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REPRESENTATION OF EUCLIDEAN RANDOM FIELD

SHIGEO TAKENAKA

P. Levy introduced a notion of Brownian motion 2£ ~ {X(p) I P β M)

with parameter in a metric space (M, d), which is a centered Gaussian

system satisfying

E\X(p) - X{q)f = d(p, q) and X(O) = 0, O being the origin .

In the case of M — Rn, Sn or the hyperbolic space Hn with usual geodesic

metric, the Brownian motion above has the following representation

(1) X(p) = Y(Sp), where Sp = {hyperplanes intersect Op} and <Ψ =

{Y( )} is the Gaussian random measure associated with a certain measure

μ on the set of all hyperplanes.

In this paper we shall discuss Brownian motion that corresponds to

a general metric. When the metric d on Rn is expressible as d(p, q) =
r(\P — q\) where r is a positive increasing continuous function, the Brownian

motion is called a Euclidean random field (ERF). The main purpose of

this paper is to establish the representations of the form (1) for some im-

portant classes of ERFs.

In Section 1 we will consider a simple and basic class of ERFs, denote

it by {<%p}, and their representations. The covariance function of the field

Wp is of finite range and rotationally invariant. The form (1) for the

ordinary Brownian motion with parameter Rn is obtained as the limit

p —> oo of these fields W.

In Section 2 the representation of type (1) will be considered for general

ERF related to the {V}. We will start with a special class of ERFs. If

r(t) — ta the random field is called the self-similar Euclidean random field

(SERF) of index a. The representation of SERF of index 0 < a < 1 will

be written as a superposition of the fields °U9. For general ERF, two

sufficient conditions for the existence of the representation of form (1) will

be given as conditions on the function r( ).
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In Section 3, invariance properties of SERFs will be considered in

connection with our representations.

§ 0. Introduction

0-1. P. Levy defined a notion of Brownian motion with parameter

space M equipped with a metric d as below:

DEFINITION 1. A Gaussian system SC = {X(p); p e M] is called a

Brownian motion with parameter space (M, d) if it satisfies

X(O) = 0 for a fixed origin OeM,

91) X(p) - X(q)?N(0, d(p, q)) ,

that is the left-hand-side is subject to the Gaussian law with mean 0 and

variance d(p, q).

It is well known that the Brownian motion exists if and only if the

covariance function σ(p, q) = (l/2)(d(p, O) + d(q, O) — d(p, q)) is positive

definite. In this line, several investigations have been done on the posi-

tive definiteness of function σ ([3], [6], [7], [9], [10]). In the case of M = Rn

with usual metric, N. N. Chentsov took more direct manner to obtain

Brownian motion in [1] (P. Levy also treated the case M = Sn, by the

same manner in [5]). To describe Chentsov's method, we need the notion

of Gaussian random measure attached to measure space (E, SSy μ).

DEFINITION 2. A Gaussian system & = {Y(B); B e 36, μ(B) < oo} is

called a Gaussian random measure associated with (E, 3#, μ) if it satisfies

Λl) Y(B)£N(0, μ(B))

St2) Y{B, U B2) = Y(Bd + Y(B2), a.e., if Bx ΓΊ B2 = φ .

Let Jf be the set of all hyperplanes of codimension 1 in Rn. 3? is

parametrized by (g, r) e S71'1 X R+ as Jf 3 H = {y; (y, q) = r}, and define

a measure μ on 2tf as dμ = dq dr, where dq is the normalized uniform

measure on Sn~\ Set

(12) Sp = {He^f;H intersects the line segment Op},

then Chentsov's representation of the Brownian motion is

(1) X(p) = Y(Sp), where %J in the definition 2 is the random measure

associated with (.5f, μ).
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0-2. In the case of M = Sn and Hn — the ^-dimensional hyperbolic

space — the similar results were obtained ([10]):

Let tf be the set of all hyperplanes of codimension 1 in M. There

exists a canonical measure μ on Jf in the sense of integral geometry.

Define a map S from M into the Borel sets of tf as

(12) Sp = {hyperplanes intersect Op} .

Then,

(1) X(p) = Y(SP)

is the Brownian motion with parameter (M, d), where <$/ — {Y( )} i s ^ n e

Gaussian random measure associated with (Jf, μ).

