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POINCARE TYPE CONDITIONS OF THE REGULARITY
FOR THE PARABOLIC OPERATOR OF ORDER «a

MASAYUKI ITO ano MASAHARU NISHIO

§1. Introduction

Let R**'= R® X R denote the (n + 1)-dimensional Euclidean space
(n=1). For XeR"*!, we write X = (x,f) with x€ R” and te¢ R. In this
case, R" is called the x-space of R**' = R" X R.

For an & with 0 < a < 1, we write

2
Lo = -2 4 (- 4y,
& T4

n 2
where (— 4)* is the fractional power of the Laplacian — 4= — 3 aaz
J=1 x]

on the x-space. In the case of « = 1/2, L%» is called the Poisson operator
on R**',

First we shall examine some properties of the elementary solution W
of L, By using the reduced functions with respect to W, we shall
show the existence of swept-out measures with respect to W®. By using
swept-out measures, we shall give the notion of the regularity for boundary
points of an open set in R"*l.

The purpose of this paper is to give a Poincaré type condition for
the regularity of boundary points of an open set in R"*'

Our main theorem is the following

THEOREM. Let 2 be an open set in R"*' and X a boundary point of £.
If there exists a non-empty open set w in the x-space whose a-tusk T P(w)
at X is in CQ, then X is regular for the Dirichlet problem of L on £.

For an X = (x,¢) € R"*' and an open set v in the x-space, the a-tusk
T¢(w) of w at X is defined by

TP@w) ={(x+py,t—p*);ycw 0 <p<p}
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with some p, > 0.
For the heat equation, E.G. Effros and J.L. Kazdan [3] discussed
a similar Poincaré type condition of the regularity.

§ 2. Superparabolic functions and the Riesz decomposition

Let C(R*) denote the usual topological vector space of all infinitely
differentiable functions on R* with compact support (¢ > 1). For 0 < a < 1,
we recall the fractional power (— 4)* of — 4 on the x-space R*; (— 4)* is
the convolution operator on R" defined by the distribution —C, , p.f.|x| "%,
where |x| denotes the distance between x and the origin 0 in R" and
C, .= — 47" I'((n + 2a)/2)/T'(— a), that is,

pL x4 = lim [ (4() — $O)Ixl"dx

for every ¢ Cx(R").

We denote by (g,).s, the Gaussian semi-group on R", namely g,(x) =
(4nt) " exp(— |x*/4t) (¢ > 0), and g, = e. Here we denote by ¢ the Dirac
measure at the origin of R* for every k> 1. Put

W@ (X) = {(2”)—"‘[” exp(— t|§f* +ix-§)dé t> 0
0 t<o0,

where X = (x,t) and x-& denotes the inner product on R". By means of
the Fourier transform, we see easily that W@ (resp. W) is the elementary
solution of L@ (resp. L), where W@(x,t) = W@ (x, — t) and L@ = —5/at
+ (— 4)* (see for example [4]). Let (¢%).», be the one-sided stable semi-
group of order « on R*, where R* denotes the semi-group of all non-
negative numbers. Then for any ¢> 0 and x € R",

@.1) Wl t) = [~ g.@dais) > 0
(see [1], p. 74), Ln We(x, )dx=1 and W@(x, ) is a decreasing function of
lx]. Put
V() = WAL 0, - -+, 0), 8);
then we have easily
W x, §) = || e] 1)
LEmma 2.1. (1) = O(t) as t | 0.
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Proof. Let v be the uniform measure on the unit sphere {xe R";
|x}] = 1} with Idv = 1. Denoting by 9 the Fourier transform of v, we have

() = @) [ exp(—tgF)s(@)ds, Tim () = 0
and
L yy= @[ (—1erexp(— tersE)ds
dat ° &
=@ " (—1erexp(—s]¢R)2(@)de doi(o)

for t > 0 (see (2.1)). Let ¢ e C3(R") satisfying 0 < ¢ < 1, supp[¢] C{x e R";
|x| <1} and ¢ =1 on a neighborhood of 0, where supp[¢] denotes the
support of ¢. For any s > 0, we have

[ 18P exp(— slema(e ds = @0~ dr(e, +)(0)
— @O Co(2 77 5 (dg) 5(0)
= @0 C,. o ()X 5 (4g.) £ 1(0)
(@0 C,, (AL — I 5 () 53(0).

Since 0¢ supp[(¢(x)|x] ") *v] and 4dg, vanishes uniformly outside any
neighborhood of 0,

lsif? (p(x)| x| "% x (dg) x»(0) = 0.

Therefore the function J § |EP exp(— s|EP) (&) dE of s is bounded on (0, o),
so that (d/dt).(¢) is bou;ded on (0, o), which shows Lemma 2.1.

Let (P{®),-, be the convolution semi-group whose infinitesimal generator
is equal to — L (see [7]"); then

P& xu(x, t) = I W@ (x — y, s)u(y, t — s)dy
Rn

for every u e Cx(R"*!), where Cr(R"*") denotes the usual topological vector
space of all finite continuous functions on R"*! with compact support.
For a non-negative continuous function ¢(f) on (0, o), we put

W(x, t) = ()W (x, t) .

