UNIT THEOREMS ON ALGEBRAIC TORI

HYUN KWANG KIM

Let k be a p-adic field (a finite extension of \boldsymbol{Q}_{p}) or an algebraic number field (a finite extension of Q). Let T be an algebraic torus defined over k. We denote by \hat{T} the character module of T (i.e. $\hat{T}=$ $\operatorname{Hom}\left(T, G_{m}\right)$), where G_{m} is the multiplicative group.

As is well-known (cf. [7]), T is split by a finite galois extension K / k. We denote by G the galois group of K / k. Then \hat{T} becomes naturally a G-module. Since the map $T \rightarrow \hat{T}$ yields a canonical isomorphism between the category of tori defined over k and split by K and the dual category of finitely generated Z-free G-modules, it is natural to use $\operatorname{Hom}_{G}\left(\hat{T}, M_{K}\right)$ as a definition of an object relative to T over k when M_{K} is a G-module of arithmetical interest related to K.

In this paper, we will determine the structure of $\operatorname{Hom}_{\theta}\left(\hat{T}, O_{K}^{\times}\right)$where O_{K}^{\times}is the group of units of K and will discuss the meaning of this group.

§ 1. Local unit theorem

Let k be a p-adic field. First we recall the structure of O_{k}^{\times}. Let π be a prime element of k and let U_{1} be the group of one units of k i.e. $U_{1}=1+\pi O_{k} . \quad Z_{p}$ acts on U_{1} as follows:

Let $a=a_{0}+a_{1} p+\cdots+a_{n} p^{n}+\cdots \in Z_{p}$ and $u \in U_{1}$. Set $a_{n}=$ $\sum_{i=0}^{n} a_{i} p^{i}$. Then $\left\{u^{a_{n}}\right\}$ is a Cauchy sequence in U_{1}. Since U_{1} is compact, the limit exists and denoted by u^{a}.

So we can view U_{1} as \boldsymbol{Z}_{p}-module. We have the following proposition (cf. [5]).
(1.1) Proposition. $U_{1} \approx W\left(U_{1}\right) \times \boldsymbol{Z}_{p}^{\left[k . Q_{p}\right]}$, where $W\left(U_{1}\right)$ is the group of roots of unity in U_{1}.

Now $O_{k} /(\pi)$ has $q=p^{s}$ elements. Let η be a primitive $(q-1)$ th root of unity in O_{k}. Then

[^0]$$
O_{k}^{\times}=\langle\eta\rangle \times U_{1} \approx\langle\eta\rangle \times W\left(U_{1}\right) \times Z_{p}^{\left[k: Q_{p}\right]} .
$$

We have proved
(1.2) Proposition. Let k be a p-adic field. Up to finite torsions, O_{k}^{\times}is a free Z_{p}-module of rank $\left[k: \boldsymbol{Q}_{p}\right]$.

Let k be a p-adic field and T be a torus defined over k split by K, where K is a finite galois extension of k with galois group G. We can think $\operatorname{Hom}\left(\hat{T}, O_{K}^{\times}\right)$as a G-module. Let $\operatorname{Hom}_{G}\left(\hat{T}, O_{K}^{\times}\right)$denote the G invariant submodule of this module.
(1.3) Definition. $T\left(O_{k}\right)=\operatorname{Hom}_{G}\left(\hat{T}, O_{K}^{\times}\right)$

We have the following main theorem for local theory.
(1.4) Theorem. Up to finite torsions, $T\left(O_{k}\right)$ is a free Z_{p}-module of $\operatorname{rank} r(T)=\left[k: \boldsymbol{Q}_{p}\right] \cdot(\operatorname{dim} T)$.

Proof. By Proposition 1.2,

$$
O_{K}^{\times}=W \times U_{1}, \text { where } W \text { is a finite group. }
$$

Therefore,

$$
T\left(O_{k}\right)=\operatorname{Hom}_{G}(\hat{T}, W) \times \operatorname{Hom}_{G}\left(\hat{T}, U_{1}\right) .
$$

Since $\operatorname{Hom}_{G}(\hat{T}, W)$ is a finite group, it suffices to determine the Z_{p}-module structure of $\operatorname{Hom}_{G}\left(\hat{T}, U_{1}\right)$. For each $m \geq 1$, set $U_{m}=1+\left\langle\pi^{m}\right\rangle$.

