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ON p-ADIC DEDEKIND SUMS

AICHI KUDO

§1. Introduction

For positive integers 4, k and m, the higher-order Dedekind sums are de-
fined by

SO (h, k) = Z Byov ,(k)B,(hk”), 0<r<m+1,

where Bn(x), n = 0, are the Bernoulli functions (§2). If m is odd and (&, k) =1,
the sum S,‘,,’Tl(h, k) is identical with the higher-order Dedekind sum of Apostol

(1,
s,(h, k) = %% (flkﬂ)

Recently, Rosen and Snyder [6] constructed a p-adic continuous function
S,(s; h, k) for an odd prime p, which takes the values
K"s,(h, k) — p"K"s, (7'M, B, it (k, p) =1,
K"s,,(h, k), if k=p,

at positive integers m such that m +1 = 0 (modp — 1) ; here (p_lh)k denotes
the integer x such that 0 < x < k and px = % (mod k).
The purpose of this paper is to extend this result of them to kmS,(,:il(h, k) for

S,(m; h, k) = {

every i, k and » = 1. To this end, we use an expression of kmSle(h, k) in terms
of the Euler numbers ([2], [3]) and a p-adic continuous function which interpolates
these numbers ([7], [8]).

Let p be a prime number and Z, the ring of rational p-adic integers. Let e =
p— 1lore= 2 according as p > 2 or p = 2. In §§2-3, we shall prove the follow-

ing
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156 AICHI KUDO
THEOREM 1. Let h, k and 7 be fixed integers = 1. Then, there exists a con-
tinuous function S,(s ; 7, h, k) on Z,, which satisfies
S,(m;r, b, k) =K"Sy),(h, k) — p"K"Sy, (ph, k)

for all integers m such that m = 7 and m + 1 = 0 (mod e).

In §4, we shall discuss about a special value and a continuity property of our
function S,(s; 7, k, k), assuming that (%, k) = 1.

§2. Preliminaries

Let C, be the completion of an algebraic closure of the rational p-adic num-
ber field @,, | | the valuation on C, normalized so that [pl= p“l, O the ring of
integers in C,, and Z the ring of rational integers. Throughout, we fix p and con-
sider algebraic numbers to be contained in C,.

For each root of unity o # 1, we define the numbers E,(0), # = 0, by

0 J t"
; = 2 E,(o) PR
e —p n=0 .

1—0p

Here, E,(0) = H,(0), n = 0, are the Euler numbers with the parameter p.

If p satisfies the condition that pﬁﬂ # 1, for all » = 0, we can define a finitely
additive 0-valued measure g, on Z, by

pN-a
wa+p"z) =L— o0<a<p’, Nxo0.
1-—- pﬁ
Let Zp* denote the group of units in Z,. We know by [7], [8] that
n . rat n pﬁ”-a
1) f xdu,x) =lim 2 a ——=E,(0), n=0
Z, N a=0 1— pP
and
V-1 pPN—a
@ [ &du,@ =lim & "~ = E,() —§"E,(0), n=>0,
zi N=oo a=0 1 — pi’

where Z* means to take sum over all integers prime to p in the given range.

B
Let ¢ be an integer > 1 and E,(1) = " _';_“1 ,n =0, where B,, n >0, are
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n

i 13
the Bernoulli numbers defined by —; 1 =2 B"W' Then, it follows at once
e — n=0 .
from the identity
s N _ co’
oo e — on & — pc
that
(3) 3 E,(on) = "™E,(0), n=0

nf=1
for every root of unity p. If pc = 1, the formula (3) is equivalent to that

Bn+1

— n+l _n+l
Z E =" -

n¢=1n#1

n=0.

n .

