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ON p-ADIC DEDEKIND SUMS

AICHI KUDO

§1. Introduction

For positive integers h, k and m, the higher-order Dedekind sums are de-

fined by

o

, k) = Σ B m + 1 _ r ( ~ ) B r ( ψ ) , 0 < r < m

where Bn(x), n > 0, are the Bernoulli functions (§2). If m is odd and (h, k) = 1,

the sum Sj^+1(hf k) is identical with the higher-order Dedekind sum of Apostol

[1],

Recently, Rosen and Snyder [6] constructed a ^?-adic continuous function

Sp{s hy k) for an odd prime p, which takes the values

l ^ 8 ^ k) -Pm~lkmsm{(p-ιh)kί k), if (A, p) = 1,
bp{m; h, k) = \

ίkmsm(h,k), Ίίk =

at positive integers m such that m + 1 = 0 (mod/) — 1) here (p~1h)k denotes

the integer x such that 0 < x < k and px = h (mod k).

The purpose of this paper is to extend this result of them to kmSm+1(h, k) for

every h> k and r > 1. To this end, we use an expression of k Sm+ι{hy k) in terms

of the Euler numbers ([2], [3]) and a p-Άά\c continuous function which interpolates

these numbers ([7], [8]).

Let p be a prime number and Zp the ring of rational />-adic integers. Let e =

p — 1 or e = 2 according as /> > 2 or p = 2. In §§2-3, we shall prove the follow-

ing
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THEOREM 1. Let h, k and r be fixed integers > 1. Then, there exists a con-

tinuous function Sp(s r, h, k) on Zp, which satisfies

Sp(m;r, h, k) = kmS^+1(h, k) - ρm~rkmS»+1(ph, k)

for all integers m such that m> r and m + 1 = 0 (mod e).

In §4, we shall discuss about a special value and a continuity property of our

function Sp(s r, h, k), assuming that (h, k) = 1.

§2. Preliminaries

Let Cp be the completion of an algebraic closure of the rational ^)-adic num-

ber field Qp, I I the valuation on Cp normalized so that | p \ = p~ , 6 the ring of

integers in Cp and Z the ring of rational integers. Throughout, we fix p and con-

sider algebraic numbers to be contained in Cp.

For each root of unity p Φ 1, we define the numbers En(p), n > 0, by

e — p

Here, En(p) = Hn(p), n > 0, are the Euler numbers with the parameter p.

If p satisfies the condition that p Φ 1, for all n > 0, we can define a finitely

additive ^-valued measure μp on Zp by

PN-a

μp(a+pNZp) = P 0<a<pN, N>0.
1 - p

Let Zp denote the group of units in Zp. We know by [7], [8] that

(1) J χndμp(x) = lim Σ an = En(p), n > 0

and

(2) Γ χndμΛx) = lim Σ * a -1 = En(p) - pnEn{pP)y n > 0,

Jχ* N-+°o a=0 1 rf

where Σ means to take sum over all integers prime to p in the given range.

Let c be an integer > 1 and En(l) = —ΊΓT> n — ̂ » where Bni n > 0, are
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t °° f
the Bernoulli numbers defined by — = Σ Bn—j-. Then, it follows at once

from the identity

v M - CPC

vc=ι e — pη e — p

that

(3) Σ En(pη) =cn+1En(p), n>0

for every root of unity p. If p° = 1, the formula (3) is equivalent to that

En{η) = (c - 1) n + v n>0.

Let Bn(x) — Σ ( . )Biχ
n~x\ n > 0, be the Bernoulli polynomials and let

i=o \ I '

{x} denote the smallest real number t > 0 such that x — t G Z, for a real number

x. Then we have Bn(x) — Bn({χ}) except for the case n — \ and x ^ Z (B^x) =

0 for x ^ Z). Therefore we get without difficulty that

for all odd integers m (unless r = m = 1). If r = m = 1, the right hand side of (4)

is equal to S2 (h, k) 4- -j.

Now, by the equality

we have

Therefore we obtain the formula of [2], [3],

(6) kmS%]

+1(h, k) = (m + 1 - r)r Σ Em_r (ζh)Er^(ζ'ι)9 1 < r < m,

for all odd m (unless r = m = 1). If r = m = 1, the formula (6) holds for
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§3. Definition of Sp(s r, h, k)

In this section, we give a proof of Theorem 1 mentioned in introduction. Let

h, k and r denote positive integers and ζ a root of unity. Let q — p or q = 4

according as p > 2 or £ = 2.

