UNIT THEOREMS ON ALGEBRAIC TORI

HYUN KWANG KIM

Let k be a p-adic field (a finite extension of Q_p) or an algebraic number field (a finite extension of Q). Let T be an algebraic torus defined over k. We denote by \hat{T} the character module of T (i.e. $\hat{T} = \text{Hom}(T, G_m)$), where G_m is the multiplicative group.

As is well-known (cf. [7]), T is split by a finite galois extension K/k. We denote by G the galois group of K/k. Then \hat{T} becomes naturally a G-module. Since the map $T \to \hat{T}$ yields a canonical isomorphism between the category of tori defined over k and split by K and the dual category of finitely generated Z-free G-modules, it is natural to use $\operatorname{Hom}_G(\hat{T}, M_K)$ as a definition of an object relative to T over k when M_K is a G-module of arithmetical interest related to K.

In this paper, we will determine the structure of $\operatorname{Hom}_{G}(\hat{T}, O_{K}^{\times})$ where O_{K}^{\times} is the group of units of K and will discuss the meaning of this group.

§ 1. Local unit theorem

Let k be a p-adic field. First we recall the structure of O_k^{\times} . Let π be a prime element of k and let U_1 be the group of one units of k i.e. $U_1 = 1 + \pi O_k$. Z_p acts on U_1 as follows:

Let $a = a_0 + a_1p + \cdots + a_np^n + \cdots \in \mathbb{Z}_p$ and $u \in U_1$. Set $a_n = \sum_{i=0}^n a_ip^i$. Then $\{u^{a_n}\}$ is a Cauchy sequence in U_1 . Since U_1 is compact, the limit exists and denoted by u^a .

So we can view U_1 as \mathbb{Z}_p -module. We have the following proposition (cf. [5]).

(1.1) Proposition. $U_1 \approx W(U_1) \times Z_p^{[k,Q_p]}$, where $W(U_1)$ is the group of roots of unity in U_1 .

Now $O_k/(\pi)$ has $q=p^s$ elements. Let η be a primitive (q-1) th root of unity in O_k . Then

Received April 27, 1987.

$$O_k^{ imes} = \langle \eta
angle imes U_{\scriptscriptstyle 1} pprox \langle \eta
angle imes W\!(U_{\scriptscriptstyle 1}) imes m{Z}_p^{\scriptscriptstyle [k:m{Q}_p]}.$$

We have proved

(1.2) Proposition. Let k be a p-adic field. Up to finite torsions, O_k^{\times} is a free \mathbb{Z}_p -module of rank $[k:\mathbb{Q}_p]$.

Let k be a p-adic field and T be a torus defined over k split by K, where K is a finite galois extension of k with galois group G. We can think $\operatorname{Hom}(\hat{T}, O_K^{\times})$ as a G-module. Let $\operatorname{Hom}_G(\hat{T}, O_K^{\times})$ denote the G-invariant submodule of this module.

(1.3) Definition. $T(O_k) = \operatorname{Hom}_G(\hat{T}, O_k^{\times})$

We have the following main theorem for local theory.

(1.4) Theorem. Up to finite torsions, $T(O_k)$ is a free \mathbb{Z}_p -module of rank $r(T) = [k: \mathbb{Q}_p] \cdot (\dim T)$.

Proof. By Proposition 1.2,

$$O_{\scriptscriptstyle{K}}^{\scriptscriptstyle{ imes}}=W imes U_{\scriptscriptstyle{1}}$$
, where W is a finite group.

Therefore,

$$T(O_k) = \operatorname{Hom}_{G}(\hat{T}, W) \times \operatorname{Hom}_{G}(\hat{T}, U_1).$$

Since $\operatorname{Hom}_{\sigma}(\hat{T}, W)$ is a finite group, it suffices to determine the Z_p -module structure of $\operatorname{Hom}_{\sigma}(\hat{T}, U_1)$. For each $m \geq 1$, set $U_m = 1 + \langle \pi^m \rangle$.