The essential parts of the representations above are

i) the pair {(E, $, μ), S} of measure space and the map St from the

metric space M to 38.

ii) the relation d(p, q) ( = E\X(p) - X(q)\2) = μ(SpASq) between the

metric and the measure, where Δ means the symmetric difference.

In this paper we will discuss the case of M — Rn with rotational

invariant d and will establish the pairs {(E, 3$, μ), S} for some important

classes of random fields.

§1. Random field <%p and the Chentsov representation

We start with a simple class \fU9\ of Brownian motions and their

representations. The original Chentsov's representation will be obtained

as the limit p—>oo oΐ typ. Moreover, in the next section the field °U9 will

be used as the basic element to construct representations of certain classes

of Brownian motions. In this sense {<%p} is an important and fundamental

class of Brownian motions.

1-1. Let M be a set and ty be the Gaussian random measure as-

sociated with a measure space (E9 3?, μ). Assume that there is a map

S: Map >Spe^ .

Define a Gaussian system

( 1 ) 3-={X(p)= Y(Sp);peM}.

Then, since (A A B) U (B Δ C) z> (A Δ C), the function d(p, q) =

E\X(p) ~ X(q)\2 = μ(Sp/\Sq) is a pseudo-metric on M.

We call this representation a Chentsov type representation of the

random field X with parameter (M, d).
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1-2. The class {#'}. Let <% = {Y(B); Be @) be the Gaussian random

measure with respect to (Rn, &, dx). Set,

for a positive constant p, and define a Gaussian system

Then,

PROPOSITION 1. %p is a Gaussian random field stationary under the

action of the group M(ή) of n-dίmensίonal Euclidean solid motions.

Let us calculate the metric function dp related to $p. Set

rp(\p - q\) = d>(p, q) = E[U'{p) - U'{q)Y =

Then,

( 3 ) r ί ( ί ) Ξ 4 σ 7 1 j

where σn_x is the volume of the (n — l)-dimensional unit ball.

PROPOSITION 2.

1) rp(t) = p"rJ±\
p

2) Γl(ί) = O(ί) ^Λβ î ί -> 0,

3) rx(ί) = 2σn, i/ ί ^ 1,

4) r,(0 = Oip71'1) when p->oo.

It is easy to see that the centered random field

is the Brownian motion corresponding to the metric dp(p, q) = rp(|p — g|).

1-3. Chentsov representation as the limit of °UP. We note that

fmin (t/2P, 1)

( 4 ) re(t)lp-1 = 4pan.x (1 - xT'^dx
Jo

= 2σπ_! ί + o(l) , when p > oo .

It is natural to expect that the original Chentsov's representation of usual

Brownian motion would be obtained as a limit of representations of Φp.

In fact, this is the case as is shown below. Take a normalization of the

measure in 1-2 as to be
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in the polar coordinate x = r q, reR+ and qe S"'1. Related to this nor-

malization we have a series of Gaussian system

( 6 ) <%> = {Up(p)lV2σn_φn-1} , p > 0 .

Set,

( 7) ^ - {£7"(p); | p | £ R} for fixed i? > 0 .

For p > -R, express the set SP

PASP

O in the polar coordinate;

|0 ^ r £ P + <P,

( 8 )
>2 + p* - f - p)

p(p, q) < f

where t = \p\.

The term (V(q,P>2 + ρ2 — t2 — p) tends to zero when p-+oo. So, let

us substract the offset p from the radial part r and set r = r — p. Then,

[ o(l) + <p, g> ^ r ^ 0,

On the other hand, for a Borel subset A of S71'1 X [-R, R],

( 9) fip(A) = //̂ (A) + o(l) , where d/^ = Jdgdr .

Finally, set

(10) X8,(q, f) Ξ lim |χβ;(g, f) - χβg(qr, r) | ,

where %̂  means the indicator function of the set A. Then,

(11) Sp - {(g, f) min (0, <g, p » ^ f ^ (max (0, (q, p))} .

Take ER = (S71'1 X [—i?, R], dμj) and let ^ be the Gaussian random meas-

ure associated with ER. Set &R be the limit p -> oo of # ^ p ;

^ Λ = {X(p) ~ Y(SP); p e S"'1 X [-Λ, B]} .