It is well-known that (cf. [5]):
(i) U_{m} is a Z_{p}-submodule of U_{1} of finite index.
(ii) U_{m} is free if $m>\frac{e}{p-1}$, where e is the ramification index of p over K.
We will determine the Z_{p}-rank of $\operatorname{Hom}_{G}\left(\hat{T}, U_{m}\right)$ for sufficiently large m.
Now we need lemmas.
(1.5) Lemma. Let R be a commutative ring and M, N be R-modules. We have an isomorphism

$$
\operatorname{Hom}_{R}(M, N) \approx M^{*} \otimes_{R} N
$$

where $M^{*}=\operatorname{Hom}_{R}(M, R)$ denote the dual module of M. Assume further that a finite group G acts on M and N. Then the isomorphism induces an isomorphism of G-invariant parts.

$$
\operatorname{Hom}_{R[G]}(M, N) \approx\left(M^{*} \otimes_{R} N\right)^{G}
$$

Proof. See Proposition 10.30 in [2].
(1.6) Lemma. Let R be a principal ideal domain and let K be its quotient field. Let X be a finitely generated R-free module. Assume that a group G acts on X. Then

$$
\operatorname{rank}_{R} X^{G}=\operatorname{dim}_{K}\left(X \otimes_{R} K\right)^{G}
$$

Proof. It sufficies to show $X^{G} \otimes_{R} K=\left(X \otimes_{R} K\right)^{G}$. Clearly $X^{G} \otimes_{R} K \subset$ $\left(X \otimes_{R} K\right)^{G}$. To do converse, choose a basis $\left\{x_{1}, \cdots, x_{n}\right\}$ of X over R such that $\left\{a_{1} x_{1}, \cdots, a_{l} x_{l}\right\}$ is a basis of $X^{G}, a_{1}, \cdots, a_{l} \in R$. Assume $x=x_{1} k_{1}+$ $\cdots+x_{n} k_{n}, k_{i} \in K$, be an element of $\left(X \otimes_{R} K\right)^{G}$. We can choose $r \in R$ such that $k_{i} r \in R$ for all $i=1, \cdots, n$. Hence $x r=x_{1} k_{1} r+\cdots x_{n} k_{n} r \in X^{a}$. By the choice of our basis, we have $k_{i} r=0$ if $i>l$. This proves that $x \in X^{G} \otimes_{R} K$.
(1.7) Lemma. Let V be a vector space over a field K, char $K=0$. Let $\varphi: G \rightarrow G L(V)$ be a representation of G in V. Then

$$
\operatorname{dim}_{K} V^{G}=\frac{1}{|G|} \sum_{g \in G} \chi(g)
$$

where χ is the character of φ.
Proof. First assume that φ is irreducible. Then $V^{G}=0$ or G.
(i) $V^{a}=V$. Then $\varphi(g)=\mathrm{id}_{V}$ for all $g \in G$.

Hence

$$
\frac{1}{|G|} \sum_{g \in G} \chi(g)=\frac{1}{|G|} \sum_{g \in G}(\operatorname{dim} V)=\operatorname{dim} V
$$

(ii) $\quad V^{G}=0$.

Let $\left\{v_{1}, \cdots, v_{n}\right\}$ be a basis of V over K and let $\left(a_{i j}(g)\right)$ be the matrix of $\varphi(g)$ with respect to this basis. For each i,

$$
\sum_{g \in G} \varphi(g) v_{i} \in V^{G}=0
$$

On the other hand,

$$
\sum_{g \in G} \varphi(g) v_{i}=\sum_{g \in G}\left(\sum_{j} a_{i j}(g) v_{j}\right)=\sum_{j}\left(\sum_{g \in G} a_{j i}(g)\right) v_{j}
$$

By linearly independence,

$$
\sum_{g \in G} a_{j i}(g)=0 \quad \text { for all } i, j=1, \cdots, n
$$

Hence

$$
\sum_{g \in G} \chi(g)=\sum_{g \in G}\left(\sum_{i} a_{i i}(g)\right)=\sum_{i}\left(\sum_{g \in G} a_{i i}(g)\right)=0 .
$$

