_p}} \cdot k^{m/2+\varepsilon}.$$

Suppose $\sum_{x=1}^{k} r(t, M) > 0$ for every M in gen L; then we have

$$\sum_{t=1}^{k} r(t, \operatorname{gen} L) = \sum_{M \in \operatorname{gen} L} w(M) \sum_{t=1}^{k} r(t, M) \ge \sum_{M \in \operatorname{gen} L} w(M) = 1,$$

and hence $k^{m/2+\epsilon} \gg (dL)^{1/2-\epsilon} \prod_{p \mid 2dL} \sqrt{p^{-a_p}}$. Therefore $k = C_{\epsilon}(dL)^{(1/2-\epsilon)/(m/2+\epsilon)} \cdot (\prod_{p \mid 2dL} p^{-a_p})^{1/(m+2\epsilon)}$ for some C_{ϵ} is contradictory for any positive number ϵ . Thus $\sum_{t=1}^{k} r(t, M) = 0$ holds for some $M \in \text{gen } L$ and the above k and this yields min M > k. Since $(1/2 - \epsilon)/(m/2 + \epsilon)$ tends to 1/m from below as $\epsilon \to 0$ and $-(m + 2\epsilon)^{-1} > -m^{-1}$, this means

$$\min M \gg (dL)^{1/m-arepsilon}(\prod\limits_{p\mid 2dL}p^{a_p})^{-1/m} \qquad ext{for any } arepsilon > 0$$

and completes the proof of Theorem.

References

- J. S. Hsia, Y. Kitaoka, M. Kneser, Representations of positive definite quadratic forms, J. reine angew. Math., 301 (1978), 132-141.
- Y. Kitaoka, Modular forms of degree n and representation by quadratic forms II, Nagoya Math. J., 87 (1982), 127-146.
- [3] —, Lectures on Siegel modular forms and representation by quadratic forms, Tata Institute of Fundamental Research, Bombay, Berlin-Heidelberg-New York, Springer 1986.

- [4] —, Local densities of quadratic forms, In: Investigations in Number Theory, 1987 (Advanced Studies in Pure Math. 13, pp. 433-460).
- [5] —, A note on representation for positive definite binary quadratic forms by positive definite quadratic forms in 6 variables, to appear,
- [6] —, Modular forms of degree n and representation by quadratic forms V, Nagoya Math. J., 111 (1988), 173-179.
- [7] J. Milnor, D. Husemoller, Symmetric bilinear forms, Berlin-Heidelberg-New York, Springer 1973.
- [8] O. T. O'Meara, Introduction to quadratic forms, Berlin-Heidelberg-New York, Springer 1963.
- [9] C. L. Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math., 36 (1935), 527-606.

Department of Mathematics School of Science Nagoya University Chikusa-ku, Nagoya 464 Japan