Then we obtain

THEOREM 3. The protective limit & — proj lim 9£R is the Brownian

motion parametrized in n-dίmensional Euclidean space that corresponds to
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the usual metric. Moreover, the representation X(p) = Y(SP) is essentially

equal to the one of N. N. Chentsov in 0-2.

Proof. Let us identify a hyperplane H(r, q) — {x; <x, q) = r} with a

point (q, r) e S71-1 X R+. Then the set

(12) {HeJf; H intersects the line segment Op}

is identified with

(110 to, r )e S*"1 XR+;0£r£(

Compare (II7) with (11) then we see that our new representation is just

the Chentsov's representation of multiplicity 2.

1-4. Another examples of Brownian motions. The rest of this paper

is devoted to the case of rotationally invariant metrics. But our formu-

lation works for some of general metrics without rotationally invariance

property.

EXAMPLE A. Let Jft = {h; hyperplanes in Rn, h J_ OeJ, where et is

the unit vector parallel to the i-th coordinate, and let βt be the nor-

malized uniform measure on i?%. Consider the measure space (<#, β),

where JT = tfx U <#2 U U &n and β = μx + μ2 + + βn Define Sp =

{h € «#: /ι intersects Op} and let ^ be the random measure associated with

(<#, fi). Then {X(p) = F(SP)} is the Brownian motion that corresponds to

the metric d(x,y) = 2 1 ^ — ^1-

EXAMPLE B. In the case of R2, set Jt+ = {h: parallel with Oiβ^ + e2)}

and set Jf_ = {/ι; parallel with O(e1 — β2)}. The measure μ = (l/vr2")(/i+ +

//_), the space # = ^f + U ^ _ , the map Sp and the random measure <& are

all defined similarly to those in example A. Then the field {X(p) = Y(SP)}

is the Brownian motion that corresponds to the metric

d(x,y) = max( |Xi - y1\,\x2- y 2 | )

The author have been informed by private communications with pro-

fessor A. Noda that for general metrics—for example £p metric on Rn and its

a-th power, 0 < a < 1—the Chentsov type representation can be obtained.

§ 2. Representation of Euclidean random field

In this section we treat the Chentsov type representations of an im-

portant class of random fields—self similar Gaussian random fields—and
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a general class of Gaussian random fields with Euclidean invariance

property.

2-1. Self-similar Euclidean random field.

DEFINITION3. A Gaussian system Ψ*a = {Va(p); p e R71} is called a

self-similar Euclidean random field (SERF) of index a if it satisfies

SO) Va(O) = 0 ,

The SERF exists if and only if 0 < a ^ 2 ([4]). It is easy to see that

I \a is a metric if and only if 0 < a < 1. Therefore, the Chentsov type

representation of SERF may be obtained in the case. In fact, we do form

the representation in the case 0 < a < 1. (excluding the usual Brownian

motion, a = 1).

Set E = R+ X Rn and introduce a coordinate in E as

(13) x = (x09 x) = (xQ, x l 9 x 2 , --, x n ) , Xo > 0 .

Consider a measure

(14) dμa(x) = M(a) xΓn~ιdx,dx on E,

where M(ά) is the normalizing constant which will be defined in (23).

Let W be the Gaussian random measure associated with (E, μa). Define

the following maps;

(15) S: Rn > 0(E); p > Sp = {x; \x-p\^ x0}

and

(16) SP = SPASO.

Then,

THEOREM 4. For 0 < a < 1,

1) μa(Sp) < oo,

2) V(p) = Y(SP) is the SERF of index a.

Proof 1)

μa(Sp) = M(a) Γ r^ήxr^dx, - M(α) Γ xΓ'
Jo Jo

where t — \p\. Because r^t) = 2σn if t ^ 1,
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Γ ^ - v Y - ^ - W = [~ y—ιrx(ty)dy ^ 2σn \~ y—ιdy < oo, if α > 0 .
Jo \ χQ I J i J i

And because rp(t) — O(pn~ί), p-+ oo, we get

J" r^ί)^"""1^ ^ # J" Λ Γ 1 ^ - " " 1 ^ < °° > if α < 1 .