For general case, let $V=V_{1} \oplus \cdots \oplus V_{k}$ be a decomposition of V into irreducible subspaces. So we have $V^{G}=V_{1}^{G} \oplus \cdots \oplus V_{k}^{G}$. Let χ_{i} be the character of the subrepresentation $\varphi_{i}: G \rightarrow G L\left(V_{i}\right)$. By the first case,

$$
\operatorname{dim} V_{i}^{G}=\frac{1}{|G|} \sum_{g \in G} \chi_{i}(g) .
$$

Hence

$$
\operatorname{dim} V^{G}=\sum_{i} \operatorname{dim} V_{i}^{G}=\sum_{i}\left(\frac{1}{|G|} \sum_{g \in G} \chi_{i}(g)\right)=\frac{1}{|G|} \sum_{g \in G} \chi(g) .
$$

To apply Lemma 1.5 to our problem we need:
Sublemma. There is a natural isomorphism

$$
\operatorname{Hom}_{Z}\left(\hat{T}, U_{m}\right) \approx \operatorname{Hom}_{Z_{p}}\left(\hat{T} \otimes Z_{p}, U_{m}\right) .
$$

Furthermore,

$$
\operatorname{Hom}_{Z[G]}\left(\hat{T}, U_{m}\right) \approx \operatorname{Hom}_{Z_{p}[G]}\left(\hat{T} \otimes Z_{p}, U_{m}\right)
$$

Proof. Straightforward.
By abuse of notation, we will write \hat{T} instead of $\hat{T} \otimes Z_{p}$. Assume that $m>\frac{e}{p-1}$. Then U_{m} is Z_{p}-free.
By Lemma 1.5,

$$
\operatorname{Hom}_{G}\left(\hat{T}, U_{m}\right)=\left(\hat{T}^{*} \otimes U_{m}\right)^{G} .
$$

By Lemma 1.6,

$$
r(T)=\operatorname{rank}_{z_{p}}\left(\hat{T}^{*} \otimes U_{m}\right)^{G}=\operatorname{dim}_{Q_{p}}\left(\hat{T}^{*} \otimes U_{m}\right)^{G}
$$

Assume that G acts on \hat{T} and U_{m} with characters χ_{1} and χ_{2}, respectively. Let χ be the character comes from the action of G on $\hat{T}^{*} \otimes U_{m}$. Then

$$
\chi(\sigma)=\chi_{1}\left(\sigma^{-1}\right) \cdot \chi_{2}(\sigma) \quad \text { for all } \sigma \in G
$$

By Lemma 1.7,

$$
r(T)=\frac{1}{|G|} \sum_{\sigma \in G} \chi_{1}\left(\sigma^{-1}\right) \cdot \chi_{2}(\sigma)=\left\langle\chi_{1}, \chi_{2}\right\rangle .
$$

Now we will describe the action of G on U_{m}.
Sublemma. Let $|G|=n$. There exists π^{\prime} in $\pi^{n} O_{K}$ such that $\sigma\left(\pi^{\prime}\right)=\pi^{\prime}$ for all $\sigma \in G$.

Proof. Put $\pi^{\prime}=\prod_{\sigma \in G} \sigma(\pi)$.
Assume that $m>\frac{e}{p-1}$ and $|G|=n / m$. By the above sublemma, we may assume that $\sigma\left(\pi^{m}\right)=\pi^{m}$ for all $\sigma \in G$. We have the following commutative diagram:

Choose a normal basis $\left\{x^{\sigma}\right\}_{\sigma \in G}$ of K over k, and let $\left\{\alpha_{1}, \cdots, \alpha_{m}\right\}$ be a basis of k over \boldsymbol{Q}_{p}. Then $\left\{\alpha_{i} x^{\sigma}\right\}_{\substack{i=1, \ldots, m \\ \sigma \in G}}$ forms a basis of K over \boldsymbol{Q}_{p}. By multiplying some power of π which is invariant under the action of G, we may assume that $\alpha_{i} x^{\sigma} \in O_{K}$ for all $\sigma \in G$ and $i=1, \cdots, m$. By the above dia$\operatorname{gram}\left\{\exp \left(\pi^{m} \alpha_{i} x^{\sigma}\right)\right\}_{\substack{i=1, \ldots, m \\ \sigma \in G}}$ forms a basis of U_{m} over Z_{p}. So we have

$$
\chi_{2}(\sigma)= \begin{cases}m \cdot|G| & \text { if } \sigma=\text { identity } \\ 0 & \text { otherwise }\end{cases}
$$

