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DECOMPOSITION PROBLEM OF PROBABILITY

MEASURES RELATED TO MONOTONE REGULARLY

VARYING FUNCTIONS

TAKAAKI SHIMURA

1. Introduction

This paper deals with a decomposition problem for some classes of distribu-

tions. Let D be a given class of distribution on R , which we are interested in. Af-

ter showing that the class D is closed under convolution, our purpose is to give an

answer to the inverse problem: if the convolution of two distributions μ1 and μ2

belongs to D, then do μλ and μ2 belong to D ?

Such an inverse problem is solved affirmatively for the class of Gaussian dis-

tributions, the class of Poisson distributions and the class of convolutions of Gaus-

sian and Poisson ([5]). In this paper, we study this decomposition problem for

several classes characterized by regular variation. A positive measurable function

/ is said to be regularly varying (r.v.) with index p(^ R ) if \imx_^oof (kx) / f (x) =

k for each k > 0. In particular, / is called slowly varying (s.v.) if p — 0. It is

well-known that the domain of attraction of Gaussian distribution (denoted by D2)

is identical with the class of distributions whose truncated variances
J\t\<2

t μ(dt) are s.v. Concerning the inverse problem for D2, the author shows in [7]

that there exist two distributions μι and μ2 such that neither μγ nor μ2 belongs to

D 2 but the convolution of μγ and μ2 belongs to D2. The proof depends on the fact

that there is a non-decreasing s.v. function that is represented as the sum of posi-

tive non-decreasing functions that are not s.v.

We investigate the class D(α) of distributions on [0, °°) with r.v. tails with

index — a for a > 0 and the class C of distributions on [0, °°) with s.v. trun-

cated means. These classes are related to various limit theorems: the domain of

attraction of stable laws, relative stability, the ratio of maximum to sum of an i.i.d.
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sequence and so on. We extend the argument for non-decreasing s.v. functions to

general monotone r.v. functions. Since the decomposition for the classes of the cor-

responding functions is essential in solving the decomposition problem for the

classes of distributions, we study it in detail in Section 3. We say that a

non-negative non-decreasing (resp. non-increasing) / is decomposed into fx and /2,

if both / and f2 are non-negative non-decreasing (resp. non-increasing) and / — Λ

+ f2. In this case fx and f2 are said to be components of / We are interested in

whether components of a r.v. function are r.v. or not. There are non-decreasing

s.v. functions such that all their positive components are s.v. However, we will

show that if / is a non-increasing s.v. function convergent to 0 or a monotone r.v.

function with non-zero index, then / always has positive components that are not

r.v. and / can be written as the sum of such components. Further, we study prop-

erties of the components of'/ Especially, properties of the components that are not

r.v. are interesting. When a component g of / is not r.v., the property of g differs

between zero index case (s.v. case) and non-zero index case. If/ is s.v., then g is

occasionally small, i.e. lim i n ^ ^ g(x)/f{x) = 0. But, in the case of non-zero in-

dex, g does not necessarily have this property. This is because of the difference in

the manner of losing the regular variation. Let/ be a non-decreasing r.v. function

with index p > 0. If the component g is not r.v., then either lim sup,^^

g{kx)/g{x) > kP (occasional rapid increase) or liminf^^ g(kx)/g(x) < kP (occa-

sional insufficient increase) must occur for some k > 1. If / is s.v. then only the

first case can occur and then g is ocassionally small. But, if the index is positive,

then both cases are possible. Further, the rapid increase of g and the insufficient

increase of the complementary component f ~ g can occur simultaneously on an

interval and the two properties compensate for each other; in this way both of the

components can lose the regular variation without being occasionally small.

In Section 4, decomposition problems of probability measures are considered.

First, we give some relations between a distribution in D(α) or C and its factors.

These relations and general facts on regular variation imply that these classes are

closed under convolution. Second, we answer the inverse problem by using the re-

sults in Section 3. It is easy to see that, for each a > 0, there exist two distribu-

tions such that one of them belongs to D(α), the other does not and their convolu-

tion does. For, it is known that, if μ ^ D(α) and v ^ D(β) with a < /?, then μ* v

^ D(α) ([8]). Therefore our interest is in construction of two distributions μx and

μ2 such that neither μx nor μ2 belongs to I) 0^β<ooD(β) but the convolution μx *μ2

belongs to Ό(ά). We also construct two distributions μx and μ2 such that μλ and

μί * μ2 belong to D(α), μ2 does not belong to it, and lim s u p ^ ^ ^ C r , <x>)/

μγ(x, °°) > 0. Considering the same problem for C, in addition, we will give a
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sufficient condition for a distribution in C to have the property that all

non-trivial factors of it belong to C. The situation of D(α) (a > 0) is exceedingly

different from the cases of D 2, C and D(0), owing to the difference, which we

mentioned, between the decompositon of monotone r.v. functions with non-zero in-

dex and that of monotone s.v. functions.

2. Preliminaries

The totality of all probability measures on the real line R is denoted by

P ( R ). We call them distributions (or laws). Delta distributions are called trivial

distributions. A distribution μ1 is called a factor of a distribution μ, if μ = μx * v

with some v ^ P ( R ). Here μγ * v denotes the convolution of μλ and v. We call

μ(x, oo) and μ{— °°, — x) the right-tail and the left-tail of μ, respectively. Two

functions fx and f2 are said to be asymptotically equal and expressed as fx ~ f2 if

Iim^o o/1(j:)//2(r) = 1. The composite function fx(f2(x)) is denoted by f1

of2. We

state some fundamental facts on regular variation in the first half of this section

and the probabilistic meaning of the classes of distributions with which we deal in

this paper in the latter half. All the facts in this section are proved in [1], [2], [3],

[4] and [6].