Suppose first that ζ** # 1 for all n > 0. Let

(7) G(s r, ζ) = Γ

- 1
where α) is the Teichmϋller character with conductor q and (x) ~ ω{x) x for

x^ Zp.

Let exp and log denote the ^-adic exponential and logarithm functions, re-

spectively. Then, since (x) = 1 (mod q) for x e Z*, log<j:> = 0 (mod q) and

ix) s = exp(5log Cr>). Therefore G(5 r, ζ) is an analytic function of s in Zp

with an expansion

Gis r, Q = Σ cn>r(Q(s + 1 - r)\

(8) ^ ( 0

Now, as e is the order of ω, we have, by (2),

(9) G(m r, ζ) =

for all integers m such that m> r and m + 1 Ξ 0 (mod #).

Next, suppose that ζp = 1 for some n > 0. Choose an integer c > 1 so that

I c - 1 I < \q I and ζ c = ζ. Let

Fc(s;r,0= Σ G ( 5 ; r , ζiy).

Then, it follows from (9) and (3) that

F c ( m ; r , ζ) = (cm+1~r - 1) (Em_^) - pm~rEm_r(ζP))

for all m > r, m + 1 = 0 (mod g).
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Now, we consider the power series

Uc>r(s) = Σ Bn

 ( l Q ^ f (5 + 1 - r)\

i i i 1 i (\θgc)n~l

Since | Bn \ < | — | for all n (by the von Staudt-Clausen Theorem) and | —\ 1

n-l

< I — p i , this power series defines an analytic function of s ^ Zp and is equal

s \- 1 — r
to —— for s Φ r — 1. Let

c - 1

G(s ;r,Q = $ + \ _ γ UC!r(s)Fc(s r, ζ ) , for 5 Φ r - 1,

c — 1

Then the value of this function G is independent of the choice of c, and

(10) G(m ;r,0= Em-Λ0 ~ / " X - ^ C * )

for all m > r, m + 1 = 0 (mod e). We define the function Sp(s r, h, k) by

Sp(s r, A, A) = (5 + 1 - r)r Σ G(s r, ζ ^ ^ . ^ ζ " 1 ) ,

and show that this function Sp(s;r, h, k) satisfies the properties described in

Theorem 1.

The function Sp is analytic in Zp and in particular is continuous. Further by

(9), (10) and (6) we have

Sp(m r, A, k) = (m + 1 - r)r Σ (Em_r(O - pm-rEm_r{Ch))Er_x{C)

= kmsi:ι1(hfk)-pm-rkms(:)

+1(phfk)

for all m > r, m + 1 = 0 (mod e). This completes the proof of Theorem 1.

Let d be a positive integer. Since S^+1(dh, dk) = dr~mS^+1(hyk) ([2]), we

have

Sp(tn;r, dh, dk) = (dk)mS»+1(dh, dk)-pm~r(dk)mS^+1(pdh9 dk)

= drkmSn+1(h, k) -pm-rdrkmSl\Sph, k)

= drSp(m r, h, k)

for all m > r, m + 1 = 0 (mod e). Hence by analyticity we obtain
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Sp(s r , dh, dk) = drSp(s r, A, A), s e Z^.

Therefore, when we discuss the property of S^ίs r, A, A), it is sufficient to con-

sider in the case where (A, A) = 1. Similarly, if (A, )̂) > 1, we can write the for-

mula of Theorem 1 as

S i ΛΛ/i /if Ί/i Jy* \ ^^T [/' W (1/1 I/* I - ' LΓ ^K (Li LΓ^hi I

f. \ίίL j A y rly fv/ Γv O ^ _ μ i \ ' * ^ /»// A/ ^wί-l-l V " j A/// / y

for m such that rn > r, m + l = 0 (mod ^).

Remark 1. Let (A, A) = 1 and p > 2. Take an integer A > 0 such that

AA* = 1 (mod A). Then by the property S^ίf t*, A) = S ^ ( A , A) of Dedekind

sums, it follows that

S (m 1 h* k) = ί Λ " s * ( A ' fc) - ί " 1 " 1 * " 1 * - ^ " 1 * ^ ' fc)- i f ( / c - ^ = !-
kmsm(h, k), iί k= p>

for all m > 1, m + 1 = 0 (mod^ — 1). Therefore the function Sp(s 1, A , /c)

gives the Rosen-Snyder's 5^(5 A, A).

