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A MODIFICATION OF GROΊΉENDIECK'S

SPECTRAL SEQUENCE

EDGAR ENOCHS

Introduction

Let C, C and C" be abelian categories where C and C have enough
injectives and let F:C-+ C, G\Cf -> C" be additive covariant functors.
Then for an object X of C, let C(X) be the complex associated with an
injective resolution of X. Grothendieck gets a first quadrant spectral se-
quence by taking an injective resolution of the complex F(C(X)) and
applying G to the associated double complex. Under certain hypotheses
one gets a spectral sequence

Eψ = RpG(RqF(X)) =$> Rn(GF)(X) .

If we modify this procedure by replacing C(X) with a projective resolu-
tion of X and then proceed as above, we get a second quadrant spectral
sequence. Using these spectral sequences, a variety of known results
can be proved and sharpened.

In the first applications C — Cf and F = id ,̂ so initially to simplify
notation make this assumption (Grothendieck's spectral sequence becomes
trivial in this case). Some applications will require slight changes in
these hypotheses, but it will then be easy to see how to modify the proofs.

§1. The spectral sequence

In this paper we adopt the convention that the derived functors RQT
= 0 when q < 0 and similarly LPT = 0 for p < 0. Also Betti and Bass
numbers with strictly negative subscripts will be taken to be 0.

PROPOSITION 1.1. Let T: C-> C" be an additive functor where C and
C" are abelian categories and C has enough injectives and projectives. Then
for an object X of C there is a second quadrant spectral sequence
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E;™ = Lp(RqT)(X) => RnT(X)

if either a) hά(X) < oo or b) inj dim T7 < oo (i.e. RqT = 0 /or g sufficiently

large).

Proof. We consider a commutative diagram

0 > E~n^ > E~n+1>° > > E"°>° > E° > 0

ί ί I ί
0 „ C • />,_, • • P o >X >0

ί ί ί ί
0 0 0 0

with exact rows and columns, where each Pt is projective, and where each

EUj and Ej is injective. If a) holds, assume C is projective and write

C = Pn. Then using the first filtration on the double complex (T(E^j))

we get

J0Γp'β = (RqT)(Pp) and so E;™ = LP(R«T)(X) .

Using the second filtration we see that since we can peel off the injec-

tives on the left, the spectral sequence collapses and we get that the

homology of the double complex is Rn(T(X)).

Now assume b). Then for each n we get such a diagram. However

we can assume that if n' > n then the objects EUJ and Pt and the maps

between them for ί > — n + 1 are the same for both diagrams. Now we

consider the first filtration and the associated spectral sequences. With-

out the hypothesis b), for a fixed p, q and r, E~p'q is independent of n

for large n. But with the hypothesis b) we see that if we only fix p and

q, E~PΛ is independent of n for large n for all r. Hence Ezp'q can be

defined independently of n. So we get a spectral sequence by taking the

limit (in the obvious sense) of the spectral sequences we get for each n.

Since each of these sequences converges to RnT(X)f so does the limit

sequence.
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The idea for this case was suggested by a comment (without proofs)

of Grothendieck ([1], pg. 147). We note there is a dual procedure giving

rise to a third quadrant spectral sequence.

We make note of a more general version. Assume C has enough

projectives and C" enough injectives. Let F\C—>C, G:C -» C" be ad-

ditive covariant functors such that proj dim J F < OO or inj dim G < oo.

Then there is a spectral sequence

Eς*« = LvF(RqG(X)) φ Rn(Fo G(P))

where P. arises from a projective resolution of X and Rn(FoG(P)) is the

7i-th hypercohomology of the complex F<>G(Pt). Since all applications

assume the more restrictive hypotheses and these make the proofs less

cumbersome, we restrict ourselves to this case.

Remark. The spectral sequences in the restricted form coincide with

Dold's universal coefficient spectral sequences [7]. However his proofs

are different.

§ 2. Duality

Let A be a commutative ring and C = C" = AM (the category of A-

modules) and let T\C~->Cf be additive. Then we have:

PROPOSITION 2.1. If M is an A-module, T commutes with direct sums

and either h d M < oo or inj dim Γ < oo, there is a spectral sequence

E^ = Toτp(R<T(A), M) ̂  RnT(M) .

Proof. Using a free resolution of M, it's easy to see that the hypo-

thesis on T guarantees that LpR
qT(M) ^ Torp (RqT(A), M). We then appeal

to Proposition 1.1.