Slowly varying functions have the following representation.

THEOREM 2.1. A function f is s.v. if and only if it can be written in the form

fix) = c(x)exp(f εit)fι di),x>A

for some A > 0, where cix) and ε(f) are measurable functions such that l im^^

dx) = c (0 < c < oo) and Mm^εit) — 0.

A s.v. function / is called normalized if the function cix) in the above repre-

sentation of/ can be chosen to be a constant function.

Through this paper we use the following notations. ( ΐ ) is the set of positive

non-decreasing functions. ( 1 ) is the set of positive non-increasing functions and

( I ) 0 is the set of positive non-increasing functions convergent to 0. SV is the set

of s.v. functions. NS is the set of normalized s.v. functions. RV is the set of r.v.

functions. RVP is the set of r.v. functions with index p. SV( ΐ ) = SV Π ( ΐ ) ,

s v ( l ) = s v n ( i ) , R V ( T ) = R V Π ( ί ) , R V ( i ) = R V Π ( l ) , R V P ( T ) =
Π ( T ) a n d R V p ( l ) = R V , Π ( i ) .
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THEOREM 2.2. A positive measurable function/ is in NS if and only if for every

p > 0, x f{x) is ultimately increasing and x f(x) is ultimately decreasing.

If a monotone function/ satisfies \imx_oofi2x)/fix) = 1, then/ is s.v. On the

other hand, the following theorem shows that any r.v. function with non-zero in-

dex is asymptotically equal to a monotone one.

THEOREM 2.3. Let f ^ RV^ and locally bounded on [A, °°) for some A. If

p > 0, then

fix) ~ sup{ fit) ;A<t<χ}~ inί{ fit) ;t>χ}.

Ifp>0, then

fix) ~ sup{ f i t) t > x) ~ mίifit) ;A<t<χ}.

The characteristic function of μ ^ P ( R ) is denoted by fiiz). A distribution μ

is called stable if, for any a > 0 and b > 0, there exist c > 0 and d ^ R such

that

μiaz)μibz) =μicz)etdz.

It is well-known that except in the case of delta distribution this c is uniquely de-

termined by a and b, and there exists a with 0 < a < 2 such that ca — a* + ba.

This a is called the index of the stable law.

A canonical representation of stable law μ with index a (0 < a < 2) is as

follows:

(2.1) μiz) = exp[ι>z
du

( - u)1+a

du

where 7 e R , clf c2 > 0 and cλ + c2 > 0. A stable law μ is called spectrally

positive if cλ — 0 in (2.1).

Hereafter, in this section, let Xί9 X2,..., Xn,... be R -valued i.i.d. (indepen-

dent and identically distributed) random variables with distribution v and denote

Sn — Σy=1-Xy (random walk) and Ln — max1<y<M Xjm

If, for suitably chosen constants Bn > 0 and An e R , the distribution of
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converges to a distribution μ as n—-> °°, then we say that v is attracted to μ. The

totality of distributions attracted to μ is called the domain of attraction of μ.

Let D(α) (α > 0) denote the class of distributions on [0, °°) with r.v. tails

with index — a.

THEOREM 2.4. Let 0 < a < 2. Assume that v(— °°, 0) = 0. Then v belongs to

the domain of attraction of a spectrally positive stable law with index a if and only if

v e D(α).

THEOREM 2.5. Suppose that v(x, °°) is positive for all x. In order that, with

suitably chosen normalizing constants Bn, the distribution of Ln/Bn converges to a

non-trivial distribution μ, it is necessary and sufficient that v(x, °°) ^ RV_α with

some a > 0. In this case,

μ{— °°, x] = exp(— cx~a) for x > 0 with c > 0

and μ(— °°, 0] = 0.

THEOREM 2.6. Ifv is in D(0), then

lim P(n v(Sn, oo) > x) = ^" x, x > 0.

If, for suitably chosen constants Bn > 0, the distribution of Sn/Bn converges

to 1 in probability as n—» °°, then we say that v, or the random walk Sn, is re-

latively stable. For μ ^ P(R ), we define the truncated mean of μ by

M(R) = f xμ(dx).
•s \τ\<?P

The truncated mean of the distribution of a random variable X is denoted by

MX(R). Let C denote the class of distributions on [0, °°) with s.v. truncated

means.

THEOREM 2.7. Suppose that v(— oo, 0] = 0 . Then v is relatively stable if and

only ifv^C.

Now we turn to comparison of the largest term Ln and the sum Sn. For

simplicity, we restrict our attention to the case of v concentrated on (0, °°); then

Sn > 0, and we can consider Ln/Sn. The following facts are known.
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THEOREM 2.8. Ln/Sn converges to 0 in probability as n—• °° t/and onfy j / y e C .

THEOREM 2.9. Ln/Sn converges to 1 in probability as n—*°° if and only if

THEOREM 2.10. The following are equivalent:

(1) Ln/Sn has a non-trivial limit distribution,

(2) v is attracted to a stable law of index a ^ (0, 1),

(3) Έt(Sn/Ln — 1) tends to a positive finite limit.

THEOREM 2.11. If v has finite mean m, then the following are equvalent:

(1) (Sn — nm)/Ln has a non-degenerate limit distribution,

(2) v is attracted to a stable law of index a £ ( 1 , 2 ) ,

(3) E{(SW — nm)/Ln} tends to a positive finite limit c.

The a and c are related as a— (1 + c)/c.