Combining the two inequalities above, we get μa(Sp) < oo for 0 < a < 1.
2) £ I V°(p) - V«(q) f = E\ Y(SP A So) - Y(Sq Δ So) f = μa(Sp A Sq). Note

that the measure μa is invariant under the action

(17) gx = (xo, gx)

of the group of solid motions M(n). Then there is a positive function s
such that

(18) E\V(p)- V°(q)\> = s(p - q\) .

For any c > 0, we have

(19) EI V«{cp) |2 = Λf(α) Γ rXo(ct)xΓn-\dx0 = M(α) ί°° a r r Y - ^ - W o

Jo Jo \ χ 0 /

- c°M(a) Γ rJJ-λ^dxo = c°E[V°(p)]2.
Jo \ x0 /

That is s(ct) = cas(t) = (cί)*s(l), and the fact s(l) = 1 is derived from (23)
and (24).

The SERF of index 1 is nothing but the ordinary Brownian motion
and we have already obtained the representation of this type in 1-2.
Consider the section Sp Π {x0 = p} of the set in (16). This is the π-ball of
radius p. Thus we can see that the field Ψ** of index 0 < a < 1 is repre-
sented by a superposition of the fields {<%p}, that is, in an intuitive manner

(p) = Γ
Jo

V'

2-2. Euclidean random fields. Let us proceed to a more general class
of random fields which can be obtained by superpositions.

DEFINITION 4. A Gaussian system £r = {Xr(p)\ pe Rn} is called a
Euclidean random field (ERF) if it satisfies

iO) Xr(O) = 0

and
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X'(p) - X\q)SNφ, r(\p - q\)) ,

where r is a positive continuous function.

The SERF in 2-1 is a special class of ERFs with r(t) = t\ In this

subsection we consider the conditions under which the ERF has a Chentsov

type representation.

Suppose that Xr(p) is decomposed into a superposition of the inde-

pendent family of ERFs {%% as Xr{p) = ί Up(p)v(p)dp with a positive

measure v(p)dp. Let dμ(x) = v2(x0)dx0dx be a measure on E = R+ X Rn, St

be the same in (16) and <8J be the random measure which corresponds to

dμ. Then the assumption above is equivalent to the existence of the

representation

(20) X*(p) = Y(SP) .

The relation between r and v is given by

(21) r(t) = E[X'(p)]* = f°° rp(tV(p)dp , where ί = | p | .
Jo

Thus if the function r belongs to the image of the integral transform

above, the ERF %r has a Chentsov type representation.

The integral equation (21) can be solved as below;

THEOREM 5 (cf. [2]). If r(t) = (-d/dt)n+1r'(2t) ^ 0 and [°° f{t)-tn'ιdt <

co, then the solution is obtained as

(22) v\p) = A J" f(<)(4 = ήin-')/!dt ,

A being a positive constant

We now consider another condition for the existence of the represen-

tation. We have already obtained a series of solutions of (21) in 2-1.

Actually, set

(23) M(α)

then

o \ p ()

Thus the density v\ρ) in question which corresponds to the metric r(t) — ta
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is expressible as pa~n~ιjM{a). Let us consider again a superposition of

these special solutions by a positive density m(a), say X(p)= Va(p)m(a)da.
Jo

That is, let us consider a measure μ on E as

dμ(x) = ( — m2(ά)da)dx0dx and define
\J o M(a) /

(200 X(P) = Y(SP),

where & is again the random measure associated with (E, μ). Then, the

corresponding function r is

(210 r(t) = P tam\a)da .
Jo

Set R(x) = r(e~x). The Bernstein's theorem on Laplace transform tells us

that the function R(x) is completely monotone on [0, oo).

We then come to a class of functions r satisfying the conditions below

lim^o r(t) = r(0) = 0,

sfl) d(p, q) = r(\p — q\) defines a C°°-metric on Rn.

s/2) R(x) = r(e~x) is completely monotone.

By Bernstein's theorem there exists a positive measure m\a)da such that

Λoo

(25) R(x) = e~xam\a)da or equivalently
Jo+

(26) r{t) = Π t*m\a)da .
Jo+

Set g(z) = ί°° eiα2m2(α)dα for lm(z) ^ 0. Then,
J 0 +

LEMMA 6. // r(\p — q\) defines a metric on Rn, then there are positive

constants cQ and cλ such that r(t) ^ c0 + cλt, te R+.