Let B,(x) = 2 (?)Bix"-’, n =0, be the Bernoulli polynomials and let
i=0

{x} denote the smallest real number ¢ > 0 such that x — ¢t € Z, for a real number

x. Then we have B,(x) = B,({x}) except for the case # =1 and x € Z (B,(x) =

0 for x € Z). Therefore we get without difficulty that
k-1 h
(4) S” (h, k) = aBmH_,(%)B,([Ta}), 1<r<m

for all odd integers m (unless # = m = 1). If » = m = 1, the right hand side of (4)
1

1

Now, by the equality

is equal to Szm(h, k) +

te{%}t 1 -1 te%t N

e —1 B Ec‘f:l <b§)etjc >C ’
we have
© vB, ([f]) =» £ B @ w21

Therefore we obtain the formula of [2], [3],

6 K"So (hk)=m+1—»r X E,  (HE,_CH, 1<r<m,

k=1

for all odd m (unless r=m =1). If »=m = 1, the formula (6) holds for
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k(s;“ h, k) + %)

§3. Definition of S,(s; 7, &, k)

In this section, we give a proof of Theorem 1 mentioned in introduction. Let
h, k and 7 denote positive integers and { a root of unity. Let g =p or g =4
according as p > 2 or p = 2.

Suppose first that Cp” # 1 for all # > 0. Let

(7) Gsin 0 = [Lo@ @ L dn@, sez,
Z5 x

where @ is the Teichmiller character with conductor ¢ and <z) = w(®) 'z for
x € Zp*.

Let exp and log denote the p-adic exponential and logarithm functions, re-
spectively. Then, since <z) =1 (mod¢) for z € Z,, log<z> = 0 (mod ¢) and
(x> ° = exp(slog <x>). Therefore G(s;7, {) is an analytic function of s in Z,
with an expansion

Glsi7, 0 =2 6,0 +1-7",

(log <z»)" 1
n! x

(®) 6,0 = [ 0”@

»

I, (O] < |%| < (gpr)".

dp (o),

Now, as ¢ is the order of w, we have, by (2),
© i 0= [ 2@ = By (O = 7, (€

for all integers m such that m = 7 and m + 1 = 0 (mod ¢).
Next, suppose that Cp =1 for some # = 0. Choose an integer ¢ > 1 so that
lc—1|<|q|and {* = C Let

F(s;r, 0= 2 G(s;r,{n.

n=1,n#1

Then, it follows from (9) and (3) that
Fm;r, Q) = (""" = D(E,_ () —p"E,,_ &)

forallm =7, m+ 1= 0 (mode).
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Now, we consider the power series

(log 0)"”
U,,(s) = ZB —i—( +1-9"
1 logo)™™!
Since | B,| < |;| for all # (by the von Staudt-Clausen Theorem) and |£—%R—|
qn—l
<] py |, this power series defines an analytic function of s € Z, and is equal
st+1—7r
to— -, fors# 7 —1 Let
¢ -1
1
GGs;r, D= PRI p— Uc,,(S)Fc(S 0 7, C), fors #r—1,
1
= —ﬁFc(s;T, C)

Then the value of this function G is independent of the choice of ¢, and
(10) Gm;r, =E,_( —p"E,_ )
forallm = 7, m + 1 =0 (mod ). We define the function S,(s; 7, k, k) by

Sy(s;7, b k) =(G6+1—nr 2 GGs;7, E, (€Y,

k=1

and show that this function S,(s; 7, &, k) satisfies the properties described in
Theorem 1.

The function S, is analytic in Z, and in particular is continuous. Further by
(9), (10) and (6) we have

Sb(m s, k) =m+1—nr 2 (Em—r(ch) —pm_rEm—r(Cph))Er—l(c—l)
c"=
= K"Sy1 (h, k) — p" K" S, (ph, k)
for all m = 7, m + 1 = 0 (mod ). This completes the proof of Theorem 1.
Let d be a positive integer. Since Si1,(dh, dk) = d""Sgu1, (k) (12]), we
have

S,(m; 7, dh, dk) = (dk)" Sy (dh, dk)— p""(dk)" Sy (pdh, dk)
=d'K"S, (b, k) — p" A K" S, (D, k)
= d’Sp(m )

forallm = v, m + 1 = 0 (mod ¢). Hence by analyticity we obtain
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S,(s;7,dh,dk) =d'S,(s;r, h, k), s€Z,.

Therefore, when we discuss the property of S,(s; 7, h, k), it is sufficient to con-
sider in the case where (4, k) = 1. Similarly, if (k, p) > 1, we can write the for-
mula of Theorem 1 as

S,m;r, b, k) =K"Syr (b, K)— K" Syt (b, kp™Y),

for m such that m = 7, m + 1 = 0 (mod e).