Remark 2. \ί p = 2 or 3, then Theorem 1 holds for r = 1 and m = 1, so

[ks(h, k) - ks(ph, k), if (k, p) = 1,
S , ( l ; l , A, A) =

\ks(h,k)-ks{h,kp-1), iί(k,p)=p,

where s(A, /c) = S2 (A, /c), (A, A) = 1, denote the ordinary Dedekind sums.

For any integer v >: 0, let p be the least common multiple of q and p . Let

c = 1 Λ- pv. Then the function S^s r, A, >̂y) is defined by

(11) Sp(s;r,h,pv) = Ucr(s)r Σ Fc(s r, ζ * ) ^ . ^ " 1 ) .

Let (A, A) = 1, A > 1 and let

(12) V * r, ft, A) = (s + 1 - r)r Σ G(s r, ζ ^ ^ ^ ί ζ " 1 ) ,

where A = A ^ , (Ao, p) = 1, and G on the right is the analytic one defined by (7).

Then the function Sp(s r, A, A) is separated as

Sp(s;r, A, A) = S , ( s ; r , A, A) + S,(s r, A , / ) .

Finally, if r is odd, then we see from the definition of Dedekind sums that

•Swn(A, 1) = S^+1(h, 2) = 0 for odd m > r. Hence it follows from Theorem 1
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and the analyticity of Sp that

Sp(s;r,h,l) = Sp(s;r,h,2)=0, s e Zp,

if r is odd.

§4. Properties of Sp(s r, h, k)

It is the purpose of this section to estimate the ^>-adic absolute values | an |, n

^ 0, of the coefficients of

Sp(s r, h, k) = Σ an(s + 1 - r)w, αw e ζ)^,
« = 0

in the case where (A, /c) = 1. We write k = kφv, (/c0, />) = 1, υ > 0, and consid-

er separately about Sp(s;r, h,pυ) and Sp(s;r, h, k). Let pv denote the least

common multiple of q and p as before.

LEMMA. Suppose ζP Φ 1 /or α// ̂  > 0. Then,

~

log(l - ζ) - j l o g ( l - ζ ') , if r=0(mod<0,

Σ a/(tf)iog(l - ζζβ), if r * 0 (mode),
0

< ? 1

is α primitive q-th root of unity, and r(ω ) = Σ co

Let/(X) be the unique power series in 0[[X|] such that

f(X) = "Σ μ,(a + p"Zp) (1 + X)a (mod Pn(X))

for all n > 0, where Pn(X) = (1 + X)pn - 1. Then it follows immediately from

ζ
the above congruences that f(X) — -. , y _ ~. Therefore, we can calculate the

value of this integral following the theory of /"'-transform, namely, e.g. along the

argument of [5] (pp. 45-48). This completes the proof. The assertion for the case

where r = 0 (mod e) is obtained also in [9].

Let c = 1 + pv, and let Fc(s r, ζ) and Ucr(s) be the functions defined in

In the sei

respectively.

§3. In the sequel we write F v (s r, ζ) and Ur

v (s) for the functions Fc and Uc,
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PROPOSITION 1. For each root of unity ζ such that ζP = 1, let

ΌO

(5 r, ζ) = Σ bn>r(ζ) (s + 1 - r) , bn>r(ζ) e C ,̂.

(a) W^n r = 0(mod ̂ ),

(b)

C(o =

r ^ 0 (mod β),

c, i f ζ = l ,

otherwise

— α/(0 log c, if

o, otherwise

and

Pv-1

a=0

•An)
where ξa are rational p-adic integers independent of ζ.

Proof Since

(13) δMjy(ζ) = Σ / ω (x
ijc^r,^ Jz*

j -dμζη(x), n>0,

xni x
II = 1 , f/ =F 1 - V

the assertions (a), (b) for n — 0 immediately follow from Lemma and the fact that

^ i (Λ r \ __ I ̂ °§ c» if ζ = 1,

ΌΦl [0, ίf ζ Φ 1

for any ?̂ -th root of unity ζ. Let n > 1. In order to prove the assertion (c), we

write

Λ r (ζ) = Σ lim Σ ω (a)—~τ— —
_ p

= Σ inn Σ Σ. ω (a)r (log (a+p b)) ζ η (η )
(a)

)

(
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so that

C ( O = Σ * ω ' r ( a ) ζ - a Σ η f ( 1 ° 8 (* + pVχ))* dμv(x), n > \ .
a=0 ηφl z> n\(a+p"x)

