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LOCAL DENSITIES OF QUADRATIC FORMS

AND FOURIER COEFFICIENTS OF

EISENSTEIN SERIES

YOSHIYUKI KITAOKA

Local densities of quadratic forms are important invariants in the

theory of quadratic forms and they appear in Fourier coefficients of

Eisenstein series. But it is not easy to evaluate them. To study their

properties, it is desirable to look for relations among them, and it is known

that there are many relations [3], but they are not concise. We consider

a different kind of relations here and improve a result of Zharkovskaja

[8, 9] in the case of Eisenstein series as an application.

Let p be a prime number and Zp the ring of p-adic integers. We

define local densities as follows: Put

H2k = — Γ° l f cl(l& = identity matrix of degree k).

For a half-integral regular matrix T of degree n (<L 2k) we define ap(T, H2]c)

by

By definition T is half-integral if and only if 2T is a symmetric and

integral matrix whose diagonal entries are in 2ZP.

Our aim is to prove

THEOREM 1. Lei T be a half-integral regular matrix of degree n(<L 2k).

Then the formal power series

is a rational function in x with denominator

Γf ( 1 p(n-j){n + j + l-2k)/2χ\
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whose numerator has degree at most n. If, in addition p~xT is not half-

integral, then the degree of the numerator does not exceed n — 1.

THEOREM 2. Let ak(T) be the Fourier coefficient of Eisenstein series

Σ{C,D}\CZ + D\~k of degree n, weight k(k = Omod2,k>n + ΐ). Then the

formal power series

Σ ak(P

rT)xr

is a rational function for any positive definite half-integral T with denomi-

nator

Π (1 -pjk~jU+1)/2x),

and the degree of the numerator is at most n, and at most n — lif, in addi-

tion p~xT is not half-integral.

Remark. It is known [8, 9] that the (not necessarily reduced) denomi-

nator of the formal power series in Theorem 2 is given by

Σ (k-ij)
w )

LEMMA 1. For a half-integral matrix T of degree n we put

where R runs over symmetric matrices in Mn(QPlZp) and v(R) is a power of

p equal to the product of denominators of elementary divisors of R, and σ

is the trace and e(z) means exp (2πi(z mod 1)) for z e Qp. If T is regular and

k is a natural number with k ̂  n\2, then we have b(k, T) — ap(T, H2k).

Proof. Let T be a half-integral regular matrix of degree n. It is known

[4, 7] that b(s, T) is absolutely convergent for s > n + 1 and a polynomial

in p~\ and b(k, T) = ap(— T, H21c) for a sufficiently large integer k. The

property that ap{— T, H2k) is a polynomial comes from Lemmas 8, 9 in [4].

Since Lemma 9 is valid for any integer k ^ n\2, the polynomial in p~s

given by Lemmas 8, 9 which is equal to ap(— T, H2k) for a sufficiently large

integer k gives also ap(— T, H2k) for any integer k ^ nj2. Thus we have

b(k, T) = b(k, - T) = ap(T, H2k) for an integer k ̂  n\2. N2 in Lemma 9

and Theorem 2 in [4] should be a maximal subspace which is totally

singular and splits N.



QUADRATIC FORMS 151

LEMMA 2. For a half-integral matrix T of degree n and s > n + 1, we

have

Σ
Π (l -

w h e r e Λ = {λ = ( Λ , , Λ n ) | 0 ^ 2 ^ ••• ̂ n ) ^ e Z } a n d

Here we put It = GLn(Zp) and U{X) = ϊ t Π X{X)-1VLX(X) (X(λ) = d iag (pλ\ . ,pin)).

Proof This is nothing but (2.8) in [2].

We put, for 0 £ k £ h £ n

= 0 if i <
Λ k = \λ = (λly '-',λn)eΛ f ,

I ^ > 0 if i > k J

Akih = {λ e AUi = 1 if A < i £ h, λi ^ 2 if i> h}.

Then it is easy to see

Λ = U A (disjoint), Λfc = (J ^Λ ) Λ (disjoint) .

For Λ = (^, , λn) e A we define λ — 1 by (μl9 , μn) with ^4 = max(0, λt — 1).

Then the mapping λ->λ — 1 is clearly bijective from Λkih on ΛΛ.

LEMMA 3. Let λ e Λkth. Then U(λ - 1) D U(̂ ) and [U(J - 1):

Pfc(Ώ"fc) n* + w^(P '* ~ 1) Π I S ^ - Λ P " ' - I)"1 ΛoW. Fere Π^ ^ « ω 1.

Proo/. Let [/ = (ui3) e U. C7eU(^) if and only if ^-Xi\uiS for i<j.