COROLLARY 1 (duality). // RqT(A) = 0 for q Φ n>0 then there are

natural isomorphisms

Torn_ i(flnT(A), M) s KT(M).

Proof. Immediate.

Note that the isomorphisms in the Corollary hold for all ί, so

Ύoτn+k(RnT(A), M) == 0 for k > 0, implying that the flat dimension of

RnT(A) is at most n. If R°T(M) Φ 0 for some M, then it is n.
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If A is noetherian and local, let T = Γm (the local cohomology functor)

with m the maximal ideal of A. Then RqT(M) = HUM).

It's known that H^(M) = 0 if g > dim A = d, so Proposition 2.1 applies

and we get the spectral sequence

Note that this gives the familiar isomorphism

H&(A) ®M^ Hd

m(M) where d = dim A .

If A is Cohen-Macaulay, of dimension d, then

= 0 for q Φ d .

COROLLARY 2 (Grothendieck duality). If A is a local Cohen-Macaulay

ring of dimension d then there are natural isomorphisms

for all A-modules M (whether finitely generated or not).

If we take the Matlis dual of both sides of the above we get

s Tor,_έ (H&(A), My s Ext'-' (M, Ω)

with Ω=Hm(A)v. If M is finitely generated we get the duality as given

in Grothendieck ([2], Theorem 6.7, pg. 96). In this case the flat dimension

of HUA) is d since Ύoτd (Hd

m(A\ k) ^ H°m(k) = k Φ 0.

§ 3. Change of rings

PROPOSITION 4.1. Let A-+ B be a ring homomorphίsm where A is left

noetherian and of finite left global dimension. Then for any left B-module

M (BM for short) we have

inj dim^ M < inj dim^ B .

Proof. For the proof we use a modification of Proposition 1.1. Let

X = M in the diagram of the proof and suppose the bottom row is part

of a projective resolution of M as a B-module. The columns will be

injective resolutions of A-modules. The hypothesis on A will guarantee

we can use b) of Proposition 1.1 when T = Ή.omA(N, —) for iV a left A-

module. If in an addition we assume N is finitely generated we get the

spectral sequence of Proposition 2.1, which, in this situation, is:
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#-*.« = Tor*(Ext5(iV, B), M) => Extl(2V, Λf) .

If inj dim^ B = s, then #2-*'« = 0 for g > s and so Ext^ (iV, M) = 0 for 7i > s.

This completes the proof.

§ 4. Growth of Betti numbers

Letting M be a S-module where B is a local ring, we establish linear

recurrence inequalities on the Betti numbers of Λf. We note that replac-

ing B and M with their completions the Betti numbers remain unchanged.

But a complete local ring B is a quotient of a regular local ring A. So

assume A -> B gives B as a quotient of a regular local ring A. Let A =

A/Λf, Λf the maximum ideal and let βt = βi(BM), μt = μi(AB). Let ί =

inj dim^ JB and s = depth B as an A-module. Then we have

PROPOSITION 4.1.

βPμ* < Σ βP-rμt + i-r when t - p < d e p t h Λf
2

ί-S + l

Σ
2

βP+rμs+r-ι when s — p < depth

Proof. Using ϊ 7 = HomA(k, —), by a now familiar procedure we get

a spectral sequence

#-*.« = TorJ(ExtS(A, B), M) ^ ExtS(A, Sy*

converging to Ext^ (fe, M).

Note that the dimension of Eϊp*q over ife is βpμr We have j^a"^* = 0

if q > ί, so no element of £J~P5ί for r > 2 is a boundary. Since Extn (k, M)

= 0 if Λ < depth Λf, we get £J"Pii = 0 if t - p< depth Λf. This easily

implies that there is an embedding of E^ in Θf= 2ί;2-
p + r ' ί + 1- r. This gives

the first inequality. The argument for the second is similar, but uses the

fact that the elements of £J2"
P)S for s — p < depth B must eventually be-

come boundaries.

Remark. In case B = Aftx), x Φ 0 and x not a unit, then t = s + 1,

μs = 1, μs+1 = 1 and ^ = 0 otherwise (by Foxby [9], Corollary 3.2) and

the inequalities become

βp < p-2
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which implies βp = βp+2 eventually. This is a (very) weak version of

Eisenbud's result ([4], Theorem 6.1, pg. 52).