3. Decomposition of monotone regularly varying functions

In this section, general results on decomposition of monotone r.v. functions

into the sums of monotone functions are given. In the first subsection, we comple-

ment our discussion in [7] of non-decreasing s.v. functions. Then we investigate

non-increasing s.v. functions in the second subsection. The third subsection deals

with monotone r.v. functions with non-zero indices. For each case, we consider

three types of decomposition of a monotone function / into two components flf f2:

type I: Λ e RV and / 2 e R V ; type II: fx e RV and f2 <έ RV; type III: fx <έ RV

and f2 & RV. Keep in mind that, when we consider type II decomposition, the

numbering of fx and f2 is made as above. We exclude the trivial decomposition

where fγ = 0 or f2 = 0.

3.1. Non-decreasing slowly varying functions

The decomposition of non-decreasing s.v. functions is dealt with in [7]. The

following definition is given there and Theorem 3.1 is the main result in [7J.

DEFINITION. We say that a non-negative non-decreasing function / is domin-

atedly non-decreasing (resp. undominatedly non-decreasing) if lim

(f(2x) -f{x)) < oo (resp. = oo).
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THEOREM 3.1. Let f e SV( ΐ ).

(1) /// is dominatedly non-decreasing, then every decompoition of f is of type I.

(2) /// is undominatedly non-decreasing, then f has a type III decomposition.

We show some facts on the decomposition, which are extensions of Proposi-

tion 3.7 and Theorem 3.8 of [7].

THEOREM 3.2 Let f be an undominatedly non-decreasing s.v. function.

(1) Suppose that f is decomposed into fλ and f2. If f2 £ SV and lim inf ;_oo/2(2x ;)/

f2(jCj) > 1 for some sequence Xj—* °°, then

\im f2(xj)/fixj) = 0.
j—OQ

(2) For any constant r such that 0 < r < °°, there exists a type II decomposition

off into fx and f2 satisfying

(3.1) limsup/2Cr)//ΐCr) = r.

Proof. (1) Notice that

Since the left-hand side converges to 0 as j - ^ °° by the slow variation of/ and

(f2(2Xj) — f2(Xj))/f2(xj) has a positive lower bound, we get lim,^f2(Xj)/f (Xj)

= 0.

(2) If r < oo, then the assertion is proved in [7]. Let r = oo. By Theorem 3.1,

/ has a type III decomposition: / = f γ + f2. Set

0(j?) = s u p ( / ( 2 ί ) -fit))/fit).
t>x

Obviously, θ is in ( 1 ) 0. Define φ by φ = /°/2, where / is in NS Π ( I ) 0 satis-

fying l i n v ^ θ(x)/l(x) — 0. Then it is easy to show that

(3.2) lim θ(x)/φ(x) = 0.
X-+CO

Now define fλ and /2 by Λ — Λ + 0/ 2, /2 = (1 ~ 0)/ 2 . Then, / = fγ + /2. Further,

it is obvious that /2 e ( | ) and /2 ^ SV. We will prove that fx and f2 satisfy (3.1)

with r= oo and Λ ^ S V ( ί ). Since φf2 = / 2 ( / ° / 2 ) and / is in NS, 0 / 2 e

( T ) by Theorem 2.2. Hence Λ e ( | ) . Now let us prove that/ x e SV. We have
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Λ(2x) = /x(2.r) + φ(2x)f2(2x)

/iί*> Ux)+φ(x)/2(x)

< θ(x)f(x)

φ(x)f2(x)

Here we have used that

(7,(2*) -fi(x))/fU) < θ(x) (i = 1,2) and 0(2Λ?) <

By (3.2), the last term converges to 1, which shows that fx €= SV. Noticing that
l imsup^^CzV/iCz) = °° ([7], Proposition 3.7 (2)), we can prove that/j and f2

satisfy (3.1) with r = °°. The proof is complete. D

We add a theorem concerning decomposition of type I.

THEOREM 3.3. Let f ^ SV( T ) and p and q be constants each that 0 < p <
q < oo. //lim^^^/Cx) = oô  thenf has a type I decomposition into fί9 f2 satisfying

(3.3) Urn inί f2(x) / f^x) = p and lim sup/2Cr)//ίCr) = #.
£-•00 X-+ 00

Proo/. If / is dominatedly non-decreasing, then the increase on the intervals

(2J, 2J+ι] (j — 1,2,...) is uniformly bounded. We can construct fx and f2 having

the desired properties in such a way that only one of fγ and f2 increases on each

interval.

Consider the case of undominatedly non-decreasing/. By Theorem 3.1,/ has

a type III decomposition: / = fx + f2. If 0 < p < q < °°, define fx and /2 as

where p = δ/tf, ^ = d/c and α + ό = c + d =

define fx and /2 as

k=f-ff, h = ff.

If /> = 0, 0 < q < °° or if 0 < p, q = °°, define ^ and /2 as

Λ = ch + (1 - 0)Λ, Λ = dfλ + φf2,

where q == rf/c, c Λ- d— \ and 0 ^ (1) as in the proof of the previous theorem.
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If p — 0, q = °°, then we define

Λ = ΦΛ + (l - φ2)f2, /2 = (l - φJh + φj2,

where φ{ (i = 1, 2) is given by 0 t = /°/Γ It is not difficult to prove that/Ί and/ 2

have the desired properties. D

3.2. Non-increasing slowly varying functions

We consider the decomposition of non-increasing s.v. functions. Theorem 3.4

and Proposition 3.5 show that the decomposition in this case is simpler than that

of non-decreasing s.v. functions. Proposition 3.6, Theorems 3.7 and 3.8 show that

the components have properties similar to the components of non-decreasing s.v.

functions.

THEOREM 3.4. Let f be in SV( I ) . // lirα^/Cr) = 0, thenf has a type III de-

composition.