Hence we have only to prove μά — μi £ λj — λt for i < j , μ — (μu , μn)

= A — 1 to show U(λ — 1) D Vί(X). For i < j , we have

(λs - h - {λ5 - 1) + α - 1) if i ^ A + 1,

^ - ^ - (μj - μt) - \λj - ^ - (λj -ΐ) + λi ifί£k<j,

U

Thus we have U(λ — 1) D U(^). By virtue of Lemma 6 in [1] we know

[U: VKλ)] = P w * "

where ^ ( p " 1 ) = Π i ^ r ( p - 4 - 1) and Λ - (^, - - - , & - , 4 - ^ j ) with
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< λ'2 < < λ't. Hence we have, for λ e Λkih

[U(λ - 1): U(λ)] = [U: U«]/[U: U(λ - 1)]

= P

LEMMA 4. jfO,pT) = [U(λ ~ 1): W)W ~^T) holds for a half-integral
matrix T and λ e Λ.

Proof. Put μ = λ — 1. Then we have

[VL(μ): n(λ)]j(μ, T)

u p^t^ for i < ; } .

Since μt = 0 or ^ - 1 according to λt = 0 or ^i ̂  1, the conditions p^i^i,
pμi\2ttj are equal to p^lpί^, pλi\2ptiS for i <; . Thus we complete the proof.

Combining Lemmas 3, 4 we have

Lemma 5. If λ e Λk^h, then we have

j(λ, pT) = c(k, h)j(λ - 1, Γ),

where c(k,h) =p*(»-*) U^^ΛP'1 ~ 1) ftistsi-Λp-' ~ I)"1.

For a half-integral matrix T of degree τι we denote by f(x; k, h) =
f(x;k,h;T)(O<Lk<,h<Ln) a formal power series

Σ

Coefficients of xr are absolutely convergent if s > n + 1 by Lemma 2. We
put

f(x) = f(x; T) = Σ f(x;k,h)

= Π (i

Since b(s, prT) is rational in p~s [4], we have only to prove the assertion
for f(x) similar to Theorem 1 instead of Σ^o<*p(Pr71, H2k)xr by virtue of
Lemma 1.

LEMMA 6. For 0 < k < h < n we have
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f(x;k,h)= ΣPliί

7 i t\X\ h) t)X '

Proof By definition,

J\X, AV, /tj = ^j /̂j _P J\Λy P -L )X

+ Σ Σ

Σ
*eΛ

c(k, Σ

Since the mapping λ-+λ — 1 is bijective from ^lfc)Λ to Λh and ΣW 7 1 + 1

— i — s) — Y^k<ί^n(n + 1 — i — s) + Σμi(n + I — i — s) (μ = λ — ϊ), we

complete the proof.

LEMMA 7. For 0 <*a <Ln, we have

Π (1 — p(n~JHn+j+1~2s)/2x)f(x) — (polynomial in x of degree a — 1) + κ(a)xa

Aia k)f(χ k h)

where A(a, k) is independent of h and κ(a) satisfies

κ(a + 1) = Σ A(β, k) Σ PΣ" i ( n + 1~'~s)i(^, T)

κ{G) = /(0).

Proof. We use the induction on a.

p*ι«+ι-wx)f(x)

f(x) - pnίn+i-^'2xf(x)

= /(O) + x Σ WA, Λ)p<-*»-+1-*-ί " ! Σ /(*; Kf) - p^^-^mx; h h)\

Σ
k^h^

For A(0, Λ) = Σιz/zkc(f> k)Pin~f){n + 1~f~28)/2> t h e first s t e P h a s b e e n

For 0 ^ α <2 n — 1,
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Π (l-p(n-iHn+i+1-2s)βx)f(x)

= (1 -p ( Ϊ I-α- 1 ) < ί ί + 2 + < I- 2 s ' / 2x) {(polynomial in x of degree a - 1)

+ κ(a)xa + xa+> Σ Ma, k)f(x; ky A)}
a + l^JcShSn

= (polynomial in x of degree a)

+ xα + 1{ Σ A(α, &)/(x; A, Λ) -

By Lemma 6, we have

Σ A(a, k)f(x; k, h)

= Σ A(a, k)

Thus we have

Π (1 - p ( n - j ) ( n + 1+J-2s)/2Λ:)/(x) = (polynomial in * of degree α)
g+l

The last term is equal to

f(x;k,h){ΣΣ

Σ f(χ;k,h){

Putting

A(a + 1, fe) = 2 A(a,f)c(f, k)p'n-f^n^~f~2s)/2 - pi"-*-w*+*+*-*»/*A(a, k)

we complete the proof.

From Lemma 7 follows that Πo^nO- - p ( n - ; ) ( 7 l + J + 1-2s)/2x)/(^) is a poly-

nomial of degree n whose leading coefficient is κ(n). It remains for us to

prove Theorem 1 that κ(n) = 0 if p~xT is not half-integral.