It is well-known that (cf. [5]):

- (i) U_m is a \mathbb{Z}_p -submodule of U_1 of finite index.
- (ii) U_m is free if $m > \frac{e}{p-1}$, where e is the ramification index of p over K.

We will determine the Z_p -rank of $\operatorname{Hom}_{\mathcal{O}}(\hat{T}, U_m)$ for sufficiently large m. Now we need lemmas.

(1.5) Lemma. Let R be a commutative ring and M, N be R-modules. We have an isomorphism

$$\operatorname{Hom}_{\scriptscriptstyle{R}}(M,N)\approx M^*\otimes_{\scriptscriptstyle{R}}N,$$

where $M^* = \operatorname{Hom}_{\mathbb{R}}(M, \mathbb{R})$ denote the dual module of M. Assume further that a finite group G acts on M and N. Then the isomorphism induces an isomorphism of G-invariant parts.

$$\operatorname{Hom}_{R[G]}(M,N) \approx (M^* \otimes_R N)^G$$

Proof. See Proposition 10.30 in [2].

(1.6) Lemma. Let R be a principal ideal domain and let K be its quotient field. Let X be a finitely generated R-free module. Assume that a group G acts on X. Then

$$\operatorname{rank}_R X^G = \dim_K (X \otimes_R K)^G$$
.

Proof. It sufficies to show $X^{\sigma} \otimes_{\mathbb{R}} K = (X \otimes_{\mathbb{R}} K)^{\sigma}$. Clearly $X^{\sigma} \otimes_{\mathbb{R}} K \subset (X \otimes_{\mathbb{R}} K)^{\sigma}$. To do converse, choose a basis $\{x_1, \dots, x_n\}$ of X over R such that $\{a_1x_1, \dots, a_lx_l\}$ is a basis of X^{σ} , $a_1, \dots, a_l \in R$. Assume $x = x_lk_1 + \dots + x_nk_n$, $k_i \in K$, be an element of $(X \otimes_{\mathbb{R}} K)^{\sigma}$. We can choose $r \in R$ such that $k_ir \in R$ for all $i = 1, \dots, n$. Hence $xr = x_lk_1r + \dots x_nk_nr \in X^{\sigma}$. By the choice of our basis, we have $k_ir = 0$ if i > l. This proves that $x \in X^{\sigma} \otimes_{\mathbb{R}} K$.

(1.7) Lemma. Let V be a vector space over a field K, char K = 0. Let $\varphi: G \to GL(V)$ be a representation of G in V. Then

$$\dim_{\scriptscriptstyle{K}} V^{\scriptscriptstyle{G}} = rac{1}{|G|} \sum_{g \in G} \chi(g) \, ,$$

where χ is the character of φ .

Proof. First assume that φ is irreducible. Then $V^{\sigma}=0$ or G.

(i) $V^g=V$. Then $\varphi(g)=\mathrm{id}_v$ for all $g\in G$. Hence

$$\frac{1}{|G|} \sum_{g \in G} \chi(g) = \frac{1}{|G|} \sum_{g \in G} (\dim V) = \dim V.$$

(ii) $V^{G} = 0$.

Let $\{v_1, \dots, v_n\}$ be a basis of V over K and let $(a_{ij}(g))$ be the matrix of $\varphi(g)$ with respect to this basis. For each i,

$$\sum\limits_{g\in G} arphi(g) v_i \in V^G = 0$$
 .

On the other hand,

$$\sum_{g \in G} \varphi(g) v_i = \sum_{g \in G} (\sum_j a_{ij}(g) v_j) = \sum_j (\sum_{g \in G} a_{ji}(g)) v_j$$
.

By linearly independence,

$$\sum_{g\in G} a_{ji}(g) = 0$$
 for all $i, j = 1, \dots, n$.

Hence

$$\sum\limits_{g\in G} \chi(g) = \sum\limits_{g\in G} \left(\sum\limits_i a_{ii}(g)\right) = \sum\limits_i \left(\sum\limits_{g\in G} a_{ii}(g)\right) = 0$$
 .