Remark 1. Let (h, k) =1 and p > 2. Take an integer h* > 0 such that
hh* =1 (mod k). Then by the property Ser, (™, k) = So” (h, k) of Dedekind
sums, it follows that
K"s,(h, k) — p" 7 'k"s, (7', k), if (k, p) =1,
k"s, (h, k), if k=p,

for all m =21, m+ 1= 0 (modp — 1). Therefore the function S,(s;1, 1, k)
gives the Rosen-Snyder’s S, (s ; &, k).

S,(m, 1, h*, k) = {

Remark 2. I p = 2 or 3, then Theorem 1 holds for » =1 and m = 1, so
ks(h, k) — ksCh, k), if (k,p) =1,

ksh, k) —ksth, kp™), if (k, p) = p,

where s(h, k) = Szm(h, k), (h, k) = 1, denote the ordinary Dedekind sums.

S,(1;1, h, k)={

For any integer v =0, let p; be the least common multiple of ¢ and p”. Let
¢ =1+ p". Then the function S,(s;7, h, ") is defined by

(11) S,(s;7, h,p) =U_,(s)r X F.(s;7r, (VE,_, (L.
=0

Let (B, k) =1, k> 1 and let
(12) S,s;7, k) =(G6+1—nNr = G(s;r, (HE,_ (T,

ck=1,02"#1

where k = kg, (k,, p) = 1, and G on the right is the analytic one defined by (7).
Then the function S,(s; 7, k, k) is separated as

Sy(s;7r, b, k) = S,(s;7, b, k) + S,(s;7, b, p).

Finally, if # is odd, then we see from the definition of Dedekind sums that
S,(,:il(h, 1= S,(,ﬁl(h, 2) = 0 for odd m = 7. Hence it follows from Theorem 1
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and the analyticity of S, that
S,(s;7,h, 1) =S,(s;7,h,2)=0, sE€Z,

if 7 is odd.

§4. Properties of S,(s; 7, h, k)

It is the purpose of this section to estimate the p-adic absolute values | a, |, n
2 0, of the coefficients of

S,(s;7,h, k) =2 a,(s+1— N, a, € Q,,
n=0

in the case where (h, k) = 1. We write k = k", (k,, p) = 1, v = 0, and consid-
er separately about S,(s;7, h, $”) and 5,,(5;7’, h, k). Let p° denote the least
common multiple of ¢ and p” as before.

LEMMA.  Suppose Cpn #* 1 foralln = 0. Then,

1

) log (1 — C”), if =0 (mod ¢),

logd — 0 —

(w™)

fz* w7 (@D %dﬂ: (x) = ot
’ — 2 o (@log — £L), if »# 0 (mod o),

q—-1 .
where §, is a primitive q-th root of unity, and t(w ) = 2 0~ D,
1=0

Proof. Let f(X) be the unique power series in O[[X]] such that
-1
fX =2 ua+p"2)1+X0° (modP,(X))
a=0

for all » = 0, where P,(X) = (1 + X)” — 1. Then it follows immediately from
€

the above congruences that f(X) = iFrx—¢ Therefore, we can calculate the

value of this integral following the theory of I'-transform, namely, e.g. along the
argument of [5] (pp. 45-48). This completes the proof. The assertion for the case
where # = 0 (mod e) is obtained also in [9).

Let ¢ =1+ 5", and let F.(s;r, Q) and U,,(s) be the functions defined in
§3. In the sequel we write F”(s;7, ) and U, (s) for the functions F, and U,
respectively.
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ProposITION 1. For each root of unity { such that va =1, let
FVs57,0 =2 b0 +1—9" b2 €C,.
n=0
(a) When r = 0(mod e),

<1—%)logc, if (=1,

) —
bovy(C) _ %log c, if Cp =1, C #+1,

0, otherwise;

(b) whenr # 0 (mod ¢),

bey (D) = cw ) o' @loge, f¢=¢", G, p =1
0, otherwise;
and
-1
(©) B0 = 5 o (@ (B L & pen) m

where Eém are rational p-adic integers independent of (.