Therefore

$$
\begin{aligned}
r(T) & =\frac{1}{|G|} \sum_{\sigma \in G} \chi_{1}\left(\sigma^{-1}\right) \chi_{2}(\sigma)=\frac{1}{|G|} \chi_{1}(\mathrm{id}) \cdot m|G| \\
& =m \cdot(\operatorname{dim} T)=\left[k: \boldsymbol{Q}_{p}\right] \cdot(\operatorname{dim} T) .
\end{aligned}
$$

(1.8) Remark. Take $T=G_{m}$ the multiplicative group. If we think T is defined over k and split by k, then Theorem 1.4 reduced to Proposition 1.2.

§ 2. Global unit theorem

Let k be a number field, and T, K, G be as in Section 1. As in Section 1, we define the O_{k} point of T as follows:
(2.1) Definition. $\quad T\left(O_{k}\right)=\operatorname{Hom}_{G}\left(\hat{T}, O_{K}^{\times}\right)$.

Then $T\left(O_{k}\right)$ becomes a Z-module. Let $r(T)$ denote its rank. By the arguments in Section 1, we have

$$
r(T)=\frac{1}{|G|} \sum_{\sigma \in G} \chi_{1}\left(\sigma^{-1}\right) \chi_{2}(\sigma)=\left\langle\chi_{1}, \chi_{2}\right\rangle,
$$

where χ_{1} is the character comes from the action of G on \hat{T} and χ_{2} is the character comes from the action of G on O_{K}^{\times}.

Now we will describe the action of G on O_{K}^{\times}. Let $m=[k: Q]$ and $n=[K: k]$. Let $k_{1}, \cdots, k_{\rho_{1}+\rho_{2}}, k_{\rho_{1}+\rho_{2}+1}^{\prime}, \cdots, k_{\rho_{1}+\rho_{2}+r_{2}}^{\prime}, k_{\rho_{1}+\rho_{2}+1}^{\prime \prime}, \cdots, k_{\rho_{1}+\rho_{2}+r_{2}}^{\prime \prime}$ be the distinct conjugates of $k\left(\rho_{1}+\rho_{2}+2 r_{2}=m\right)$. To each of them, we can correspond a conjugate of K to which we will give the same index. The indices are chosen in the way that:
(i) For $1 \leq i \leq \rho_{1}, k_{i}$ and K_{i} are real,
(ii) for $\rho_{1}<i \leq \rho_{1}+\rho_{2}, k_{i}$ is real and K_{i} is imaginary,
(iii) for $\rho_{1}+\rho_{2}<i, k_{i}^{\prime}$ and $k_{i}^{\prime \prime}$ are complex conjugates and the same for K_{i}^{\prime} and $K_{i}^{\prime \prime}$.

Note that K_{i} is galois over k_{i} whose galois group is isomorphic to G. So we may identify its galois group with G. Suppose that $\rho_{2} \neq 0$. Then n is even. For $\rho_{1}<i \leq \rho_{1}+\rho_{2}, K_{i}$ is of degree 2 over the maximal real subfield of K_{i} / k_{i}. Let H_{i} be the subgroup of G corresponding to this field. We have the following proposition (cf. [3], [4]).
(2.2) Proposition. Let H be the representation of G on O_{K}^{\times}, C be the trivial representation of G, A be the regular representation of G and B_{i} be the induced representation of G induced by the trivial representation of $H_{i}, \rho_{1}+1 \leq i \leq \rho_{1}+\rho_{2}$. Then we have

$$
H+C=\left(\rho_{1}+r_{2}\right) A+\sum_{i=\rho_{1}+1}^{\rho_{1}+\rho_{2}} B_{i}
$$