Since the sum on the right over η Φ 1 (ηc = 1) is a rational ^-adic integer
(\ \n

independent of ζ, it is sufficient to show that this sum is congruent to j

n-l 1

modulo —\~pV, f° r e a c n a- Now since log (a + pvχ) = log a (modpv), —

a + pvx
= — (mod^ y) and log a = 0 (mod #), we have

(log ( a + / * ) ) " _ (logfl) w _ ! ^
: = (mod^ />), w > 1.

a + p x

On the other hand by making use of (1) and (5), we obtain

dμv(x) - Σ ηaE0(η) = cB1 (j) - Bί

(because 0 < a < / - 1 < c)

= a — 2 ~ = a

Hence

a Γ (log {a + pvx))n (log a)" I . q"1 j \ . _

Σ V I : dμ^x) =—-}— (mod—-p ) , n > 1,

as desired. This completes the proof of Proposition 1.

Now, for v >: 1, let

tυ\s)=r Σ F'v\s;r,θEr^(C),
ζpv=ι

where (A, />) = 1. Then, by (11), we have Sp(s r, A, / ) = U™(s) T?\s).

Let Bnω-r, n > 0, denote the generalized Bernoulli numbers for the character

ω~r, defined by

a=o e l
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PROPOSITION 2. Let v > 1 (v > 2 ifp = 2, r 3Ξ 0 (mod e)) and

r (5) = Σ tnr(s + 1 - r) , ίwr e Q̂ ,.

(y> _ ί (1 ~ /"^JS^log c, if r = 0 (mod e),

) (h)Br,ω-r\og c, iίr^O ( m o d β)

a n d

/ u ,(r>) _ ( log ( 1 + q))n

 r * n rυ{a) I q -XJ\
(b) tHif = -{ h Σ v(a) (1 + q) [mod-^-q p ) , n>l,

a=0

where v(a) belongs to Zp and determined uniquely by {a} = (1 + q) , for each inte-

ger a prime to p.

Proof. By the definition of Tr , we have

C=r Σ C ( C A ) £ M ( C " ! ) , n>0.
ζpv=ι

(a) Let r = 0 (mod e). Then, by Proposition l(a),

C = r Σ l-jlogc)E^ζ-1)+
ζp=i,ζΦiX P /

The right hand side reduces to (1 — p )Brlogc by making use of the formula

(3). Next, let r ^ 0 (mod e). Then by Proposition l(b),

q-l

o.r = ί-Σ 60 > r(ζ, ) £ r _ 1 ( ζ f )
f0f=0

= r — - — ω r ( W logc Σ ωr(ί)Er.1(ζt

q).

Now, from the equality

Σ

q ΐ=0

we have

t,1 r^ c; tjΣ ω (0 - — - = Σζ

Σ ω (1) ̂ ( ζ , ) = 7 Br,ω-r.
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(v)
Hence to

v

r = ωr(h)Brω-r log c, as claimed.

(b) Let n > 1, then it follows from Proposition l(c) that

n n
ΛV) C* 1 -r( x / (log a)
tnr = Σ ω (a) y——\

By (5) and the von Staudt-Clausen Theorem, we have

r Σ Cha Er_ΛQ =
c ^p

and hence

(v) = hr %p* / \r Oogα) / q -i u\

(log (1 + tf))W - r ^ 7 * , ,n,Λ , λry(fl)
= — . — A Σ t (fl) (1 + q)

n- a=0

This completes the proof of Proposition 2.

Now, let / > q, so we write v for v. Let A ^ = Σ ? ^ 1 *(! + ^)rί> i" — 1>

,2 > 1. Then,

Pu-l

Σ ^(α)w(l + q)rva = eA" (mod/),
0=0

where #~ / = / , μ > 1. By induction on μ it follows that

Λ<n) _ ί/^w (mod/), Up > 2,

( m o d / " 1 ) , ϊίp = 2,

for all μ > 1 and w >: 1. Hence we have

Σ * v i a r a + <)"» = \ ~qΎB" ( m o d qΎ)'ιίp>2'
y ) , iίp = 2.

By Proposition 2(b) and the von Staudt-Clausen Theorem, we therefore obtain

. .n-2+p.

(14) ί^Odnod/), C = o(modL-), Λ > 2 > iίp>2,v

(15) C Ξ θ ( m o d | j - ) , n > l , i f / > > 2 , υ = 1,

(16) C Ξ θ ( m o d - ^ j - / ) , n>\, iip = 2,v>2.