Proof. Since

v _ lo <x>) 1
1 sn0= T [ o7 P Qog V1 4@, nzo,
n€=1,n#1
the assertions (a), (b) for # = 0 immediately follow from Lemma and the fact that
loge, if =1,
1 1-— =
2z log 1= Cm) {0, i+ 1

for any p’-th root of unity & Let # = 1. In order to prove the assertion (c), we

write
PUEN _y ” N _g
PO = S lim 2 o (@ (B C
N#1 Nooo a=0 ! 1 _ (Cn)p” N
PP-1 pN_y (log (@ + p ’B)" oy ~1y ¥

=>1lmX* 3 w ) 1\ ¥
n#l Noo @=0 b=0 n!(a + J) b) 1-— (7] )
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so that

i S (log (a + p’2))"
b0 = S 0”@ By [ LT E
a=0 n#1 Zy n' (d +py.l')
Since the sum on the right over n # 1 (n° =1) is a rational p-adic integer

. . . . . (log )"
independent of (, it is sufficient to show that this sum is congruent to Tl

du,(x), n=1.

n—1

> v 7 1
modulo qn—!p , for each a. Now since log (a + p°x) =loga (mod p"),

a+ pvx
1 3
= (mod ") and log a = 0 (mod ¢q), we have

(log (a + p’7)" - (log )"

a+p;x a

On the other hand by making use of (1) and (5), we obtain

(mod ¢"'p"), n=>=1.

DINTN j;,, du,(x) = n§1 77an(77) =c¢B (%) - B

n#1

(because 0 < @ < p” — 1< ¢)

= g (mod p;_l).

_.

Hence

n-1

5 (log (a +p_x)) dun, (2) = (log'a) ( d q '
n#1 Z, n (a +pvx) n. n.

as desired. This completes the proof of Proposition 1.

p§>, n=21,

Now, for v 2 1, let

TV =r X F¥;r, CHE,_ (Y,

¢?¥=1

where (k, p) = 1. Then, by (11), we have S,(s; 7, h, p") = U,(u)(s) T,(y)(s).
Let B, -, # = 0, denote the generalized Bernoulli numbers for the character
w”’, defined by
<o (@t”

a=0 eﬂt _ 1
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PrROPOSITION 2. Letv =1 =2ifp =2, r% 0 (mode)) and

V() = 2t +1-9n" 2 eq,
n=0

Then,
(@) o {(1 — "B, logec, if r=0 (mode),
a =

o (WB,,~logc, ifr# 0 (mode)
and

w _ (og (1 + )"

(b) t= p 4 Z 1@ + 9" (mod o’ p) n>1,

where v(a) belongs to Z, and determined uniquely by <a> = (1 + QY. for each inte-
ger a prime to p.
Proof. By the definition of T,(”), we have

th=r = bo(CNE, (Y, n=0.

=1

(a) Let # =0 (mod e). Then, by Proposition 1(a),

W _ . l -1 _ l
ty, = rqﬂj’]&l( P log c)E,_I(C ) + r<1 p>log cE, (D).

The right hand side reduces to (1 — »" ) B,log ¢ by making use of the formula
(3). Next, let # Z 0 (mod e). Then by Proposition 1(b),

q-1 A ,
toy = 7 Z* boy (T E,_,(C)

(w™)
sr "(h) log ¢ Z o WE,_,(().
Now, from the equality
(™) St L _Sel@e”
qa - e — Cq' a=0 " — 1
we have
(™)

S ') E,y(L) =+ Byyn

i=0
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Hence téu,) = w' (W B,,-log c, as claimed.

(b) Letn =1, then it follows from Proposition 1(c) that

!
t;u; _ azo (@) <(10g a)" —lpuE(n)) Cgil Cha E_ 0.

By (5) and the von Staudt-Clausen Theorem, we have
a Vr h r v v—
rZE, (O =p"B ({pa}) =na" (modp’™),
C

and hence

t=n Z {ad” (log a) <mod%q_lp;>

(log (1 + )"

- ey 2 0(@"(1 + 9"

This completes the proof of Proposition 2.