LEMMA 8. Put g(f) =p<» -/x»+/+i-2o/2
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D(f, k) = π < t (p-1 - D ^ Π f (p-f - i)"1

Then we have

Aφ,k) = iΣt8(f)D(f,k),

A(a + l,k) = β + Σ A(a,f)g(f)D(f, k) - g(a + ϊ)A(a, k)

for 0 <L α ^ ra — 1,

«(») = 0<Σh</(k, h){g<Σ ^ U ( - 50"))M(i, k) + ^ Π ^ - «O"))}.

where

J{k, h) = Σ p&i("+1--i-s>j(;i, Γ ) .

Proof. The first two are nothing but their definition. To prove the

last we show the following inductively:

Φ ) = o < Σ ({+ Π ( - ^ ) ) \ + I < 5 Λ < n

Λ ( i ' ^)J(^' Λ)

+ Π (-2(0) Σ «W,Λ).

Here we put ΣΦ = 0. Then it is clearly true for a = 0. Let 0 <ί, a ^ n — I;

then by Lemma 7

tc(a + 1) = Σ M®, k)J(k, h) — g(a + l)κ(α)

= Σ Ma, k)J(k, h)

Λ^Π (-*0"»). Σ A(i,k)J(k,h)

+ Π (-2(0) Σ «/(*,Λ)}

= Σ ( Π ( - g(J))) Σ Mh k)J(k, h)
^i^ i 2 j ^ l ί l k ^ h ^

Π
i<

Σ
k^h^

Applying it to a = n, we prove Lemma 8.

If p ^ Γ i s not half-integral, then J(0, h) = 0 follows from j(λ, T) = 0 for

λ e ΛOih since λλ ^ 1 for ^ e AOyh. Hence, to complete the proof of Theorem

1, we have only to prove

LEMMA 9. κ(ή) = ΣO^Λ^Λ^(O, h) \\ιύjύn{— g(J))\ more minutely

Σ ( Π (-g(J)))A(i,h)+ Π ( - ί U ) ) = 0 forl^k^n

This follows directly from the following
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LEMMA 10. Let D(a, b), g(a) be independent variables for 1 <; a < b and

put D(α, α) = 1 for a ̂ > 1. Define A(a, b) for 0 <* a < b inductively by

A(0, m)= Σ g(f)D(f, m),

A(a + 1, m) = Σ Ma, f)g{f)W, m) - g(a + ΐ)A(a, m)

for 0 <̂  a < m — 1.

Then we have, for 0 ^ k rg m — 1

0 = Σ ( Π ( - g(f)))A(i, k + ΐ)+ Π (~gU)) = 0.

Proo/. We use the induction on m. Since F(0,1) = A(0,1) - ^(1) = 0,

the first step is true. Suppose m ̂  2 and F(£, n) = 0for0<^&5gn, — 1 ^

m — 2. If ^ ̂  m — 2, then we have

F(k, m) = - g{m)F{k, m - 1) = 0 .

It remains for us to prove F(m — 1, m) = 0 for m 2> 2. We put

F(m) = F(m - 1, m)

= Σ ( Σ ( - ίU)))A(/, m) + A(m - 1, m) + Π (~ gUΪ)

We prove F(m) = 0 by showing that all coefficients of the polynomial F(m)

in g(m) vanish.

SUBLEMMA 1. A(a, b) does not contain g(m) for b < m, and A(a, m) is

a monίc polynomial in g(m) of degree a + 1, and F(m) is of degree at most

m.

Proof The first assertion is easily proved by the induction on a. The

second is also proved by the induction on a: A(0, m) = Σi£f^mg(f)D(f, m)
= Σigf£m-i&(f)D(f, m) + g(m) is a monic polynomial of degree one. For

0 ^ a <J m — 2, we have

A(a + 1, ro) = Σ A(a, f)g(f)D(f m) - g(a + l)A(α, m)

Λ(α, f)g(f)D(f, m) + A(a, m)g(m)
1

— g(a + l)A(α, m).

By the inductive assumption and the first assertion, A(a + 1, m) is a monic

polynomial in g(m) of degree a + 2. Now the last assertion is clear.

SUBLEMMA 2. For 2 <̂  q ^ ra, ί/ie coefficient of g{m)q of the polynomial
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F(m) in g(m) vanishes.