Proof. Let

g(x) = sup(/(0 ~f(2t)) and h(x) =f(x) - g(x).
t>x

It follows from non-increasingness of/ that both g and h are in ( I ) . Further,

(3.4) X\mg(x)/h(x) = 0,

since / G SV, h e SV and h ~ f. We construct fx and f2 oscillating between h

and g. Using (3.4), choose xQ > 0 such that

(3.5) g{x) < h(3x) for all x > x0.

For each ε (0 < ε < 1), define

C(ε) = te : (1 -

Notice that C(ε) is an unbounded set. Assume that/ x and/2 are defined on [x0, Xj]

and that

cy), ^ e C(ε).

For x ; < j ; < 2x ; , we define /x and f2 as
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where s, t > 0 and s + t = 1. Define xJ+1 = infίf : hit) <fι(2xj)}. Then, by

(3.5),

If fγi2x) < (resp. >) hixj+ι), then, define, for 2Xj < x < (resp. <) xj+v

f1(x)=f1(2xJ), f2ix)=fix)-f1i2xj).

Choose xj+2 such that xj+2 > χj+ι and x ; + 2 ^ C(ε). For xj+1 < (resp. < ) x < xj+2,

define

Λ = A, Λ = ̂

Exchanging the roles of /x and /2 we define fγ and /2 on (xj+2, 3?y+J. Thus, by in-

duction, we can define /x and f2 on [x0, °°). Obviously / = fλ + / 2 . It is not

difficult to show that/ x, f2 e ( | ) . Let us prove that/ x, /2, £ SV. Since

r,) _

Λ(^) ^ ) - s ( 1 ε )

we get

This implies that fx <έ SV. Similarly, f2 <έ SV. D

Remark A similar method gives a new proof of Theorem 3.1 (2). In this case,

we make fλ and f2 oscillate between two unbounded non-decreasing functions

g(x) = sup (fit) - f(t/2)) and h(x) = fix) - gix).
X—»oo

We can give a stronger assertion on decomposition of a non-increasing s.v.

function as follows. Proof is essentially the same as that of Theorem 3.4 and

omitted.

PROPOSITION 3.5. Let f be in SV( i). If l inv^/Cr) = 0, then, for each n, f

can be represented as f— Σ " = 1 fif where each f{ is in i I) and the sum of an arbitrary

proper sebset of the set {f{ : i = 1,2,... ,n} is not in SV. Moreover, f has a representa-

tion f— Σ^li fι with the same properties.
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The following proposition gives properties of components in decomposition of

a non-increasing s.v. function. This corresponds to Proposition 3.7 of [7] and

Theorem 3.2 (1) on non-decreasing s.v. functions. Proof is similar and omitted.

PROPOSITION 3.6. Let f be in SV( 1). Suppose that f is decomposed into fx andf2.

(1) Then at least one of fγ and f2 satisfies

(3.6) lim sup fi(kx)/fi(x) = 1 for every k > 1.
X-* oo

(2) If f2 ^ S V and limsvφj^O0f2(2xj)/f2(xj) < 1 for some sequence {xj}, then

\imj^OQf2(xj)/f(xj) — 0. Especially, if the decomposition is of type III, then

(3.7) liminf/2Cz)//iCz) = 0 and lim sup f2{x)/fγ{x) = °o.
x-*oo #-»oo

Remark. In (1), one of fx and/2 can fail to satisfy (3.6). For example, consider

fix) = 1 1

We show a theorem on decomposition of type II.

THEOREM 3.7. Let f be in SV( 1) and let 0 < r < oo . // l i r n ^ / C r ) = 0,

then f has a type II decomposition satisfying (3.1).

Proof. By Theorem 3.4,/ has a type III decomposition: / — Λ + / 2 Assume

0 < r < oo. Define K by r = «/(l - u). Then, 0 < u < 1. Set Λ = f x + (1 -

u)f2 and /2 = M/ 2. Then, fx and /2 satisfy the desired conditions. We can get (3.1)

by (3.7). This finishes the proof in the case 0 < r < o o . if r — o, then define

fγ — f — f 2 and f2 = f2 for large x. Let us consider the case of r = °o. Set

0(x) = s u p ( / ( ί ) -f(2t))/f(t).
t>x

Obviously, θ ^ ( 1 ) 0. Set ω = l / / 2 and choose a continuous non-decreasing func-

tion η satisfying ω < η. Then η(x)x is an increasing function. Let ψ be its in-

verse function. Define lλ by lγ — /0 ° 0, where /0 is an unbounded s.v. function

satisfying lim^^ θ(x)lo(x) — 0. It is easy to see that lx ^ SV( ΐ ) is unbounded.

Let / be in NS Π ( I ) 0 such that l i r α ^ I(x)l1(x) = 1. Define φ = h ω. Then,

since θ(x)/φ(x) < θ(x)/l(η(x)x), we have

(3.8) lim θ(x)/φ(x) = 0.
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Now define Λ and /2 by /, = Λ + φf2, /2 = (1 - 0 ) / 2 . Then, Λ e ( 1 ) , /2 £ SV

and f—fi+f2. We have to prove that ^ and f2 satisfy (3.1), f2 e ( I ) and

Λ e= SV. Since (1 - 0 ) / 2 = (1 - / ( l / / 2 ) ) / 2 and / is in NS, we see that f2 <=

( I ) . Now let us prove that Λ e SV. Using (/,0c) - / / ( 2 x ) ) / / 0 r ) < 0Gr), we

have

φ(2x)f2(2x)

>

φ(x)f2(x)

φ(2x))f(x) + (φ(2x) - φ(x))/2(x)

φ(x)/2(x)

By (3.8), the second term in the last line converges to 0 as i - ^ °°. Let us denote

by δ the third term with the minus sign deleted. If fι(x)/f2(x) Ξ> 1, then we have

as

If Λ ω / / 2 ω < 1, then (/2Cr) -f2(2x))/2f2(x) < (fix) -f(2x))/f(x) < θ(x)
and we get

ω(2x) < (1 -

which implies

φ(x) - φ(2x) l(ω(x)) - /((I - 2θ(x))~ιω(x))
δ(x) <

φ(x)

The last expression tends to 0 by the slow variation of /. This concludes the proof

that/i e SV. It is easy to show that fx and f2 satisfy (3.1). Π

We give a statement on decomposition of type I. The proof is similar to that

of Theorem 3.3.