For general case, let $V = V_1 \oplus \cdots \oplus V_k$ be a decomposition of V into irreducible subspaces. So we have $V^G = V_1^G \oplus \cdots \oplus V_k^G$. Let χ_i be the character of the subrepresentation $\varphi_i \colon G \to GL(V_i)$. By the first case,

$$\dim V_i^g = rac{1}{|G|} \sum_{g \in G} \chi_i(g)$$
 .

Hence

$$\dim V^g = \sum\limits_i \dim V^g_i = \sum\limits_i \left(rac{1}{|G|}\sum\limits_{g \in G} lpha_i(g)
ight) = rac{1}{|G|}\sum\limits_{g \in G} lpha(g)\,.$$

To apply Lemma 1.5 to our problem we need:

Sublemma. There is a natural isomorphism

$$\operatorname{Hom}_{\boldsymbol{Z}}(\hat{T},\,U_{\scriptscriptstyle m}) pprox \operatorname{Hom}_{\boldsymbol{Z}_{\scriptscriptstyle n}}(\hat{T} \otimes \boldsymbol{Z}_{\scriptscriptstyle p},\,U_{\scriptscriptstyle m})$$
 .

Furthermore,

$$\operatorname{Hom}_{\mathbf{Z}[G]}(\hat{T},\ U_{\scriptscriptstyle m}) pprox \operatorname{Hom}_{\mathbf{Z}_{\scriptscriptstyle p}[G]}(\hat{T} \otimes \mathbf{Z}_{\scriptscriptstyle p},\ U_{\scriptscriptstyle m})$$
 .

Proof. Straightforward.

By abuse of notation, we will write \hat{T} instead of $\hat{T}\otimes Z_p$. Assume that $m>\frac{e}{p-1}$. Then U_m is Z_p -free.

By Lemma 1.5,

$$\operatorname{Hom}_{\scriptscriptstyle{G}}(\hat{T},\,U_{\scriptscriptstyle{m}})=(\hat{T}^{st}\otimes U_{\scriptscriptstyle{m}})^{\scriptscriptstyle{G}}$$
 .

By Lemma 1.6,

$$r(T) = \operatorname{rank}_{Z_p}(\hat{T}^* \otimes U_m)^G = \operatorname{dim}_{Q_p}(\hat{T}^* \otimes U_m)^G$$
.

Assume that G acts on \hat{T} and U_m with characters χ_1 and χ_2 , respectively. Let χ be the character comes from the action of G on $\hat{T}^* \otimes U_m$. Then

$$\chi(\sigma) = \chi_1(\sigma^{-1}) \cdot \chi_2(\sigma)$$
 for all $\sigma \in G$.

By Lemma 1.7,

$$r(T) = rac{1}{|G|} \sum_{\sigma \in G} \chi_1(\sigma^{-1}) \cdot \chi_2(\sigma) = \langle \chi_1, \chi_2 \rangle$$
.

Now we will describe the action of G on U_m .

Sublemma. Let |G| = n. There exists π' in $\pi^n O_K$ such that $\sigma(\pi') = \pi'$ for all $\sigma \in G$.

Proof. Put
$$\pi' = \prod_{\sigma \in G} \sigma(\pi)$$
.

Assume that $m>\frac{e}{p-1}$ and |G|=n/m. By the above sublemma, we may assume that $\sigma(\pi^m)=\pi^m$ for all $\sigma\in G$. We have the following commutative diagram:

$$U_{m} \xrightarrow{\cong} \pi^{m} O_{K} \xrightarrow{\cong} O_{K}$$

$$\downarrow^{\sigma} \qquad \downarrow^{\sigma} \qquad \downarrow^{\sigma}$$

$$U_{m} \xrightarrow{\cong} \pi^{m} O_{K} \xrightarrow{\cong} O_{K}$$

Choose a normal basis $\{x^{\sigma}\}_{\sigma \in G}$ of K over k, and let $\{\alpha_1, \dots, \alpha_m\}$ be a basis of k over Q_p . Then $\{\alpha_i x^{\sigma}\}_{\substack{i=1,\dots,m\\\sigma \in G}}$ forms a basis of K over Q_p . By multiplying some power of π which is invariant under the action of G, we may assume that $\alpha_i x^{\sigma} \in O_K$ for all $\sigma \in G$ and $i = 1, \dots, m$. By the above diagram $\{\exp(\pi^m \alpha_i x^{\sigma})\}_{\substack{i=1,\dots,m\\i=1,\dots,m}}$ forms a basis of U_m over Z_p . So we have

$$\chi_2(\sigma) = egin{cases} m \cdot |G| & ext{if } \sigma = ext{identity,} \ 0 & ext{otherwise.} \end{cases}$$