1) Evidently —L® is a generalized Laplacian, that is, for any ¢e Cg(R"*!) with
$=0 and ¢(0)=Xm1§u§ $(X), —(L¢)(0)=0.
E€Rn+1
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For a sequence (¢,);-, in CL((0, o)) with ¢, =0, Ig&mdt =1 and with
suppl¢g.] C (m + 1)°*, m™"), we shall often use the sequence (W ) _;.
We say that such a (¢,);., is an approximate sequence of the Dirac

measure.

DerFINITION 1. A non-negative function u on R"'! is said to be super-
parabolic of order « if the following two conditions are satisfied:

(1) u is lower semi-continuous on R"*' and u < oo a.e..

(2) For any s=0, u=P® xu on R"*'.

We denote by S, (resp. S, . the set of all superparabolic (resp. all
continuous superparabolic) functions of order «, and by S, (resp. S’a, .) the
set of all functions u with &€ S, (resp. @ €S, ,), where ii(x, t) = u(x, —t).

For a non-negative Borel measure p on R"*', we denote by Wy,
(resp. W@ #2) the function defined by the convolution W™ x u (resp. W x )
and call it the W®-potential (resp. the W@-potential) of o

Remark 2.2. (1) 1€8,, and for ue S,, u is locally integrable.

(2) The condition (2) in Definition 1 is equivalent to u = W{3 x u for
every ¢ ¢ Cx((0, 00)) with ¢ >0 and f gdt = 1.

(3) If Wwu < oo (resp. W(“)y < ) ae. then W®peS, (resp.
WeyueS).

We denote by M, (resp. M, ., M, and M, ) the set of all positive Borel
measures g with W@pue S, (resp. W@yue S, ., W("‘)p €S, and W“‘),u € Sa, o)
For a Borel measure ;4 and a Borel set A, we denote by pl, the Borel
measure defined by p|(E) = p(ANE) for every Borel set E.

LemmAa 2.3. For ueS,, we have

” u(x, )] x|-* 2 da dt < oo
aJd|ziz1
for every finite interval [a, b].

Proof. Let g CR(R"*) with0< ¢ <1, ¢(X)=1on {X=(x, t); |x|<1/2,
a <t<b} and with ¢(X) =0 on {X = (x,?); |x| = 3/4}. Since for any
X = (x, ¢) e Csupplg],
L~(d)¢(x9 t) = - Cn,aJ‘ ¢(y’ t)ix - y|~n—2a dy é 0 )
R™

supp [(L~(")¢)*] C supp[#]l. On the other hand for any open ball B con-
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taining supp(d¢],

J u(L9¢)dX = lim uthX

sl0 JB

=lim<J u;]i‘i*ugst_l_J‘ *¢dX)g
$10 Rn+1 S

where P® is defined by J. fdP® = Jf( — X)dP(X) for every fe Cr(R"*).
Hence

o> ulogrdXz |  uwlep dx
Rn+1 Rn+1

b
= [1[ uto(Cu. [ 60,015 — g tedy)duae
b
> 9-n-2a -n-2a
zonnC, [ ay[ | uepleededr,

which shows Lemma 2.3.

Lemma 2.4. (1) S, and S, . are convex semi-lattices by u/N\v(X) =
min(u(X), v(X)).

(2) LetuceS, and let (¢,);-, be an approximate sequence of the Dirac
measure. Then W{,xueS, ., and W, «utu with m? oo.

(3) Let u,ve S, and w be an open set in R**'. If u < v a.e. on o,
then u < v on o.

Proof. The assertion (1) is evident (see Definition 1). Since W3, is
finite continuous, Lemmas 2.1, 2.3 give W, xu € S, .. Since (W, (X)dX)m_,
converges vaguely to ¢ as m—oo, we have the second part of (2) (see

Definition 1). The assertion (3) follows from (2).

LemmA 2.5. For ueS,, the family (E;E)*—u dX) of positive
s

$>0
measures converges vaguely as s | 0, where dX denotes the Lebesgue measure

on R"*'. Denote by p its vague limit. Then

JuinEopax = [ ods

for every ¢ e Cz(R"*Y).

Proof. For any ¢ e Cx(R"*") with ¢ >0, we take r >0 with supp[g]
c{X;|X|<r}. For (x,¢) e R**! with |x| = 2r and any s> 0, Lemma 2.1
shows
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I

ﬁf&é?iiigﬂi’iﬂﬂ)_‘ < lj WO (x — v, 8)¢(y, t + s)dy
) )

A

%f W<a>(_;£, s)¢(y, t + s)dy
Clx| 2

A

for some constant C. The Lebesgue theorem and Lemma 2.3 give

2.2) j uf@gdX = lim [ X = P7* 5 gx

s10 S

_ (a)
Hence (f_{ﬂ_ﬂ#*_&d;q converges vaguely as s | 0 and we get
s .