THEOREM 3.8. Let f be in SV( 1) and let 0 < p < q < oo. // Xmi^fix) =

0, thenf has a type I decomposition satisfying (3.3).

3.3. Monotone regularly varying functions with non-zero index

Now we study decomposition of monotone r.v. functions with non-zero index.
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In the three types of the decomposition, type III is especially interesting because

there is a remarkable difference between zero index case and non-zero index case.

Since the results on non-decreasing r.v. functions are similar to those on

non-increasing ones, we state them together.

LEMMA 3.9 Let f be in RVpi T ) with p > 0 (resp. RVP( 1) with p < 0) and I

be in SVC ΐ ) (resp. SV( 1 )). Then there exist f0 e RV( ΐ ) (resp. RV( I )) and

l0 <Ξ SV( ΐ ) (resp. SV( I ) ) satisfying

f = lofo and l0 ~ I

Proof. It is sufficient to prove in the non-decreasing case. Assume that / ^

RV,( t ) with p > 0 on [1, oo). Let F= log/ and εy = log(/(2;+1)//(2;)). Then,

since

lim (F(2x) - Fix)) = p log 2 and lim ε; = 0,
χ-+ oo ;-*oo

we can assume that εy ^ F(2x) — F(x) for all j and x without loss of generality.

Define G and H inductively as follows: For x = 1, let G(l) = log 1(1), H(l) =

F(l) - log 1(1). For 2 ; < ^ < 2;+1, let

G(x) = G(2;) + — h (F(x) -
F(2 ; + 1) - F(2 ;)

H(x) = H 2 0 + F ( 2 > + 1 i + 1

Define lQ = exp G and f0 = exp i/. It is easy to prove that l0 and /0 satisfy the

above conditions. CD

The following theorem is proved by this lemma and Theorem 3.3 or 3.8.

THEOREM 3.10. Let f be in R V P ( ΐ ) with p>0 (resp RVP( 1 ) with p < 0)

and let 0 < p < q < °°. Thenf has a type I deomposition satisfying (3.3).

Proof. Choose an unbounded non-decreasing s.v. function / and apply the

above lemma to / and /. Then /0 is also unbounded. Write l0 as the sum of two

funcitons lx and l2 having the properties in Theorem 3.3. Then we define fx — lxf§

and f2 = l2f0, which satisfy our conditions. In the non-increasing case, choose / in

SV Γ) (1 ) 0 and use the above lemma and Theorem 3.8. D
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We show a theorem on decomposition of type II.

THEOREM 3.11. Let f be in RV( ΐ ) {resp. RV( I ) ) .

(1) If a decomposition is of type II, then lim mίx^ f2(x)/fx(x) = 0.

(2) For any constant r such that 0 ^ r ^ °°, there exists a type II decomposition

off satisfying lim supx_O0f2(x)/f1(x) = r.

Proo/. (1) It is easy to see that the index of fγ is equal to the index p of /

Assume thatf2/fi > ε for some positive constant ε. By the regular variation of/

f2(kx) - kpf2(x)

°
for every k > 0. Since

-kp

lim sup < lim sup I f^kxi/f^x) - k" \ = 0,

we get

Using / < (1 + ε~ )/2, we have

lim sup
/2(fcc)

/2ω
< (1 + ε ) lim sup

f2(kx) - kPf2(x)

+/2ω
= 0.

This is contrary to that f2 & RV.

Proof of (2) is given in a similar way to the proof of the previous theorem by

using Theorem 3.2 (resp. 3.7) instead of Theorem 3.3 (resp. 3.8). O

Remark. Notice that the proof of (1) does not use the assumption of monoto-

nicity.

Now we proceed to the decomposition of type III, which is widely different

from the case of slow variation in Proposition 3.6.

THEOREM 3.12. Let f be in RVP( ΐ ) with p > 0 (resp. RVP( ϊ ) with p < 0)

and let 0 < p < q < °°. Then f has a type III decomposition satisfying (3.3).

Proof. We give outline of our proof in non-decreasing case. Non-increasing

case can be treated in a similar way. Let p be the index of/ First we choose suit-
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able hi9 gt e ( | ) (i = 1,2) satisfying

/ = hλ + h2 = gx + g2.

We will define /• oscillating between h{ and £,. We will choose a sequence ί r ; } in

a suiatable manner and make /x (resp. /2) increasing (resp. flat) in Lr2y_i> xi) a n d

flat (resp. increasing) in [x2j, x2j+i). We divide our consideration into three cases,

namely, Case 1: 0 < p < q < °° Case 2: either ^ = 0 < ^ < o o o r 0 < ^ < ^ =
0 0 Case 3: p = 0, # = °°. In Case 2, we assume p = 0 < # < °°, as the discus-

sion for 0 < ^ < # = ° ° i s similar. Define Λf and gt in each case as follows.