Now, let p” > ¢q, so we write v for D. Let AZ") = Zf:;l A+ =1,
n > 1. Then,

-1
S* 0@ + q)”(") = eAZ") (mod p"),
a=0
where ¢7'p” = p*, 1 > 1. By induction on g it follows that
[p" B, (modp"), ifp>2,
0 (mod p*7"), ifp =2,

n _
A7 =

U

for all # = 1 and # = 1. Hence we have

pY—1 . _ -1 uB Od -1,V if > 2
Z v(a) (1 _|_ ) (a) [ q p n (m q_lp )’ 1 p ’
a=0 0 (mod ¢~ p"), ifp=2.
By Proposition 2(b) and the von Staudt-Clausen Theorem, we therefore obtain
n—2+y
(14) 2 =0 (modp"), ) =0 (mod - ) n>2, ifp>2v=>2,
(15) t,‘,”i—o<modp) n=>1, ifp>2,v=1,
n—1
(16) t,i?jzo(mod qn! p“), n>1, itp=2,v>2.

For p = 2,0 < v < 2, we see, more exactly,
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q-1 "

(17) b0 =X 07 @ r e, (T =1,v<2),
a=0 .

where £ is a 2-adic integer independent of both { and a. Indeed, we can see, by

a little calculation, that

s [ (og 3+ 4x))”" . [ (og (1 + 42))”
"), 3tz W@ =N ) i @,

for all n # 1, 775 =1, and hence

(log (1 + gx))"

S(n) —
w1 Y2 g (1 + qx)

au,(x).

From this expression of b,?f;(C) we obtain, in the same manner as in the proof
of Proposition 2(b),
2"
n!

(18) (9 =0(mod%L), n21, itp=2,v=12
By these results obtained above, we can now prove the following
ProposiTION 3. Let

S,(s; 7, h, p) = i a,(s+1—-9", a,€Q,
n=0

where v 21 (v =2 ifp=2,r% 0 (mode) and (h, p) = 1. Then,

@ B [(1 — "B, if r=0 (mode),
a p—

o (WB,,r ifr#0(mode),

pn—z
qn—l
la,| <[5l n21, ifp = 2.

In particular,
() |S,(s;7, h,p") = S,(s";7, i, PV | < |s— s, 5,8 €Z,

Proof. Let U (s) = Xy u,(s +1 — »”. Then,

V(n—1)
b4

Tl’ n =0,

(19) u, (c=1+p") and |u,| =B,

= log ¢
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so the assertion (a) is obvious from Proposition 2(a). We further know by Proposi-

tion 2(a) and the von Staudt-Clausen Theorem for the Bernoulli (resp. generalized

Bernoulli) numbers, that itév,) = |p§ —1|. Thus, the assertion (b) follows from

(14)-(16), (18) and (19), by taking the power series product of U,(V) and T,(w. The

last assertion (c) is an immediate consequence of the fact that |a,| < 1 for all #
= 1. This completes the proof of Proposition 3.

ProposiTioN 4. Let (h, k) = 1 and k > 1. Then, for 5‘1,(3 07, hy, k), we have

n—1

Sys;7, b k) =X a,s+1—n" |dn|£|rhl, n=1,
n=1 .

and hence

|S,(s;7, h, ) = S,(s";7, b, ) | < |rlls—s'|, 5,5 €2,
n—1

Moreover, if p = 2 and v > 1, we see | @, | < |27’(—nq_—1),|, n=1,and
| S,(s;7, by k) — S,(s";7, b, k)| < |2r||s—s'|, 5,8 €2,

Proof. Recalling that (1 — §)""'E,(0) € Z[], n = 0, we have | E, (0| <1,
if |¢—1]=1 Let k= kgp”", (ky, p) = 1. Then by the definition (12) of S‘,,,

aG,=r = ¢, ((NE,_(CYH, n=1.

ck=1,0""#1

Hence, by (8), the first half of this proposition is obvious.
Now, in general, it follows from the definition of E,({) that

(200 E,((N)=—E(0D —1; E,_ ("= (=1DE,_©,r>1,
for every root of unity {. On the other hand, we can see by a little calculation that
(21) e, (D = (=D, 0, n=0, r=1,

for all {,|¢—1]=1. Let p=2 and > 1. Then, by cupling the terms for {
and C—‘ in the above expression of @, (note that { # C—l), we get the second half.
This completes the proof of Proposition 4.