§>0

fui<«>¢dX=J¢dﬂ

for every ¢e CR(R"*).
The above positive Borel measure p is called the associated measure
of u.

Remark 2.6. Let pe M,. Then the associated measure of Wy is

(a),, __ () g (a s
equal to p, because WO — PP« W% _ _l_f P x pdt® (see (2.2)).
s s Jo

Lemma 2.7. Let ueS,, (u,):.. a sequence in S, p the associated
measure of u and p, the associated measure of u,(m > 1). If lim,_.u, = u
a.e. and if there exixts ve S, such that for any m =1, u,, < v, then (0.,
converges vaguely to p as m — .

Proof. For any ¢e Cg(R""") with ¢=0, Lemmas 2.3, 2.5 and
Iv|i‘“’¢]dX< o give

j¢d,1 - fuiwgs dX = lim u, L®¢ dX = lim [ ¢ dp, ,

m—oo

which shows Lemma 2.7.

LemMmA 2.8. Let u be a non-negative continuous function on R"*'. If
u = P“ xu for every s > 0, u is constant.

For the proof, we use the following
LemMa 2.9 (Choquet-Deny [2]). Let ¢ be a positive Borel measure on

2) SZ P{® s« udt is a positive measure defined by ﬁS«M(}?n) # p)dt for every ¢ e Cx (R™1).
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R (k=1) with |{do =1 and h @ non-negative Borel function on R".

Assume that R* is generated by supp[e] as a group and that hx¢ = h on
R*. Then h has the following representation:

h(x) = Iexp(a-x)du(a) a.e.

with some positive Borel measure v on RF.

Proof of Lemma 2.8. Let ¢ be a non-negative continuous function on
(0, o0) with compact support and with Jq&(t) dt = 1. Then u = P®xu give

u= W@ =+u. Applying Lemma 2.9 with ¢ = W3, we see that there exists
a positive measure v on R"*! such that

u(x, ) = j exp(a-x + bt)dv(a, b) a.e.
Rn+1
By Lemma 2.3, we have
I I exp(a-x + bb)|x| " *dxdv(a, b)<oo,
R7+1 J |z|21

so that supp[v]C{0} X R. By using u = P{®xu for every s> 0 again, we
conclude that u is constant.

ProrosiTiON 2.10. Let ue S, and the associated measure of u. Then
u= W% +c on R"*

with some constant ¢ = 0. Furthermore if for any positive Borel measure
von R, u — W@y = g a.e. with some constant a, then v =y and a = c.

Proof. For a positive integer m, we put p, = plzo,n, Where B(C, m)
denotes the open ball in R"*' with center 0 and with radius m. For
¢ € Cx(R**") with ¢ =0 and for any s > 0, Lemma 2.5 gives

([ Pode) « (u = W « Copr@ 2 0,
so that
j udX — f u- (B« )dX = f (L 13;«>df) s du, .
Hence

ugdX > | Weou, sdX.
Jusaxz|
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Thus u = W®py, a.e. By Lemma 2.4, u = W”y,. Letting m—co, we obtain
u=W®u Put

h=u— Wy on {XeR""; W@u(X) < oo},

Then Remark 2.6 gives
I(h — P xh)gdX = (j Pﬁ“’dr) xhx(L@g)~(0) = 0
0

for every s> 0 and ¢e Cr(R**"). Hence h = P{”xh ae. For any ¢
Cx((0, o0)) with >0 and with J«pdt =1 h=W2xh ae. and (W xh)
= P@x (W +xh) on R"*', so that Lemma 2.8 gives W{,xh = ¢ with some
constant ¢ > 0, that is, A = ¢ a.e., which gives u = W@y + c a.e. Lemma

2.4 leads to u = W@y + ¢, which shows the first equality. By Remark
2.6, we obtain the second part of this proposition. Thus Proposition 2.10

is shown.

CoroLLARY 2.11. Let ue S, and peM, If u<W®y, then u is the
W@ -potential of the associated measure of u.

§ 3. Reduced functions and swept-out measures

For ue S, . and a compact set K in R*"', we put

R¥u(X) = inf{v(X); ve S,, v=u on K}
and
RPu(X) = Q¢ u(X),

r~—

where QP u is the lower regularization of @%¥u, namely for a function v
r~—
on R**, y(X) = liminf, .y v(Y). Furthermore, for u € S, and a set A in R"*},
we put
R{Pu(X) = sup{R¥v(X); ve S, ., v<u and ADK: compact set},
QP u(X) = inf{R®u(X); A C w: open set}

and
RPu(X) = QPu(X).

We say that R®u and R{u are the reduced function of u to A and the
outer reduced function of u to A with respect to L“, respectively.
For a set A in R**! and for ue .§a, the reduced function R®u of u

to A and the outer reduced function ﬁff)u of u to A with respect to L
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can be defined analogously. For all the results for L® in this paragraph,
the analogies for L@ hold.