Case 1: Ax = ^ r y / , 2̂ = 7 ψ y A Λ = Jψjf, gz = y+jf-

Case 2: h, = Jψjf, K = q\χf, gi =f~ 41, g2 = v7

Case 3: h2 = gλ = f - y/f, ^ = g2 = yff.

Define the sequence {Xj} inductively as

x2j+1 = infίί : hx{t) > gι(x2j)}, X2J

This sequence is increasing and satisfies

In each case, this equality means the following.

Case 1:

( 3

f(x2j) _ I Xy γ _ q(p + 1)

Case 2:
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Case 3:

i J ^ ' 7 + 1' i f Xΐ

y— /Cry) /-~ ^

Define /x and /2 in the following way. Let fι(x0) — ^(^o) a n d Λ^o) = 82^x^ For

x2j-i < x < x2p define

Λ(#) = fix) - A2(^2i-i)» Λ ^ ) = h2(
χ2j-d-

For x2y < J: < ΛΓ2/+1, define

At j?2y
 a n d ^2;+i define/x and/ 2 as follows: If g2(%2j) — (resp. < ) h2(x2j_ι), then

Λ (̂ 2;) = gi (χ2j) f Λ tey) = ^2 Cr2y)

(resp./iOcjy) = /(x2;) - h2(x2Hl)t f2(x2j) = h^x^)).

If AxUay+i) ^ ( r e s P <) gι(χ2j)> t n e n

Jl\X2j+l' ~ ^ 1 ^ 2 ; + 1'> J2^X2j + l^ "~ >^2^X2j+V'

(resp./itegy+j,) = ^ ( ^ ), f2ix2j+ι) = f(x2j+ι) = gz^Xy))-

Then

(3.10) l i m % ^ = l and

Let us prove that /x and /2 have the desired properties. Obviously, f — fλ+ f2.

Non-decrease is easy to see. (3.9) and (3.10) show that / x ,/ 2 ^ RV because

liminf^oo/^Aj;)//-^) = 1, i = 1,2, for some /c > 1. For the proof of (3.3), check

that

h2(x2j+1). r fzίxy+i) yyγ = p, limy^-y = hm (

This completes the proof. •

In the above proof, we showed that fx (resp. f2) £ RV by its insufficient in-

crease on some intervals, but, on the same intervals, f2 (resp, fλ) increases rapidly.

Actually, in Case 1,
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This shows that f2 £ RV, since it increases rapidly on [x2k, x2k+ι). In general,

when a component that is not occasionally small loses regular variation, the com-

plementary component loses it simultaneously, but the manners how to lose it are

opposite in the two components. This fact is shown below.

PROPOSITION 3.13. Let f be in RVP( ΐ ) with p > 0 (or RVP( I ) with p < 0).

Assume that f is decomposed into fγ and f2. If a sequence ix) satisfies lim inf ,^

fλ{kx)/fλ{x)>kP (resp. \\ms\x^j^oofl{kx^)/fl{x)<kP) for some k>0 and

lim infj^f^x^/f^Xj) > 0, then lim supy_TO/2(/b?y)//2Cr;) < kP (resp. lim inf^^

f2(kxj)/f2(xj) > kP\

Proof Choose ε, r > 0 such that

(3.11) fγ{kx)/fγ(x) > kP + ε,

(3.12) fγ{x)/f2{x) > r

for all large . Select δ > 0 such that rε — δ(r + 1) > 0. We can assume that

(3.13) \f(kx)/f(x) - kP\ < δ.

Using (3.11) and (3.13), we have

f2(kxj) < - (kP + ε)ΛU;.) +f(kxJ) < - (kP + ε)Λ0r; ) + kPf{x) + δf(xs).

Hence, by (3.12), we get

f2{kx)/f2{x) < kp - (ε - δ)h{x)/f2{x) +δ<kp - r(ε- δ) +δ.

Thus we get lim supy^TO/2(/b:; )//2Cr; ) < kP — λ, where λ = rε — δ(r + 1) > 0.

The other case can be proved, similarly. D

4. Decomposition problem of distributions in the class characterized by regular

variation

In this section, we apply the results in the preceeding section to the decom-

position problem of probability measures. We investigate the classes D(α) and C.

Those classes appear in connection with limit theorems for i.i.d. sequences (see

Section 2). As we show, they are closed under convolution. But, we are mainly in-

terested in properties of factors of distributions in these classes, as we studied D 2

in [7].

The following theorem gives a relation between a distribution with r.v.
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right-tail and its factors. Proof does not need any result in Section 3.

THEOREM 4.1. Let μ{ (i = 1,2,.. ,,n) be distributions on R 1 and let μ = μι

* * μn. Then μ(x, °°) e RV if and only if Σ ? = 1 μ,Cr, °°) ^ RV. In this case,

n

lim Σμ^x, °°)/μ(x, °°) = 1.
#-•00 f = l

Proof Let X{ be independent random variables with distribution μ{ and let

0 < ε < (n - I ) " 1 . We claim that, for any R > 0,

Π P(| X% I < εR) Σ P(Xi X I + (n - l)ε)R)

(4.1) < P i t X{ > R)

^ Σ P(Z, X I - (n - + 4 (Σ PU. > εi?))2.

In fact, the first inequality comes from the estimate

P ( Σ X, > R) ^ Σ P(Z, > (1 + (n - ϊ)ε)R) Π P(| X, \ < εR)

> Σ P(X, > (1 + (« - Dε)i?) Π P(| Z, I < εR),
ί = l ί = l

and the second inequality is obtained from

P ( Σ Xt > R) < Σ P(X{ X I - (n- l)ε)R)
t = l ί = l

+ P ( m a x Xt < (1- (n- l)ε)R, Σ Xt > R),

since

n

P( max X{ < (1 — (n — l)ε)R, Σ X{ > R)

< P( min ΣXj >(n - ΐ)εR) < P ί U ^ ί m i n ^ , X) > εR})

< Σ P U , > εR)P(Xj > εR) < \ ( (Σ PCY, > εR))2.