For ^ = 2, 0 < y < 2, we see, more exactly,
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(17) bnΛQ = Σ ω r (a)ζ a —r ξ n , (ζ = 1, v < 2),

where ξ is a 2-adic integer independent of both ζ and a. Indeed, we can see, by

a little calculation, that

3 r (log (3 + 4r) ) w

 J , x _ ! Γ (log (1 + 4 J : ) ) W

 J ί N

7? I dti \CC) ~~ 77 I dli -i\0C)

Jz2 3 + 4x η Jz2 1 + 4 r v *

for all 7? =£ 1, 7y5 = 1, and hence

.(«) ^ Γ (log (1 + qx)Y , . v
f = Σ >?J dμη(x).

From this expression of b^r(ζ) we obtain, in the same manner as in the proof

of Proposition 2(b),

( 9 n\
m o d — H , n > 1, if /> = 2, y = 1,2.

By these results obtained above, we can now prove the following

PROPOSITION 3. Let

oo

Sp(s r, A, / ) = Σ an(s + 1 - r)w, αw e Q ,̂
w=0

w /iere î  > 1 (v > 2 i//> = 2, r * 0 (mod e)) and (A, />) = 1. Then,

ί ( l -pr~ι)Bry if r = 0 ( m o d r i ,

(a) α0 =
l ω (h)Brω-r, iίrΦO ( m o d e ) ,

IflJ^l^j-l, n>\, ifp = 2.

In particular,

(c) \St(s;r,h,pv)-St(s';r,h,pv)\£\s-s'\, s, s'<Ξ Zp

Proof. Let ί/,<ι"(s) = ΣΓ=0 uH(s + 1 - r)H. Then,

(19) M0 = y ^ ( c = l + / ) and \un\ = \ B n ^ Γ \ , n > 0,
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so the assertion (a) is obvious from Proposition 2(a). We further know by Proposi-

tion 2(a) and the von Staudt-Clausen Theorem for the Bernoulli (resp. generalized

Bernoulli) numbers, that | t^r | = | pv |. Thus, the assertion (b) follows from

(14)-(lβ), (18) and (19), by taking the power series product of Ur and Tr . The

last assertion (c) is an immediate consequence of the fact that | an \ < 1 for all n

> 1. This completes the proof of Proposition 3.

PROPOSITION 4. Let (A, ft) = 1 and k > 1. Then, for Sp(s r, h, k), we have

an~ι

Sp(s r, h, k) = Σ άn(s + 1 - r)n, \an\ <\ r ^ _ ^ |, n > 1,

and hence

\ Sp(s r, h, k) — SPW \ r, h, k) \ < \ r \ \ s — s' |, s, sr ^ Zp.

n-l

Moreover, ifp = 2 and r > 1, we see \ an\ ^ \ 2r / _ -.^ |, ^ >: 1, and

I S 2 ( s ; r , A, ft) - S2(s';r, h, k) \ < \ 2r \ \ s - s' |, 5, 57 e Z2.

/. Recalling that (1 - Q w + 1 £ M (ζ) e Z [ ζ ] , n > 0, we have | £ n ( ζ ) | < 1,

if I ζ - 1 I = 1. Let ft = kφ\ (ft0, />) = 1. Then by the definition (12) of Sp,

άn = r Σ ^ ( ζ ' ^ ί ζ - 1 ) , n>\.
ζ f c = l , ζ p % l

Hence, by (8), the first half of this proposition is obvious.

Now, in general, it follows from the definition of En(ζ) that

(20) ^ ( ζ " 1 ) - - £ 0 ( ζ ) - 1 Er_SC) = ( - Ό X - i ( ζ ) , r>l,

for every root of unity ζ. On the other hand, we can see by a little calculation that

(21) c^iζ-1) = ( - l)rcΛιr(O, n>0, r > 1,

for all ζ, I ζ — 1 | = 1. Let p = 2 and r > 1. Then, by cupling the terms for ζ

and ζ in the above expression of an (note that ζ Φ ζ ), we get the second half.

This completes the proof of Proposition 4.