Remark 3.1. Let o be an open set in R**! and u € S,. Then we have:
(1) o is redusable, that is, R®”u = Ru.
(2) R®u=u on o.

Lemma 3.2 (G. Choquet, [6] p.34). Let (f.).c; be an arbitrary family
of functions on R"*'. Then there exists a countable subset I, of I such that
for any lower semi-continuous function g, g < f;, implies g < f,. Here for
a subset J of I, we write f,(X) = inf,., f(X).

LEMMA 3.3. Let u be a positive and locally integrable Borel function
on R**' and assume u>= P®xu for s> 0. Then ueS,, u= u a.e. and for
any approximate sequence (¢n)m-. Of the Dirac measure, (W, «u(X))n_,

converges increasingly to u(X) with m — oo,

Proof. Take an approximate sequence (¢,);-, of the Dirac measure.
The semi-group property of (P{),., shows that P{®xu = P® xu on R"*' if
0<s, <s, so that (W, xu(X));-, is increasing. For Xe R"*!, we choose
a sequence (X,)r_, C R**! convergent to X satisfying u(X) = lim,_... u(X,).

Then for any m = 1,

u(X) = liminf (W), * u(Xe)) Z W, «u(X) =2 W), xu(X).
k—ro0
For any ¢ € Cx(R"*") with ¢ =0, the Fatou lemma gives

Iu¢dX§ liminf | «- (W, «$)dX = liﬂian(WE;Zu)*u)qstg qusdx,

m— 00

so that u<u ae., that is, u =y ae. Since w*lim,_ . (W{,dX) = ¢

and u is lower semi-continuous, we have

liminf (W, xu(X)) = w(X) on R**'.
Thus we have
u(X) = lim(Wg, xu(X)) = im (W, *u(X)) on R**'.

This gives u € S,, which shows Lemma 3.3.

3) For a sequence (gn)5-, of Borel measures and a Borel measure p, we write p=
w*-lim gy if (um)jm=, converges vaguely to p as m—oo.
m— 0
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Lemmas 3.2 and 3.3 give the following

Remark 3.4. For ue S, and any set A in R**!, we have:
(1) R{Pu=lim,... RP(WE,xu), RPueS,, RPuesS,,
(2) RYPuis a W”-potential if A is relatively compact (see Corollary

2.11) and RYRPu = RPu if A is open (see Remark 3.1).

In general, a closed set F is not always reducible, that is, R¥Pu +
R u for some u € S,. But we have the following

LemMmA 3.5. Let F be a closed set in R**' and ueS,. If uis con-
tinuous on a neighborhood of F and if limy.p, x-..u(X) =0, then RPu = R u.

Proof. For any 6 >0, we choose a compact set K C F such that
u<d on F\K. Then we have

RPu < RPu < R{u < RPu + 6 on R**',

so that it suffices to show that RQu = R u for every compact set K C F.
Let ve S, with v > u on K. Then for any § > 0, continuity of ¥ on some
neighborhood of K shows that v + § > R®u on R**'. Letting 6—0 and
taking the lower regularizations, we obtain R{’u > R ’u on R"*!, that is,
RPu > R¥u, which shows Lemma 3.5.

For pe M, (resp. p € M,) and for a set A in R**!, Corollary 2.11 shows
that RY W@y (resp. RPW®@y) is a W@-potential (resp. W-potential).
We denote by p) (resp. p4) the associated measure of R W®pu (resp.
ﬁﬁ,‘“W‘“’y). We say that p, (resp. pJ) is the inner W®-swept-out (resp.
W@_swept-out) measure of © to A.

ProposSITION 3.6. Let A be a set in R**' and pc M, Then

jdp;gfd#.

Proof. Let (w,);., be an exhaustion of R**!. By Remark 3.1, there
exists a positive measure v, with R;‘ﬁl = W@y,. Then we have

m—oo m—oo

f dyy = lim [ W, dyfy = lim [ W v,

< lim | W@pdy, = lim W(“’vmdy = jd,u .

m—oo m—o0

ProposiTiON 3.7. Let ucS, and let A be a set in R**'. Then the
support of associated measure of RPu is in A.
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Proof. By the definition of R{’u, Lemma 2.7 and by Remarks 3.5, 3.4,
we may assume that A is compact and that u is a continuous W®-
potential. Put u = W®yu with pe M, and let (0,);-, be a sequence of
relatively compact open sets with @,,,,Cw, and with N3_.,0, = A. Since
W@y, < Wy for all m and since Lemmas 3.3 and 3.5 give lim,, ..(W®p, )
=W®u, a.e., we obtain g, = w*lim,_., p.. (see Lemma 2.7). Hence it
suffices to show supp[y,] C @ for every open set w in R"*'. Suppose that
there exists a point X;e CaNsupplp,]. Let (V,)i., be a sequence of open
sets in R**' with V,cCas, V,,,CV, and with N;_,V, = {X;}. We put
tn = taly,. Then

W, 2 WO, — ) + WY, on R

and
Wy, — pn) + W (), = Wy on w.
Hence
Wy, = W (u,), on R"*',
so that

s ([ 0) < [ ) = 9o o 0,
which contradicts the unboundedness of W e, on a neighborhood of X,.