Therefore

$$egin{aligned} r(T) &= rac{1}{|G|} \sum\limits_{\sigma \in G} oldsymbol{\chi}_1(\sigma^{-1}) oldsymbol{\chi}_2(\sigma) &= rac{1}{|G|} oldsymbol{\chi}_1(\mathrm{id}) \cdot m |G| \ &= m \cdot (\dim T) = [k \colon Q_n] \cdot (\dim T) \,. \end{aligned}$$

(1.8) Remark. Take $T = G_m$ the multiplicative group. If we think T is defined over k and split by k, then Theorem 1.4 reduced to Proposition 1.2.

§ 2. Global unit theorem

Let k be a number field, and T, K, G be as in Section 1. As in Section 1, we define the O_k point of T as follows:

(2.1) Definition. $T(O_k) = \operatorname{Hom}_G(\hat{T}, O_K^{\times}).$

Then $T(O_k)$ becomes a **Z**-module. Let r(T) denote its rank. By the arguments in Section 1, we have

$$r(T) = \frac{1}{|G|} \sum_{\sigma \in G} \chi_1(\sigma^{-1}) \chi_2(\sigma) = \langle \chi_1, \chi_2 \rangle,$$

where χ_1 is the character comes from the action of G on \hat{T} and χ_2 is the character comes from the action of G on O_K^{\times} .

Now we will describe the action of G on O_K^{\times} . Let m = [k: Q] and n = [K: k]. Let $k_1, \dots, k_{\rho_1+\rho_2}, k'_{\rho_1+\rho_2+1}, \dots, k'_{\rho_1+\rho_2+\tau_2}, k''_{\rho_1+\rho_2+1}, \dots, k''_{\rho_1+\rho_2+\tau_2}$ be the distinct conjugates of k ($\rho_1 + \rho_2 + 2r_2 = m$). To each of them, we can correspond a conjugate of K to which we will give the same index. The indices are chosen in the way that:

- (i) For $1 \le i \le \rho_i$, k_i and K_i are real,
- (ii) for $\rho_1 < i \le \rho_1 + \rho_2$, k_i is real and K_i is imaginary,
- (iii) for $\rho_1 + \rho_2 < i$, k_i' and k_i'' are complex conjugates and the same for K_i' and K_i'' .

Note that K_i is galois over k_i whose galois group is isomorphic to G. So we may identify its galois group with G. Suppose that $\rho_2 \neq 0$. Then n is even. For $\rho_1 < i \leq \rho_1 + \rho_2$, K_i is of degree 2 over the maximal real subfield of K_i/k_i . Let H_i be the subgroup of G corresponding to this field. We have the following proposition (cf. [3], [4]).

(2.2) Proposition. Let H be the representation of G on O_K^{\times} , C be the trivial representation of G, A be the regular representation of G and B_i be the induced representation of G induced by the trivial representation of H_i , $\rho_1 + 1 \le i \le \rho_1 + \rho_2$. Then we have

$$H+C=(
ho_1+r_2)A+\sum_{i=
ho_1+1}^{
ho_1+
ho_2}B_i$$
 .

Proposition 2.2 says that

$$\chi_2 = (\rho_1 + r_2)\chi_A + \sum_{i=k+1}^{\rho_1 + \rho_2} \chi_{B_i} - \chi_C$$
.