Assume that Σ ? = 1 PQQ > R) e RV_α. Then, by (4.1), we get
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(4.2) (1 + (» - ΌεΓ
Σ"mlP(X,>R)

< km sup ' < (1 - (n - l)ε) .

Thus we get

(4.3) lin

Conversely, assume that P ( Σ ? = 1 ^ > R) ^ RV_α. Then, by the first inequality

in (4.1), it is easy to see that

(4.4) hm L- t = 0.
* - P(ΣUXi>R)

It follows from (4.1) that

L X, > ! _ ξ_ 1 ) £) " \ [ΣU P(X,. > ! . (f_ 1 )£)Γ

< Σ?.! Ptt,. > i?)

P ( l X I < I l p ( Σ ^ Z . > 1 + (n- l)ε)i P ( l X' I < 1 + In- l

Hence, using (4.4) and the regular variation of P ( Σ " = 1 X f > i?), we have (4.2).

Letting ε 1 0, we get (4.3). D

Remark Noticing that /x + /2 e RVP for /x e RVP and /2 e RVP, with

p" < p, we see that D(α) is closed under convolution.

Now, combining the above theorem with the results in Section 3, we can

obtain many results on the class Ό(a). Among them we give the following

theorem.

THEOREM 4.2. There exist distributions μλ and μ2

 suc^ ^a^ neither of them be-

longs to U o<0< o oD(/3) but μ — βι*μ2 belongs to D ( α ) . In general, for each n, there

exist distributions μv...,μn such that μ = μ1 * * * * *μn belongs to D ( α ) but, for ev-

ery proper subset S of { 1 , . . .,n), the convolution of {μ{ : i ^ S) does not belong to
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Proof. Choose an arbitrary distribution ι> in D(α). Then,

v(x, °°) = x~al(x) with some / e SV.

By Theorems 3.4 and 3.12, there exist probability measures μλ and β2

 o n

[0, oo) S Uch that

βγix, oo) + μ2(x, oo) = χ~al(χ) for sufficiently large .r,

where neither μλ(x, °°) nor / ^ ( ^ °°) belongs to RV. Then, by Theorem 4.1, we

get

, oo) = μ^x, oo) + μ2Cz, oo) ~ μ^μ^x, oo) = μfo, oo).

This means that μ belongs to D(α).

Similarly, Proposition 3.5 and Lemma 3.9 yield the latter half of the theorem.

D

Remark. By using Theorems 3.7, 3.11 and 4.1 as in the proof of the above

theorem, we can construct two distributions μ1 and μ2 such that μγ and the

convolution μ = μx*μ2 belong to Ό(ά) and μ2 does not belong to U0<β<OQD(β).

Remark. Concerning the domain of attraction of a general stable distribution

μ with characteristic function (2.1), we can show the existence of two distributions

such that neither of them belongs to the domain of attraction of μ but their

convolution belongs to it. In fact, choose a distribution μ1 such that both right and

left tails are r.v. with index ~~ a but the ratio of them does not converge. Choose a

distribution μ2 satisfying

μ2(x, °°) ~ (c 2 /Ci)μi(- °°, - x], μ2(~ °°, - x] ~ (c^c^μ^x, oo).

Then, by Theorem 4.1, μι^μ2 belongs to the domain of attraction of μ.

Remark. In spite of Theorems 3.4 and 3.12, it is not true that every dis-

tribution in D(α) is decomposed into two distributions neither of which belongs to

D(α). For example, there exists an indecomposable distribution in D(α)

constructed as follows: Choose a distribution v in D(α) and a set A = ί r ; } such

that the distances between the points in A are all distinct and j < Xj < j + 1.

Define a distribution μ as μ(x, °°) = v(xjf °°) for xi < x < xj+ι. Then, A is an

indecomposable set (in the sense that if A = Aγ + A2 then Aί or A2 is a one-point

set) and μ(x> °°) ~ v(x, oo). Hence μ is an indecomposable disribution in D(α).
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Now we investigate properties of factors of distributions in C. First we will

give a sufficient condition for a distribution to have the property that all factors

of it belong to C. Obviously, any factor of a distribution with finite mean has fi-

nite mean, and hence belongs to C. We extend this fact; if μ has a dominatedly

non-decreasing truncated mean, then every factor of μ belongs to C. Second, we

give μγ and μ2 such that neither μι nor μ2 belongs to C, but the convolution μγ*μ2

belongs to C.

We prepare two propositions.

PROPOSITION 4.3. Let X be a non-negative random variable with truncated mean

M(R). Then the following are equivalent:

(4.7) lim sup (M(2R) - M(R)) < oo.

(4.8) lim sup RP(X > R) < °o.

Proof. (4.8) implies (4.7) because

M(2R) - M(R) = EX1(R<X<2R)

< 2RP(R < X < 2R) < 2RP(X > R).

Conversely, assume (4.7). Then, since M(2R) - M(R) > RP(R <X2R), there

exists a positive constant c such that RP(R < X < 2R) < c for every R > 0.

Therefore we get 2nRP(2nR < X < 2n+1 R) < c for every n e N. Summing up

for all n, we have

RP(X>R) = Σ RP(2nR<X<2n+1R) < Σ 2~n c < oo. •
n=0 n=0

PROPOSITION 4.4. For an arbitrary non-negative left-continuous non-decreasing

s.v. function f on [0, °°), there exists a distribution μ on [0, °°) and a constant B

such that

fix) = f tμ(dt) for all x > B.
J[0,X)

Proof is straightforward.