Thus Proposition 3.7 is shown.

ProposriTioN 3.8. Let pe M, and ve M, Foraset Ain R**, we have
jww; dv = j Weoudy, and W@ (X) = IW(”e;,A(X)dp(Y),

where we denote by ey and by ¢ , the Dirac measure at Y and its inner
W@ -swept-out measure to A. In particular if A is open,

Jwetiay = [weav.

Proof. First we assume that A is open. Let (0,);_; be an exhaustion
of A. Then Proposition 3.7 and Remark 3.1 show that

f W@y, dy = lim | Wy, dy = lim | Wopdy!, = lim | W) dy

m—co m— oo m-—sco

= lim[Wwu, dv) = j W, dvl] .

Mm—» o0,

Let A be an ar bitrary set. By the definition of inner W®-swept-out
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measures and Lemma 3.3, we may assume that A is compact, x€ M, . and
that veMM. Take a sequence (£2,):_, of relatively compact open sets
with 2,,,C 2,, and with N:_, 2, = A. By Lemma 3.5 and the above
result, we have

f W, dy = lim (W@, dv = lim | Weuy, dy = j Wy dy .

M~ o0 m—roo

In particular, we have W®¢, (X) = W‘“’ef{, AY). Hence

W uy(X) = f W@, dey = f W (V)du(Y) = JW“’e;,A(X)d,u(Y) .
This completes the proof.

By Remark 3.4, (2) and Proposition 3.8, we have the following

COROLLARY 3.9. Let o be an open set in R"*'. Then the mapping
M, s p—y, is positively linear, and for any pe M, and any positive measure
v with v £ yl,, we have v, = v.

Proof. It follows immediately from Proposition 3.8 that the mapping
p—t, is positively linear. By Remark 3.4, (2) we have (4)), = ), so that
by Proposition 3.8, for any Xe€ R"*,

[wee) — wos ) =o.

Since W@e, > W®e}, ,, we have W®We, = W@}, , yi-a.e. as functions of Y,
so that

[wos@) — wog, xnaun) = 0,

that is,
W@y = W, |
which gives v = v .

ProrosrrioN 3.10. Let pc M,. Then we have:

(1) For two sets A, and A, in R"*' with A, C A,, we have py, = y4,
on Int(A4,), where Int(A,) denotes the interior of A,.

(2) For a set A in R"*" with J‘m dp = 0, we have yy = p.

Proof. (1): Choose ¢ € Cg(R"*') with ¢ = 0 and supp[g] C Int(4,). Let
2 be the real Borel measure such that ¢ = W@, Then we have
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j Wiy d/.tilg — JW@#;? dir — ‘[Wmﬂ;? di-
< fwwy:,l da — j Wy, da-
= [Werdg,,,

because supp[2*] C Int(4,) and W@y, = W=y, on Int(4,).
By using Proposition 3.8 and Remark 3.1, (2), we show (2) in the
same manner as in (1). This completes the proof.

ProposIiTiION 3.11 (the domination principle). Let 2 be an open set
in R"*', ue S, and pe M, with supp[y] C Q. Put

E = (Xe0; uX) — ROu(X) = Wou(X) — Wouu(X))
If po = p, then u — Ru =Wy — Wy, on R

Proof. Since p is a sum of positive measures with compact support,
we may assume that supp[y] is compact. Let o be an open set with
o D CQ. Then

u+ ROW®u = Rsju + W on EUw.

Let v be the associated measure of R{u and put R{u = W@y 4 ¢ with
¢=0, Then supp[v] € C2, so that

RSu + Wou = ¢ + RO(Wy + W) < u + ROW™y on R,
/7 ¢ Iz

because v — ¢ + RWW@yu>0. Since W®pu is continuous in a certain
neighborhood of CQ and vanishes at the infinity, Lemma 3.5 shows

u— RGu =W — W®ugy,
which shows Proposition 3.11.

ProposiTiON 3.12. Let w, and w, be open sets in R**' with v,Nw, = ¢
and pe M, Then p, = po,uuwle + Uovemls)o-

Proof. Let (v, ,);_, be an exhaustion of w, and put g = pl,y..l5 and
U = (), uwpe  Since supplull.] C @;, C @, by Proposition 3.10, (2), /.l.,
= (Umlope, SO that

W (unle) = ROWO (unlo) < ROW@p, = W (u)s, .
On the other hand, by Corollary 3.9, we have (u). ., = t, so that
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(1o vwslss = - Since w*-lim,, . g, = (¢)h,0., by Lemma 2.7, it follows that
W@ = WO)oyyulz) = liminf W () ),) < WO ()., .

Thus, ¢ = (1), and hence g, = (t,vuw)os = tn + (thvusl)s, Which shows
Proposition 3.12.