Using this lemma, we prove that tam\a)da <^co + cλt for any t, that
Jo

is eazm\a)da <oo for any zeC. Thus the domain of definition of g(z)
Jo

can be extended to the whole complex plane.

THEOREM 7. The function g(z) is of inferior exponential type of order

1, that is for any ε > 0 there is a constant Cε such that

\g(z)\ ^ C ε e ( 1 + ε ) | I m ( z ) l , for a n y z e C .
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Proof.

\g(z)\ ^ Γ
Jo+

ea]lmiz)]m2(a)da = r(e | I m ( 2 ) 1) ^ c0 + c^lm{z)] .

Hence, we can choose the desirable constant Cε for any ε > 0. Q.E.D.

By virtue of the Paley-Wiener theorem, the support of the measure

m\ά)da is included in (0, 1]. Finally we get;

THEOREM 8. // r satisfies the conditions J / 0 ) - J / 2 ) above, then the ERF

&r has Chentsoυ type representation,

(l.r) X'(p) = Y(SP) ,

where the set Sp is the same as in the case of SERF, and the corresponding

measure μr is

(27) d
M(a)

N. B. The point mass at 1 corresponds to the original Chentsov repre-

sentation.

2-3. Remark. In the remainder case of SERF of index a, 1 < a < 2,

the covariance function σ is positive definite but \p — q\a is not a metric

function. It is impossible to get Chentsov type representation. However

we can get another type of representation—in the form of the Wiener

integral.

Let <& be the Gaussian random measure associated with (Rn, dx) and

/(•) be the Wiener integral with respect to $/.

THEOREM 9. Set f(x) = \x\(a~n)/\ for a Φ n, and \o%\x\ for a = n, and

set F(t, x) = f(x) - f(x - t), x, t e Rn. Then for any a, 0 < a < 2,

1) F(t, x) e L\Rn, dx), for any fixed t,

2) Xa(t) ΞΞ I(F(t, •)) is proportional to the SERF of index a.

The proofs are quite similar to that of Theorem 4.

§3. Invariance properties and representation

The SERF ira has the following invariance properties:

Set

(28) Qg(p) = V'(gp) - V°(gO) , g e M(n) ,

and
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(29) Zu(p) = e~au/2Va(eup) , ueR1 ,

then both Qg and Zu are again SERFs of the same index a. It is obvious

that the actions of M(n) and the multiplications related to Zu form a

group G.

Let us consider the relation between this invariance properties under

G and the representation of the Brownian motion. To simplify our dis-

cussion, we modify our representation of SERF as follows; set

(30) V'(SP) =Ξ lim {Y(SP ΓΊ DR) - Y(S0 ΓΊ DB)}, with DR = {x = (*0, *) *o £ R},

and write the left hand side as

(31) Ϋ(Fp(x)), where Fp(x) = Xgr(x) - Xφ) .

N. B. In this section we consider invariance properties. If parallel

transforms are considered, it is natural to treat stationary fields. But

such a field Y(SP) does not exist. So we consider Ϋ(Fp(x)) as a substitute

of Y(SP). Note that Fgp(x) Φ Fp(g~ιx) for geM(ή), g φ id.

The fields Ψa and ^"α has the same covariance. However, from the

view point of group action, Ψa behaves more naturally than Ψ%a. In the

rest of this paper, we use the modified field Ψa instead of f̂ *. So in the

definition (28) and (29), Va has to be changed to V".

Let us fix a between 0 and 1. It is obvious that the group G is the

subgroup of continuous point transforms of R+ X Rn which act as auto-

morphisms on the family of subsets {Sp; p e Rn}. Any element geG is

written as g = (g, u), where g is the part of solid motion and u is the

dilation part of g. The action of g on the point xe R+ X Rn is defined as

gx = (eux0, eugx) .

Then we have;

THEOREM 10.

Qg(p) = Ϋ(Fgp{x)) = Ϋ(Fp(g-*x)) - Ϋ(Fg0(x))

and

Zu(p) = e-au/2Ϋ(Fp(e-ux)) , a.a. ω .

The theorem above describes the invariance properties of the SERF

from the viewpoint of our representation and tells us why we have intro-

duced y.
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ADDEMDUM. SERF is called fractional Brownian motion and plays
a central roll in the theory of fractals. The representation treated in
2-3 and its application were appeared in the paper of Mandelbrot [11].
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