Proposition 2.2 says that

$$
\chi_{2}=\left(\rho_{1}+r_{2}\right) \chi_{A}+\sum_{i=\rho_{1}+1}^{\rho_{1}+\rho_{2}} \chi_{B_{i}}-\chi_{C}
$$

Hence

$$
\left\langle\chi_{1}, \chi_{2}\right\rangle=\left(\rho_{1}+r_{2}\right)\left\langle\chi_{1}, \chi_{A}\right\rangle+\sum_{i=\rho_{1}+1}^{\rho_{1}+\rho_{2}}\left\langle\chi_{1}, \chi_{B_{i}}\right\rangle-\left\langle\chi_{1}, \chi_{c}\right\rangle .
$$

On the other hand,

$$
\left\langle\chi_{1}, \chi_{A}\right\rangle=\frac{1}{|G|}(\operatorname{dim} T) \cdot|G|=\operatorname{dim} T
$$

$$
\begin{aligned}
\left\langle\chi_{1}, \chi_{c}\right\rangle & =\frac{1}{|G|} \sum_{\sigma \in G} \chi_{1}\left(\sigma^{-1}\right) \chi_{C}(\sigma)=\frac{1}{|G|} \sum_{\sigma \in G} \chi_{1}(\sigma)=\operatorname{rank} \hat{T}^{G} \quad \text { (by Lemma 1.7) } \\
\left\langle\chi_{1}, \chi_{B_{i}}\right\rangle & =\left\langle\left.\chi_{1}\right|_{H_{i}},\left.\chi_{B_{i}}\right|_{H_{i}}\right\rangle_{H_{i}} \text { (by Frobenius reciprocity law) } \\
& =\operatorname{rank} \hat{T}^{H_{i}} \quad \text { (by Lemma 1.7). }
\end{aligned}
$$

So we have proved
(2.3) Theorem. Let T be a torus defined over a number field k. Up to finite torsions, $T\left(O_{k}\right)$ is a free Z-module of rank $r(T)$, where

$$
r(T)=\left(\rho_{1}+r_{2}\right) \cdot \operatorname{dim} T+\sum_{i=\rho_{1}+1}^{\rho_{1}+\rho_{2}} \operatorname{rank} \hat{T}^{H_{i}}-\operatorname{rank} \hat{T}^{G} .
$$

(2.4) Remark. T. Ono showed the following generalization of Dirichlet unit theorem (cf. [6]):

Let T be a torus defined over \boldsymbol{Q}. Then Z-rank of $T(Z)$ is $r_{\infty}-r_{Q}$, where $r_{\infty}=\operatorname{rank} \hat{T}(\boldsymbol{R})$ and $r_{\boldsymbol{Q}}=\operatorname{rank} \hat{T}(\boldsymbol{Q})$.

We can deduce this result from Theorem 2.3. Let K be a splitting field of \boldsymbol{T} over \boldsymbol{Q}. Note first that $r_{Q}=\operatorname{rank} \hat{T}(\boldsymbol{Q})=\operatorname{rank} \hat{T}^{G}$.
(i) K is real, i.e. $\rho_{1}=1, \rho_{2}=r_{2}=0$.

Since $\hat{T}(\boldsymbol{R})=\hat{T}, r_{\infty}=\operatorname{dim} T$. Therefore,

$$
r(T)=\operatorname{dim} T-\operatorname{rank} \hat{T}^{G}=r_{\infty}-r_{Q} .
$$

(ii) K is imaginary, i.e. $\rho_{1}=0, \rho_{2}=1, r_{2}=0$.

Since $\hat{T}(\boldsymbol{R})=\hat{T}^{H}, r(T)=\operatorname{rank} \hat{T}^{H}-\operatorname{rank} \hat{T}^{G}=r_{\infty}-r_{\boldsymbol{q}}$.
(2.5) Remark. Definition 1.3 and Definition 2.1 are independent of the choice of a splitting field.