CoroLLARY 3.13. Let Q and o be open sets in R"*' and pe€ M,. Then
(#?)]m);ﬂm = #?)'m'

Proof. By Proposition 3.8, we may assume that supp[y] is compact.
Let (0,)5., be an exhaustion of w. By Proposition 3.6, we may assume
that ((16]u)2nwnucenin)n=-1 converges vaguely to some measure v. By the
definition of inner W@-swept-out measures, we have v = (¢5],), = ol (see
Corollary 3.9). Proposition 3.12 gives

(Lol onwnvcensy) = (Holo)onen  OD @y .

Letting m — o, we have
/jg)lm —.<T (ﬂ3,7|w);7ﬂw on w.
Hence Proposition 3.6 shows |, = (¢bl)one

ProposiTION 3.14. Let Q2 be an open set in R"*', T the projection of
CQ to the t-axis and X, = (x,, t,) € R**'. Let M be the connected component
of TU{t,} satisfying t,e M and put t, = sup M. If %, o+ ex,, then

Supp [ero, !)] - @ ﬂ (Rn X (tl), tl)) d
For the proof, we use the following

Lemma 3.15. Let p,ve M, and X, = (x,t,) € R**"\supp[v]. Suppose
that W@u=>=W@y on R""' and that supply] C {(x,?) € R**';t <t} If
W@ u(X,) = Wu(X,), then supp[v] C {(x, ) e R***; ¢ < ¢} and W = Wy
on {(x,t) e R**';t > t}.

Proof. Since W@ (y — v) = 0, W (p — v)(X;) = 0 and since W@ (u — v)
is of class C* in a neighborhood of X,

W = (XK = W = )(X) = 0

and

0= LOW(u = )(X) = — Cua | Wl — )50 — 3, )y dy
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Then we have W“u(x, t,) = W“u(x, t,) dx-a.e., so that for any s> 0 and
for any x € R*, we have

W u(x, t, + s) = I W (x — y, YW@ u(y, t,)dy

- j Wz — y, ) W@u(y, t;)dy
< W9u(x, £, + 5).

Therefore W@y = Wy on {(x,t) e R**';t>t,} and v = 0 on {(x, t) € R"*";
t > t,}, which shows Lemma 3.15.

Proof of Proposition 3.14. Put
s = sup{t = &; supplek,, ol N (B" X {}) # ¢;.
Then Lemma 3.15 yields s > ¢, and
supp (e, ol = 2 N (B" X (4, 9) -

Suppose that s <t and QN (R" X (s, )) + ¢; we can take a non-
empty open set w in R* and a positive number § > 0 such that ¢, <s — ¢
and

D;=wX(s—4d,8 CCR2.

Put v; = %, ounslz5- If vs = 0, then Proposition 3.12 gives ¢, o = €%, 0ups
so that Lemma 3.15 shows that ¢%, , vanishes on R* X (s — g, o0), which
is a contradiction. Hence v, #= 0 for every sufficiently small 6> 0. By
Lemma 3.15, there exists s’ > s such that

W@y, = Wy, on R™ X [§/, 00).

Since Proposition 3.12 shows supplv; + v} o] C R* X (— o, s], for any
s <t<s, we have

0 = W@y, 0,s) — W@y} 0, ")
- f (W, ) — W, o, YW(— x, 8" — f)da.
R

Since W@y, =Wy} , on R"*!, Lemma 2.4, (3) shows

Wy, =Wy, , on R" X (s, ).

We may assume that (y‘, / I dv,;) and (v’a‘ 2 / f dva) converges vaguely
>0 >0
as § —>0. Put
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y = welim (u,; / f dua) and o = W*-lim(ug‘ . / [ du,,);
610 30

then Proposition 3.12 gives supp[’] € 2 N (R* X [t, s]), W@y >=W®y on
R**' and W@y =Wy on R* X (s, o0). Since supp[y] € R* X {s}, W@y = 0
on R*" X (— oo,s]. Hence W®y = W@y on R"*!, which implies v = /.
But this contradicts supply] © C2 and supp[y’] © 2. Thus Proposition
3.14 is shown.

§4. L@-regular points and a Poincaré type condition

As in the classical potential theory, we define L“-regular points for
Dirichlet problem.

DeFiNITION 2. Let £ be an open set in R**' and X,€0Q2. Then X,
is said to be regular for the Dirichlet problem of L on £ if

: 2.
w*-lim e, co = ey, -
Xe2,X~Xo

ProposITION 4.1. Let 2 and 2’ be open sets in R*** and X, € 02N af’.
If there exists a neighborhood V of X, such that PNV =Q2'NV and if X,
is regular for the Dirichlet problem of L' on ', then X, is so on £.

Proof. Let U be an open neighborhood of X, with U V. Then
w*-liMyep yx, €%, corlv = €x,» For any Xe 2, Lemma 3.5 and the domination
principle of W@ (Proposition 3.11) show

W(a)(eg, Cl)’l(]) S RW@ey = REW ey = W("‘)(e:{’ ca) = Wey .