Proof. Write A(a, m) = Σo^^α+i^5 &, ™)g(w)\ where h(i; a, m) does
not contain g(m). Then we have

h(a + 1 α, m) = 1 and

h(i; a + I, m) = h(ί — 1; α, m) — g(α + l)h(i; α, m) for i >̂ 1,

by the definition of A(a, m) and the above sublemma. We complete the proof

of this sublemma by the induction on q = m, m — 1, , 2. By Sublemma

1, the coefficient of g(m)m is 0. Suppose that the coefficient of g(m)r

vanishes for r = q + 1, , m (2 <̂  g ̂  m — 1). The coefficient of g(m)9 is

Π ( - §U))HQ - l ; i, "0 + ft(<7; /n - 1, m)

= - Π (-«0))- Σ ( Π (-g(j)))h(q-l;i,m)
q^j^m-1 q-l^i^m-2 i + 2^j^m-l

+ h(q; m — 1, m).

For g — l ^ ί ^ m — 2, we have

h(q;t + l,m)- Σ ( Π (-*(/)»Λ<<7 - 1; *, ™) - Σ

= Λ(? - 1; <, m) - ^(ί + l)h(q; t, m) - Λ(g - 1; t, m)

- Σ ( Π (-£(Λ))M?-i; *',">)- Π ( -

= - g(t + l){Λ(g t, m) - Σ ( Π ( - ίU)))Mg - 1 »,

- Π (

Applying this to the coefficient of ^(m)9 from t = m — 2 to t — q — 1, it is

equal to

SUBLEMMA 3. 77ιe coefficient of g(m) of the polynomial F(m) vanishes.

Proof. The coefficient of g(m) is equal to

Σ ( Π (-g(j)))h(0;ί,m) + h(l;m-l,m)- ff (-

We show inductively

Λ(l;α,m)=

For α = 0, both sides are equal to 1. Suppose that the above formula is true

for a. Then
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h(l;a + 1,/n)
= h(0; a, rrί) — g(a + l)/ι(l; α, m)

- /ι(0; α, m) + Σ ( Π ( - g(J)))h(O; i,m)+ Π ( -

= Σ ( Π (- gφ))hφ; i, m) + Π (-
O^i^ i 2gj^ l lgjg 1

Thus the above formula is proved, and the case of a = m — 1 is what we

want.

Thus it has been proved that F(m) is a constant with respect to g(m)

and hence we have only to prove

F(τή) = Λ(0; m - 1, m) = 0.

SUBLEMMA 4. For 0 ̂  α ̂  /n — 1, α e /ιαue

MO; α, m) = ( Π ( - ^(0))Λ(0; 0, m) + Σ ( Π ( - ^(0))G(;),

u /iere G(j) - Σj^f^-iA(j,f)g(f)D(f, m).

Proof. When a = 0, both sides are equal to /ι(0; 0, m). By definition,

we have, for 0 <̂  a ̂  n — 2

/ι(0; α + 1, m) = £ Λ(o, f)g(f)D(f, m) - g(a + l)/ι(0; α, m)

= G(α) - g(a + l)/ι(0; α, m)

= G(ά) + ( Π (-^(0))MO;0,m)

+ Σ ( Π (-gΦ))G(j)

= ( Π (-tf(0))Λ(0; 0, m) + Σ ( Π (-gii)))CKJ) •

SUBLEMMA 5. h(0;m — 1, m) = 0.

Proof. h(0;0,m) = Σi*f*n-ig(f)W,rn) and G(j) = Σi+i*f**-i A(h f)
-g(f)D(f, m) follow from their definition. By Sublemma 4 we have

h(0; m — 1, m)

= ( Π (-£(0)) Σ g(f)D(f,m)

+ Σ ( Π (-g(O)) Σ A(j,f)g(f)D(f,m)

= Σ g(f)D(f,m){ Π (-£(0)+ Σ ( Π
1^/^m-l l^ΐ^TO-1 0^j^/-l ^+2gi^

= Σ g(f)D(f,m) Π <-£(0){ Π (-^(0

+ Σ ( Π (-£(0
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= Σ gif)D(f,m)( Π (
l ^ 1 f l ^ i ^ 1

since F(f) — 0 for 1 <, f <, m — I by the inductive assumption.

Thus we have completed the proof of Theorem 1.

Proof of Theorem 2. Let T be a half-integral positive definite matrix

of degree n. Then ak(T) is given in [6] by

— 1/2) P

For a unit ε e 2%, we have ap(T, H2k) = b(k, T) = 6(A, εT) = ap(εT, H2k).

Hence we have

Σ ak(prT)xr = const Σ α ? ( p t tf2fc)(p*fc-(* + 1>*/2x)',

which is a rational function in x whose denominator is

TT /-^ _ p(n-j)(n + l-2fc + j)/2+ Wfc- (n + l)n/2^.\

= Π (l-p j f c - J ' ° ' + 1 ) / 2 χ).

Another assertion follows from the corresponding one in Theorem 1.

Remark. The formal power series similar to one in Theorem 1 for

any quadratic form instead of H2]c seems to be rational.
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