Proof. Since the compositum of splitting fields of T is again a splitting field of T, it suffices to prove the following:

Let E be an another splitting field of T containing K with galois group L, then

$$
\operatorname{Hom}_{L}\left(\hat{T}, O_{\overparen{E}}^{\times}\right) \approx \operatorname{Hom}_{G}\left(\hat{T}, O_{K}^{\times}\right) .
$$

Key point: Assume $\xi \in \operatorname{Hom}_{L}\left(\hat{T}, O_{E}^{\times}\right)$such that $\xi^{\sigma}=\xi$ for all $\sigma \in L=$ $\operatorname{Gal}(E / k)$. Then $\xi^{\sigma}=\xi$ for all $\sigma \in \operatorname{Gal}(E / K)$. Hence $\xi(\hat{T}) \subset O_{K}^{\times}$.
(2.6) Remark. Let k be a number field and $T=R_{k / Q}\left(G_{m}\right)$, where R is the Weil functor (cf. [9] Chapter 1)

Let $\mathscr{C}(K / k)$ be the category of tori defined over k split by K and $\hat{\mathscr{C}}(K / k)$ be the dual category of finitely generated Z-free $\mathrm{Gal}(K / k)$-modules.

We have the following commutative diagram (cf. [7]):

where $G=\operatorname{Gal}(K / Q)$ and $G^{\prime}=\operatorname{Gal}(K / k)$. So

$$
\hat{T}=\widehat{R_{k / Q\left(G_{m)}\right)}}=\hat{G}_{m} \otimes_{\boldsymbol{Z}\left[G^{\prime}\right]} \boldsymbol{Z}[G]=\boldsymbol{Z} \otimes_{\boldsymbol{Z}\left[G^{\prime}\right]} \boldsymbol{Z}[G]
$$

Therefore,

$$
\begin{aligned}
\operatorname{Hom}_{G}\left(\hat{T}, O_{K}^{\times}\right) & =\operatorname{Hom}_{G}\left(\boldsymbol{Z} \otimes_{\boldsymbol{Z}\left[G^{\prime}\right]} \boldsymbol{Z}[G], O_{K}^{\times}\right) \\
& =\left(\boldsymbol{Z} \otimes_{\boldsymbol{z}\left[G^{\prime}\right]} \boldsymbol{Z}[G]\right) \otimes_{\boldsymbol{Z}[G]}\left(O_{K}^{\times}\right)^{*} \\
& =\boldsymbol{Z} \otimes_{\boldsymbol{Z}\left[G^{\prime}\right]}\left(\boldsymbol{Z}[G] \otimes_{\boldsymbol{z}[G]}\left(O_{K}^{\times}\right)^{*}\right) \\
& =\boldsymbol{Z} \otimes_{\boldsymbol{z}\left[G^{\prime}\right]}\left(O_{K}^{\times}\right)=\operatorname{Hom}_{G^{\prime}}\left(\boldsymbol{Z}, O_{K}^{\times}\right) \\
& =\left(O_{K}^{\times}\right)^{G^{\prime}}=O_{k}^{\times} .
\end{aligned}
$$

We have the following conclusion.

$$
\text { If } T=R_{k / Q}\left(G_{m}\right), \text { then } T(Z)=O_{k}^{\times} \text {the group of units of } k
$$

Note that similar conclusion also holds true for p-adic field case.

References

[1] E. Artin, Über Einheiten relativ galoisscher Zählkörper, Crelle Journal, 167 (1932), 153-156.
[2] C. W. Curtis and I. Reiner, Methods of representation theory with application to finite groups and orders, 1, John Wiley \& Sons Inc., 1981.
[3] M. J. Herbrand, Nouvelle démonstration et généralisation d'un théoreme de Minkowski, Comptes rendus, 191 (1930), 1282-1285.
[4] - Sur les unités d'un corps algébrique, Comptes rendus, 192 (1931), 24-27.
[5] R. L. Long, Algebraic number theory, Marcel Dekker Inc., 1977, pp. 57-65.
[6] T. Ono, On some arithmetic properties of linear algebraic groups, Ann. of Math., 70, no. 2 (1959), 266-290.
[7] -, Arithmetic of algebraic tori, Ann. of Math., v. 74, no. 1 (1961), 101-119.
[8] , Arithmetic of algebraic groups and its applications, Lecture Notes, Rikkyo 1986.
[9] A. Weil, Adeles and algebraic groups, Birkhäuser, 1982.

Department of Mathematics

Pohang Institute of Science and Technology
P.O. Box 125 POHANG 790, KOREA

[^0]: Received April 27, 1987.