Let (X,):., be an arbitrary sequence in £ with lim,_.X, = X,.
Since | de¥, 0o <1, it suffices to show w*-lim, . ¥, ¢o = ez, in the case
that (%, co)o_, converges vaguely. Put p = w*-lim, ..¢%  c,. Since for
any non-negative fe Cx(R"*"), W*(fdX) is finite continuous and vanishes
at the infinity,

j Wey, fdX = lim [ WO oaly) FdX

m—co

< lim [ W, o0) fdX = j Weu.fdx

Mm—co

< j Wwe, fdX.

Therefore W@ey, = W@y a.e., so that W®@ey, = W@y, which gives p = e,.
This shows that X, is regular for the Dirichlet problem of L on 2.
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ProrosITION 4.2. Let 2 be an open set in R"*' and X, = (x,,t,) € 002
such that for any neighborhood V of X,

VNL2N{(x,0);t<t}+6.

Then the following four conditions are equivalent:

(1) X, is regular for the Dirichlet problem of L on Q.

(2) For any ueS,, RHu(X,)) = u(X)).

(8) There exist ue S, and {(x,, t.)}lni C R"*' such that t, <t,
limm—»oe tm = tO, Ré‘n!;u(xm9 tm) 7& u(xm’ tm) and that R(C?.C)'u(XO) = u(XO)‘

(4) 53:0, co = €xoe

Proof. Proposition 3.8 shows for any pe M, REWOuX) =

W®yde¥, cq, sO that (2)<>(4) holds.
(1)—(3): Choose fe Cx(R"*") such that f=0 and that />0 on a

neighborhood of X;. Then W“(fdX) is a required function. In fact, since
W@(fdX) is finite continuous and vanishes at the infinity, we have

lim W@ (fdX)dey, co = WO(fdX)(Xo) ,

Ye,Y-Xo
so that Proposition 3.8 gives
lim RHEWO(fdX)(Y) = W(fdX)(X,) .

Yen,v—Xo
Since
QEIW @ (fdX)(Y) = W (fdX)(Y)  on CQ,
we have
RHEW@(fdX)(X,) = W (fdX)(X,) .

Assume W9@(fdX) = REW@(fdX) on R" X (t,t) with some t<t¢, and
denote by f, the restriction of f to R" X (¢,t,). Then Propositions 3.8, 3.11
show

W@ (f,dX) = RW=(f, dX) on R**',

which contradicts Proposition 2.10. Thus (3) holds.
(83)—(4): By Proposition 3.7, u — R{ju is lower semi-continuous on
Q. Furthermore for any 5> 0,

{(XeQ; u(X) > RBuX)} N (R" X (ty — 6,8) # ¢.
In fact, if u(X) = RQu(X) on QN(R" X (t, — 5,t)), Lu=0 on 2N
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(R" X (t, — 8,%,)) (in the sense of distributions), because L“(R{u) = 0
on £, and hence for any (x,#) e QN(R" X (¢, — 5, t,)),

[ @w—Rgwe+y951dy=o0,

that is, u = R$u on R" X (¢, — 4, t,) (see Lemma 2.4, (3)), which contra-
dicts (3). Hence we can choose y; € M, such that p, + 0, supplu] C 2N
(R* X (t, — d,%)) and that v — R§3u =W™y, on a certain neighborhood
of supp[w;]. Then Proposition 3.11 gives

u— R(é’!}u > W(a)/l,; — W(ﬂ)[u;,cg on R**! ,
so that by Proposition 3.8, and the assumption that u(X,) = R{u(X,),
W("‘)EX,, — W("“e;{o, co ps-a.e.,

which implies W©®e,, = W®e/, ,, on R* X (— oo,t, — 3) by Lemma 3.15
for L@. Therefore let §—0; then Proposition 2.10 yields

124
Exy = €xy,c0>

which shows (4).

(2)—(1): Let (X,);_, be an arbitrary sequence in £ with lim,_. X,
= X,. To show w*-lim, .. ¥ co = ex,, We may assume that (¢¥, o);-, con-
verges vaguely. Puty = w*lim,,_.¢¥  c,. For any pe M, ., whose support
is compact, we have

j W dye = Tim [ W pdet,, cp = HmWpy(X.,)

m— oo m

2 WuaX) = Wou(X) = | Wer,dy,

so that W(“’VZW(“’ex., a.e., that is, W@y = W“)sh, which shows v = ey,.
Thus X, is regular. This completes the proof.
For any (x,f) e R**! and ke R, we set

(%, t) = (2*x, 2*Ft) .

Remark 4.3. Let ueS, and ke R and put v(X) = u(r{*X). Then
veS,.

We shall prove the following main theorem.

THEOREM. Let Q be an open set in R"*' and X, €dQ. If there exists
a non-empty open set w in R" such that a-tusk T (w) of w at X, is in
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CQ, then X, is regular for the Dirichlet problem of L on 2.