Let us denote by C o the class of distributions on [0, °°) with dominatedly

non-decreasing truncated mean. Note that C o is a subclass of C.
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THEOREM 4.5. Let X and Y be non-negative random variables and Z = X + Y.

Then the distribution of Z belongs to Co if and only if both of the distributions of X

and Y belong to Co.

Proof Assume that the distributions of X and Y belong to Co. Then, since

RP(X + Y> R) <RP(X> R/2) +RP(Y> R/2)

and

limsup7?P(Z+ Y>R) < 2(lim suptfPtf > R) + lim supi?P(F> R)),

the distribution of Z is in C o by Proposition 4.3.

Conversely, assume that the distribution of Z is in Co. Note that

RP(X> R) <RP(X+ Y> R)

and consider the upper limits of both sides. Then, by Proposition 4.3, the distribu-

tion of X belongs to Co, and similarly that of Y. D

The class Co is strictly bigger than the class of distribution of which all fac-

tors belong to C. The following example shows this fact. Define μ by μ({2}}) =

cj2~3 for j = 1,2..., where c= (Σj=ίj2
 3) . Then μ is indecomposable, since

the support of μ is an indecomposable set. We can prove that both μ and μ*μ are

in C \ Co. Also we can prove that if μ * μ = μ1 * μ2 with non-trivial μ1 and μ2,

then both μ1 and μ2 are idenitcal with μ up to convolution with trivial distribu-

tions. Proof is essentially the same as the discussion of Examples 1 and 2 for D 2

in [7].

The following theorem gives a relation between a distribution with s.v. trun-

cated mean and its factors.

THEOREM 4.6. Let X{ (i = 1,.. .,n) be non-negative random variables with

truncated mean M{(R). The distribution of the sum S — Σ ? = 1 X{ belongs to C if and

only if Σ%ι M{(R) e SV. In this case

(4.9) lim ΣU MtUD/MsUl) = 1.

Proof Let W(R) = ESI ( m a x K ί < ; n ^ < R). Then

W(R/n) <MS(R) < W(R).
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Hence, MS(R) e SV if and only if W(R) e SV. If MS(R) and W(R) are in SV

then they are asymptotically equal and (4.9) is equivalent to

(4.10) \imW(R)/ΣMi(R) = 1.
S-~ i = l

Let I(R) = Σ"i=1 EX,1U, < R, ma\jΦiXj > R)/Σ"i=1 Mt(R). Then,

W(R)/ΣMi(R) = 1 - KR).
i=l

Assume that MS(R) ̂  SV. We have

KR) <RΣ P(maxX; > S ) / Σ M f ( ί ) < ̂ i?P(S > R)/MS(R).

The slow variation of MS(R) implies that lim^^iePCS > R)/MS(R) = 0. Hence

we get (4.10).

Conversely, assume that Σ ί = 1 M^R) ^ SV. We use the estimate

KR) <RΣ P(max X, > R)/ Σ M{(R)
i = l jφi i = l

<{n- \)R Σ P(Z, > R)/ΣMi{R).
ί = l ί = l

Let Xi,..., Xf

n be independent random variables such that, for each i, X has the

same distribution as Xv Let S'= ΣtiXί and Wr(R) = E S Ί

< i?). Then

^(i?) - Σ EXβ.(X;< R) Π P(Z/< i?) = Σ M/Λ) Π PU y < R).
ί=l ;>/ ί = l ;>ί

Therefore W(R) is asymptotically equal to Σ ? β l Af,Cff). Hence W '̂Ci?) and

MS,(R) are in SV. Now use

R Σ PCX, > R)/ΣMi{R) < nRP(S' > R)/MS,{R).
ί = l ί = l

The right-hand side tends to 0 as R~•* °° because of the slow variation of

Ms,(i?). Hence KR) -> 0. Therefore we get (4.10) and see that W(R) e SV. This

finishes the proof. D

Remark. The class C is also closed under convolution. This fact is shown by

the above theorem in a similar way to Ό(a).
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Now we can prove the following theorem from Theorems 3.1 and 4.6 com-

bined with Proposition 3.3 of [7].

THEOREM 4.7. There exist distributions μλ and μ2 such that neither of them be-

longs to C but μ = μγ * μ2 belongs to C. In general, for each n, there exist distribu-

tions μv...,μn such that μ = μγ * * * * * μ n belongs to C but, for every proper subset

So/{1 «}, the convolution of {μt : i ^ S) does not belong to C.

Proof. By Proposition 4.4, we can choose a distribution μ in C such that

limsup/?_oo(M(2i?) — M{R)) = °°. By Theorem 3.1, there exist measures μ\ and

μ\ on (0, oo) s u c h that M(R) = M,(R) + M2(R), where M((R) έ SV and

M{(R) = f xμ](dx) for i = 1,2 and μ(0, oo) = Σ<= 1μJ(O, oo). We define
•'(O.Λ)

probability measures μ, (z = 1, 2) on [0, °°) by μ{ = μ{ + <5,, where <5f is a mea-

sure concentrated at {0} with mass 1 — £^(0, °°). Then the truncated mean of μ{

is equal to M{(R). We define a probability measure μ by μ = μx * μ2. Then, by

Theorem 4.6, μ belongs to C, but neither μλ nor μ2 belongs to C. Similarly, Prop-

osition 3.3 of [7] yields the latter half of the theorem. •

Remark. By using Theorems 3.2 and 4.6, we can construct two distributions

μλ and μ2 such that μx and the convolution μ = μx * μ2 belong to C and μ2 does

not belong to C.
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