Hence

$$\langle \chi_1, \chi_2 \rangle = (
ho_1 + r_2) \langle \chi_1, \chi_A \rangle + \sum_{i=o_1+1}^{
ho_1 + \rho_2} \langle \chi_1, \chi_{B_i} \rangle - \langle \chi_1, \chi_C \rangle.$$

On the other hand,

$$\langle \operatorname{\raisebox{.3ex}{χ}}_{\scriptscriptstyle 1}, \operatorname{\raisebox{.3ex}{χ}}_{\scriptscriptstyle A}
angle = rac{1}{|G|} (\dim T) \!\cdot\! |G| = \dim T$$

$$\langle \chi_{\scriptscriptstyle 1}, \chi_{\scriptscriptstyle C} \rangle = \frac{1}{|G|} \sum_{\sigma \in G} \chi_{\scriptscriptstyle 1}(\sigma^{\scriptscriptstyle -1}) \chi_{\scriptscriptstyle C}(\sigma) = \frac{1}{|G|} \sum_{\sigma \in G} \chi_{\scriptscriptstyle 1}(\sigma) = \operatorname{rank} \hat{T}^{\scriptscriptstyle G} \quad \text{(by Lemma 1.7)}$$

$$\langle \chi_1, \chi_{B_i} \rangle = \langle \chi_1|_{H_i}, \chi_{B_i}|_{H_i} \rangle_{H_i}$$
 (by Frobenius reciprocity law)
= rank \hat{T}^{H_i} (by Lemma 1.7).

So we have proved

(2.3) THEOREM. Let T be a torus defined over a number field k. Up to finite torsions, $T(O_k)$ is a free Z-module of rank r(T), where

$$r(T) = (
ho_1 + r_2) \cdot \dim T + \sum\limits_{i=a+1}^{
ho_1 +
ho_2} \operatorname{rank} \hat{T}^{H_i} - \operatorname{rank} \hat{T}^{G}$$
.

(2.4) Remark. T. One showed the following generalization of Dirichlet unit theorem (cf. [6]):

Let T be a torus defined over Q. Then Z-rank of T(Z) is $r_{\infty} - r_{Q}$, where $r_{\infty} = \operatorname{rank} \hat{T}(R)$ and $r_{Q} = \operatorname{rank} \hat{T}(Q)$.

We can deduce this result from Theorem 2.3. Let K be a splitting field of T over Q. Note first that $r_Q = \operatorname{rank} \hat{T}(Q) = \operatorname{rank} \hat{T}^G$.

(i) K is real, i.e. $\rho_1 = 1$, $\rho_2 = r_2 = 0$. Since $\hat{T}(R) = \hat{T}$, $r_{\infty} = \dim T$. Therefore,

$$r(T) = \dim T - \operatorname{rank} \hat{T}^{\scriptscriptstyle G} = r_{\scriptscriptstyle \infty} - r_{\scriptscriptstyle Q}$$
 .

- (ii) K is imaginary, i.e. $\rho_1=0,\ \rho_2=1,\ r_2=0.$ Since $\hat{T}(R)=\hat{T}^H,\ r(T)=\mathrm{rank}\ \hat{T}^H-\mathrm{rank}\ \hat{T}^G=r_\infty-r_Q.$
- (2.5) Remark. Definition 1.3 and Definition 2.1 are independent of the choice of a splitting field.

Proof. Since the compositum of splitting fields of T is again a splitting field of T, it suffices to prove the following:

Let E be an another splitting field of T containing K with galois group L, then

$$\operatorname{Hom}_{L}(\hat{T}, O_{\kappa}^{\times}) \approx \operatorname{Hom}_{G}(\hat{T}, O_{\kappa}^{\times}).$$

Key point: Assume $\xi \in \operatorname{Hom}_L(\hat{T}, O_E^{\times})$ such that $\xi^{\sigma} = \xi$ for all $\sigma \in L = \operatorname{Gal}(E/k)$. Then $\xi^{\sigma} = \xi$ for all $\sigma \in \operatorname{Gal}(E/K)$. Hence $\xi(\hat{T}) \subset O_K^{\times}$.