Since S,(s;7, h, 1) =0 for » odd (§3), S,(s;7, h, k) = S,(s; 7, h, k) if
(h, k) = (k, p) =1 and » # 0 (mod 2). In this case, Proposition 4 describes the
property of S,(s; 7, h, k). For 7 even, we obtain the following
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ProposITION 5. For even positive integer v, let

S,sir, b, D) =S as+1-0" a,€q,
n=0

Then,
a. = {(1 - %)B,, if ¥ =0 (mod e),
0
0, if r Z 0 (mod e),
n-3
|a§|£|%|, la,| <| ] [, n>2, ifp>2, =0 (mode),
n—2
lal <|7l, |a;|£|m7|, nz2, ifp>2, 7% 0 (mode),
1 2”—2
a1 <151 lal<| 1, n=2, ip=2.

Proof. By (11), we obtain
S,(s;7, h, 1) = U,(O)(s) F(O)(s;r, 1)B,.
If welet FOC;7, 1) =320, b,(,(,’i(s + 1 — #)”, then Proposition 1(a)b), (13) and

(17) lead, respectively, to

b«»__[(l—l)log(l%—q) if =0 (mod e),
0.7

b
0, if  # 0 (mod o),
by =0 (modz—!), n>1, itp > 2,
29" & 24" ,
b;f’i:—,f—!é”fo(mod nq!),nZI, ifp=2.

On the other hand if we let U,” (s) = X0, u,(s + 1 — »”, then

1 qn—l

W= Tog@ T g 4l =18

[, n=>1.

B, 1
Since, moreover, l7|£1 if 1 <z #0 (mode) and |B,,|=|5lif 0<n=

0(mod ¢), in the same manner as in the proof of Proposition 3, the result follows.

THEOREM 2.  Suppose that (h, k) =1 and (k, p) > 1.
(@) Ifp=2, k= 2k, (ky, 2) =1 and » # 0 (mod e), then
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S,(r —1;7,h, k) =0,
|Sz(3§7’, h, k) _SZ(S’;f’, h, k)|S|q||s—s’ , 8,8 € Z,
(b)  Otherwise,
1 —p"DB,, ifr=0 (mode),

o' (WB,,r ifr#0 (mode),
[Sy(s;7, h, k) — S,(s57, h, K) | <|s— 5|, s,8 € Z,

S,,(r—l;r,h,k)=l

Proof. Let p =2 and 7 # 0 (mod 2). Since S,(s; 7, h, 2) = 0, the function
S,(s; 7, h, 2k) = S,(s; 7, h, 2k,) has the expansion

S,(s;r, h, 2k) = i a,s+1—7" a,=r = ¢, (VE, (7).
n=1

Ck=1,¢%1
Now, since
v (207 . v _
u_la+2"2) == —pla+2"2),0<a<2", (a2 =1,
1-(=0
we have du_ (x) = — dp (x), x € Z,, so that
(=0 ==¢,,0, n=0, r=1.

Hence

a,=r = ¢, CVE - E (-, n>1.

cko=1,¢#1
Write d,({), { # 1, for the summand on the right. Then, since

E,_ () —E_(—¢HY=2E,_ () —2E,_ (- (" =0(mod?2),

2
we have | d, (0 | < Iﬁ |. On the other hand, it follows from (20) and (21)

that d,(0) = d,(C™"). Now the order of { is odd (# 1), so clearly { # ¢~ Hence
we have

n

|0n13|ﬁf|élq}, n=>1.

Therefore the assertion (a) is proved. The assertion (b) is obvious from Proposi-
tions 3 and 4. This completes the proof of Theorem 2.
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Since S,(s; 7, h, k) = S 557, 0 k) + S,(s;7, b, D it (k,p) =1, we

similarly obtain from Propositions 4 and 5 the following

(a)

(b)

(1]
(2]
(3]
[4]
(5]
(6]

(7]

(91

THEOREM 3.  Suppose that (h, k) = 1 and (k, p) = 1.
Ifr =0 (mod e), then

S,r=1;7 k) = (1—%)3,,

1
1S,Gs57, 0,0 = S, 57, b, DI <|Flls =5, 5,5 € Z,

If v # 0 (mod e), then

S,(r—1;7, h, k) =0,
| S,(s;7, b, k) = S,(s"57, b, )| <|r|ls—s|, s,5€2Z,
(L |2r|ls=s]ifp=2,r>1).
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