Proof. We may assume that Xj is the origin 0 of R**'. By Proposition
4.1, we may assume that

T (0) = {(px, —p*); x €0, 0 <p < oo}.
Put

:{(x ); — 1 <t<1,|x| <1},
= {{*(X); Xe V},
D = V\T{(») and D, = V,N D (k: integer) .
By Propositions 4.1 and 4.2, it suffices to show that 0 is regular on D.
For any § > 0, we can choose a positive integer k& such that

(4.1) sup | def,op <39,

XeV JCVy

because for any Xe D, &% ;5 — ey = L(“)(W(“)eﬁ, en — W@e,) in the sense
of distribution, that is,

42 op = o[ WOexly — 2,0 = WL, coly — 2, D)2l dz)dyds

in CD. Put
1(X) f dEX ch s
= Ssup dEA ch s
Xev_iJev
and

wX) =p| At (= oo

Then 8<1. In fact, we take a sequence (X, )m., CV._ N D such that
limj de¥,. o5 = . We may assume that (%, ¢5)m-1 converges vaguely to
m—ow J CV

some veM as m-—oo and that (X,):_, converges to some point X, =
(x.., t.). Then

Since the family of the density of ¢% .; (Xe D) with respect to dX is
uniformly bounded on every compact set in CD (see (4.2) in this proof),
we have
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W@y = W@y on CD and Idu =1.

Assume that p=1; .[ dy < liminf,, ., I dey. .5 =0 and hence supp[v] C CV.
Since for any ¢ Ma,VW“”X 5 1s continuous on D, the function | W2 deY, o5
of X is continuous on D (see Proposition 3.8), so that the mapping
D> X—¢f .5 is vaguely continuous. Therefore Proposition 3.14 gives
X. e V_,NaD, because if X. € D, then v = ¢¥_ ,5, which contradicts
supp[y] € CV and Proposition 3.14. By Lemma 3.15, W(”’exm = W@y on

{(x,t); t <t.}. Proposition 2.10 gives v = ey, which contradicts supp[y]
c CV. Thus <L

Let (¢n)5-, be an increasing sequence in CZ(R"*") such that 0 < ¢, < 1,

im,,.. ¢, =1 on CV and that ¢, =0 on V_,. We write ¢, = W2, with
some signed measure 1,. Then

IV (.[CV de;," Cﬁ)dei‘{’ CD”"“(Y) = lim W(a)'zm cb de:‘ﬁ, CD_—1>
—-k—1

m—ooo J V-1

where 2, .5 = (A3)o5 — (4;)o5. Since Corollary 3.13 gives

(EX D1 cp = 5:{ D= 1IV i (Sfx: cD—_T_ﬂCV_,,_l),c’B,

we have

f W(a)zm Cndefli,CD—k 1= I W(“)Z d(EX CD—x— 1) = 0'
V—k-1

V k-1

Let (¢4,);-, be a sequence in Cg(R"*") such that 0< ¢, < 1 and lim,, .., ¢,.(X)
=1on CV and =0 on V. Since ¢, = W1, with some signed measure
Am, by Proposition 3.8, we have, for Xe V_,_,,

u(X) = lim | ¢, de¥, o5 = lim ff Om de¥, cp def, op- P I(Y)

m—» o0 m— o0

_ j (j _ag, Cﬁ)de;, p—y

I eV _x- ( o T, Cb)dsi crmin(Y)
< w(X) < pui(eth (X)) + (L — p)a.

Thus we obtain inductively

I

llmsup u(X) < Z ff1—po=2,

which gives



REGULARITY FOR PARABOLIC OPERATOR 21

limu(X)=0.

X0

By Proposition 3.14, we can choose fe Cr(R"*") such that 0 <7< 1,
supp[f] € CV and that

u(X) = If(Y)degg,m(Y) >0 onD.

Take ¢ € Cx(R"*") such that supp[¢] < D, ¢ = 0, Int(supp[g]) N {(x, ); £<<0}
+ ¢ and that W“(¢dX) < u on supp[g]. For any open set o D CD, we
put o, = {X; ¢(X) > 0}Uw. Let (0,);_, be an exhaustion of @,. Then we

have

W (gdX)(X) — W($dX)(X)
= [wogax) - wogdxds..,

= lim | (W(¢dX) — W (sdX).)dex

X, 0m

< lim [ wdet.., = lim ( f fds;"cﬁ)dsff’,,m(Y) — u(X).

m—sco Mm-—ro0

By Lemma 3.5, we have

W (gdX)(X) — W (pdX)op(X) < u(X)  on R,

which implies

lim 0W(")(ngdX Yen(X) = W@(¢dX)(0) .

Xe0, X~

Hence
WA(gdX)op(0) = W (4d X)(0)

(see, for example, the proof of (1)—(3) in Proposition 4.2). By Proposition
4.2, (3), 0 is regular for the Dirichlet problem of L“ on D. This com-
pletes the proof.
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