(2.6) Remark. Let k be a number field and $T = R_{k/Q}(G_m)$, where R is the Weil functor (cf. [9] Chapter 1)

Let $\mathscr{C}(K/k)$ be the category of tori defined over k split by K and $\mathscr{C}(K/k)$ be the dual category of finitely generated Z-free Gal(K/k)-modules. We have the following commutative diagram (cf. [7]):

$$\begin{array}{ccc}
\mathscr{C}(K/k) & \stackrel{\frown}{\longrightarrow} & \widehat{\mathscr{C}}(K/k) \\
R_{k/Q} & & & & & & & & & \\
\mathscr{C}(K/Q) & \stackrel{\frown}{\longrightarrow} & \widehat{\mathscr{C}}(K/Q)
\end{array}$$

where G = Gal(K/Q) and G' = Gal(K/k). So

$$\hat{T} = \widehat{R_{k/\mathbf{Q}(G_m)}} = \hat{G}_m \bigotimes_{\mathbf{Z}[G']} \mathbf{Z}[G] = \mathbf{Z} \bigotimes_{\mathbf{Z}[G']} \mathbf{Z}[G]$$

Therefore,

$$egin{aligned} \operatorname{Hom}_{\scriptscriptstyle G}(\hat{T},\,O_{\scriptscriptstyle K}^{\scriptscriptstyle imes}) &= \operatorname{Hom}_{\scriptscriptstyle G}(oldsymbol{Z} \otimes_{oldsymbol{Z}[G']} oldsymbol{Z}[G],\,O_{\scriptscriptstyle K}^{\scriptscriptstyle imes}) \ &= (oldsymbol{Z} \otimes_{oldsymbol{Z}[G']} oldsymbol{Z}[G]) \otimes_{oldsymbol{Z}[G]} (O_{\scriptscriptstyle K}^{\scriptscriptstyle imes})^* \ &= oldsymbol{Z} \otimes_{oldsymbol{Z}[G']} (oldsymbol{Z}[G]) \otimes_{oldsymbol{Z}[G]} (O_{\scriptscriptstyle K}^{\scriptscriptstyle imes})^* \ &= oldsymbol{Z} \otimes_{oldsymbol{Z}[G']} (O_{\scriptscriptstyle K}^{\scriptscriptstyle imes}) = \operatorname{Hom}_{G'}(oldsymbol{Z},\,O_{\scriptscriptstyle K}^{\scriptscriptstyle imes}) \ &= (O_{\scriptscriptstyle K}^{\scriptscriptstyle imes})^{G'} = O_{\scriptscriptstyle K}^{\scriptscriptstyle imes}. \end{aligned}$$

We have the following conclusion.

If
$$T = R_{k/0}(G_m)$$
, then $T(Z) = O_k^{\times}$ the group of units of k.

Note that similar conclusion also holds true for p-adic field case.

REFERENCES

- [1] E. Artin, Über Einheiten relativ galoisscher Zählkörper, Crelle Journal, 167 (1932), 153-156.
- [2] C. W. Curtis and I. Reiner, Methods of representation theory with application to finite groups and orders, 1, John Wiley & Sons Inc., 1981.
- [3] M. J. Herbrand, Nouvelle démonstration et généralisation d'un théoreme de Minkowski, Comptes rendus, 191 (1930), 1282-1285.
- [4] —, Sur les unités d'un corps algébrique, Comptes rendus, 192 (1931), 24-27.
- [5] R. L. Long, Algebraic number theory, Marcel Dekker Inc., 1977, pp. 57-65.
- [6] T. Ono, On some arithmetic properties of linear algebraic groups, Ann. of Math., 70, no. 2 (1959), 266-290.
- [7] —, Arithmetic of algebraic tori, Ann. of Math., v. 74, no. 1 (1961), 101-119.
- [8] —, Arithmetic of algebraic groups and its applications, Lecture Notes, Rikkyo 1986.
- [9] A. Weil, Adeles and algebraic groups, Birkhäuser, 1982.

Department of Mathematics
Pohang Institute of Science and Technology
P.O. Box 125 POHANG 790, KOREA