In general it's easy to see (cf. Brualdi [8]) the inequalities guarantee

there is a K > 0 with βn<Kn for all n. If, for example, A = k[xu , xd]l

(xu , xd)
2, k a field and M = k, then in fact βn = dn.

§ 5. Syzygies

We let A be a local Gorenstein ring of dimension d. Given the exact

sequence

0 > M > A*-1 • >AβQ > N • 0

of A-modules, M is called an s-th syzygy of N. If the resolution is

assumed minimal, then M is uniquely determined by N, but the converse

is clearly not true. We do have:

PROPOSITION 5.1. //

are exact sequences, s > d and both resolutions are minimal, then there

exists a commutative diagram

0 > M > A^- 1 > •" A β i

0 > M > Aβ'-* > Aβ'* .

In this case, all vertical maps are isomorphisms.

Proof. We only need to show that there is a commutative diagram

M >Aβ-*

M >Aβf-*

and that Aβs~x —> Aβs~v must be an isomorphism.

Since Exts(iV, A) = 0,

0—>M

I
A

i .••••••••••-•
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can always be completed, and consequently so can

0 >M >Aβs~*

0 >M • A*-1 '.

Taking an injective resolution (as in Proposition 1.1) of

0 >M >Aβ-1 > >AβQ >N >0

and letting T = Hom(£, —), we get a spectral sequence with E1

0 —

0 —

0 —

-> Ext%k,M) —

-> Ext*-'(A, M) —

- * Ext(ife, A)f-

- • 0

0 >Hom(fc,M) > 0

Since Ext~s+d(k, N) = 0 ( - s + d < 0), we see that Ext*(£, M)->Extd(k, Ay-1

must be an isomorphism.

If we now apply Έxtd(k, —) to the commutative diagram

M >Aβ-*

M >Aβ-lf

we see that

Extd(£, A^-0 = Ext^A, Ay-1' > ExtΛ(fe, Ay-1'

must be an isomorphism. Since Extd(A, A) 9̂  0 this gives that Aβs'x -> A'95-1'

is an isomorphism.

Remark 1. In the language of Enochs [6], M-+Aβs~x is a projective

envelope of M. We note that any two projective envelopes of M are

isomorphic over M.

In this case (A^-1)* -> M*(M* = Hom(M, A)) is a projective cover

of M*, so any direct sum decomposition of M* gives one of its projective

cover. Hence taking duals, we see that any finite direct sum decomposi-

tion M = 0 Mi gives one of A13*-1 = 0 Pt with Mt mapped into Pt. By

Eisenbud ([4], Lemma 0.1 (ii), pg. 34), if s > d, M has no free summands,

so if Mi Φ 0 then Mt φ Pt and so PJMt = 0. Hence non-trivial direct
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sum decompositions of M give such decompositions of Aβs~xjM. The

converse is also true. This argument quickly gives

COROLLARY 1. // > Aβ* - ^ > A^ -^-> A* > M > 0 is a min-

imal projectίve resolution and Ms = Ker(ds_!) for any s > 1, then if

s,t>d, Ms is the direct sum of k indecomposable non-zero submodules,

then so is Mt.

Using the terminology of Eisenbud [4] we also have

COROLLARY 2. If the minimal projectίve resolution

is periodic then it becomes periodic after d + 1 steps.

Proof. By hypothesis we have that if ί is sufficiently large for some

M = Ker(cQ ^ Ker(di+nlc) for some k > 0 and all n > 0. Assume ί > d

and apply the fact that M-+Fί+nlc and M-^Fi are protective envelopes

so lead to an isomorphism Fi+nlc->Fi over M. This in turn gives an

isomorphism Fi_l+nJM'—• FJM. Repeating the argument we get an iso-

morphism Fi_ι+nΊc-^Fί_ι. In this way we complete the proof.

We note Eisenbud proves this result (and more) in case A is a

complete intersection (see Theorem 4.1, pg. 47 of [4]). Ramras has a

closely related result ([5], Proposition 1.4, pg. 196), but his concern was

with N whose Betti numbers are eventually constant or go to infinity.

Remark 2. Proposition 5.1 can be regarded as a commutative, higher

dimensional generalization of Theorem 6.31 of Curtis and Reiner [12]

where A is taken to be quasi-Frobenius (so Gorenstein of dimension 0

when commutative). As they note, results of Alperin and Janusz in [11]

on the periodicity of protective resolution follow from their theorem.
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