Since Sp(s r, A, 1) = 0 for r odd (§3), S/s r, h, ft) = S^s r, h, ft) if

(A, ft) = (ft, />) = 1 and r ^ 0 (mod 2). In this case, Proposition 4 describes the

property of 5̂ ,(5 r, A, ft). For r even, we obtain the following
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PROPOSITION 5. For even positive integer r, let

Sp(s ;r,h,ί) = Σ a'n(s + 1 - r)n, a'n <= Qp.
n=0

Then,

r, if r = 0 (mod #),

ifr^O (mod 0),

U ; | < | ^ | , | < | < | ^ y - | , rc>2, ifp>2,r=i

\a[\ < \r\, \a'n\< \^r~\, n>2, ifp>2,r& O(mod^),

1 CΛ n-2

Proof By (11), we obtain

Sp(s r, A, 1) = f/,(0)GO F ( o ) (5 r, l ) β r .

If we let F(0)(s r, 1) = ΣΓ=0 C ^ 5 + 1 ~ ^)W, then Proposition l(a)(b), (13) and

(17) lead, respectively, to

, (o) _ ί ( l - η~) log (1 + q) if r = 0 (mod e),
uOr 1 \ ///

^0, if r έO (mode),

C = θ(mod| j-), w ^ l , if/> > 2 ,

On the other hand if we let Ur° (s) = Έζ=0 un(s + 1 — r)n, then

D -I

Since, moreover, | —- | < 1 if 1 < n Φ 0 (mod ^) and | Bn \ = \ η- \ if 0 < n

0(mod e), in the same manner as in the proof of Proposition 3, the result follows.

THEOREM 2. Suppose that {hy k) = 1 and (A, />) > 1.

(a) Ifp = 2, k = 2kQ, (Ao, 2) =1 andr^ 0 (mod g),
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S 2 ( r - l ; r , h, k) = 0,

I S 2 ( s r, h , k) — S 2 ( s ' r, h , k) \ < \ q \ \ s — s f \ , s , s ' ^ Z 2 .

( b ) O t h e r w i s e ,

— pr~ ) β r , t/ r = 0 (mod #),
κ)p\r ± y r j rlf tl/

(mod β),

I Sp(s r , /z, ft) — Sp(sf r, h, k) \ < \ s — s'\, s, s' e Z^,.

Proo/. Let )̂ = 2 and r ^ 0 (mod 2). Since S2(s r, h, 2) = 0, the function

S2(s r, h, 2ft0) = S2(s r, /z, 2ft0) has the expansion

S2(s r, hy 2ft0) = Σ an(s + 1 - r)n

y an = r Σ ^ . ^ ^ ( ζ ^ ^ . ^ ζ " 1 ) .

Now, since

μ_ζ(α + 2 Z2) = ^7 = — μζ(a + 2 Z 2), 0 < a < 2 , (α, 2) = 1,
- ( - o2

we have dμ_ζ(x) = — dμζ(x), i e Z2 , so that

c n , ( - O = - c H . Λ O , n > 0 , r > \ .

Hence

an = r Σ c ^ ^ ζ ^ ^ ^ C ζ - 1 ) - £ , _ , ( - ζ " 1 ) ) , n>\.

Write dn(ζ), ζ =£ 1, for the summand on the right Then, since

^ - i ί ζ " 1 ) - £ , - i ( - ζ" 1 ) = 2X_ X (C- 2 ) - 2 β ^ ί - ζ" 1 ) ΞΞ 0 (mod 2),

we have I ώw(ζ) I ^ I"?—__ i\ | |. On the other hand, it follows from (20) and (21)

that dn(Q = dniζ'1). Now the order of ζ is odd (Φ 1), so clearly ζ Φ ζ~\ Hence

we have

n

<*n\ ^ 1 ( n - D ! I ̂  l ί L « ^ 1 .

Therefore the assertion (a) is proved. The assertion (b) is obvious from Proposi-

tions 3 and 4. This completes the proof of Theorem 2.
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Since Sp(s r, h, k) = S p(s r, h, k) + Sp(s r, h, 1) if (k, p) = 1, we

similarly obtain from Propositions 4 and 5 the following

THEOREM 3. Suppose that (h, k) = 1 and (k, p) = 1.

(a) Ifr=0 (mod #),

S/r-l r, A, A) - (l-j)Br,

I S,(s r, h, k) - Sp(s' r, h, k) \ < \ j \ \ s ~ s' |, 5, ^ e Z,.

(b) Ifr^O (mod e), then

Sp(r- l;r,h, k) = 0 ,

I Sp(s;r, h, k) - Sp(s';r, h, k) \ < \ r \ \ s - s' |, s, s' e Zp.

( < | 2 r | U - 5 i ifp = 2, r>\).
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