T. Mandai Nagoya Math. J. Vol. 145 (1997), 125–142

A CONSTRUCTION OF ASYMPTOTIC SOLUTIONS AND THE EXISTENCE OF SMOOTH NULL-SOLUTIONS FOR A CLASS OF NON-FUCHSIAN PARTIAL DIFFERENTIAL OPERATORS

TAKESHI MANDAI

§1. Introduction

Consider a partial differential operator

(1.1)
$$P = \sum_{j+|\alpha| \le m} a_{j,\alpha}(t, x) \partial_t^j \partial_x^{\alpha}, \quad a_{m,0}(t, x) \equiv t^{\kappa},$$

where κ is a non-negative integer and $a_{j,\alpha}$ are real-analytic in a neighborhood of $(0,0) \in \mathbf{R}_t \times \mathbf{R}_x^n$.

M. S. Baouendi and C. Goulaouic [1] defined Fuchsian partial differential operators, and proved the unique solvability of the characteristic Cauchy problems in the category of real-analytic (or holomorphic) functions, which is a generalization of the classical Cauchy-Kowalevsky theorem. They also proved a generalization of the Holmgren uniqueness theorem. Especially, from their results it easily follows that if P is a Fuchsian operator with real-analytic coefficients, then there exist no sufficiently smooth null-solutions. Here, a Schwartz distribution u in a neighborhood of (0,0) is called a *null-solution* for P at (0,0), if Pu = 0 in a neighborhood of (0,0) and $(0,0) \in \text{supp } u \subset \{t \ge 0\}$, where supp u denotes the support of u.

The author considered the characteristic Cauchy problems for a class of operators wider than the Fuchsian operators in [3]. In that result, he showed the unique solvability of the characteristic Cauchy problems in the category of functions which are of class C^{∞} with respect to t and real-analytic with respect to x. He also showed the non-existence of sufficiently smooth null-solutions. (As for

Receive April 28, 1995.

The research was supported in part by Grant-in-Aid for Scientific Research (No. 05640168, No. 06640222), Ministry of Education, Science and Culture (Japan).

distribution null-solutions, see [4]). This class of operators is defined in terms of four conditions. He gave a conjecture that if the third condition is violated, then there exists a C^{∞} null-solution.

In this article, we construct an asymptotic solution of Pu = 0 in the form

(1.2)
$$u(t, x) := \exp\left(-\sum_{j=0}^{M} \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]}\right) \cdot t^{\lambda[M+1](x)} \cdot \sum_{l=0}^{\infty} t^{l/q} \sum_{p=0}^{lm} (\log t)^{p} v_{l,p}(x),$$

where

- (i) M is a non-negative integer, and q is a positive integer,
- (ii) $\mu[j](j = 0, 1, ..., M)$ are positive rational numbers such that $\mu[0] > \mu[1] > \cdots > \mu[M] > 0$.
- (iii) $\lambda[j]$ $(j = 0, 1, \ldots, M + 1)$ and $v_{l,p}$ $(l \ge 0; 0 \le p \le lm)$ are real-analytic in a fixed open neighborhood of $0 \in \mathbf{R}^n$,

for a class of operators wider than that considered in [3].

Further, using these asymptotic solutions, we prove the conjecture in [3] mentioned above under an additional assumption. The C^{∞} null-solution constructed here is one of the most fastly decaying nontrivial solutions of Pu = 0.

In Section 2, we give the statements of the main theorems. After giving some preliminaries in Section 3, we prove the main theorems in Sections 4 and 5.

NOTATIONS:

- (i) The set of all integers (resp. nonnegative integers) is denoted by Z (resp.
 N). Put N/q := {p/q : p ∈ N} for a positive integer q, and put Z/q similarly.
- (ii) Put $\vartheta := t\partial_t$.
- (iii) For a bounded domain Ω in \mathbb{C}^n , we denote by $\mathcal{O}(\Omega)$ the set of all holomorphic functions on Ω .
- (iv) The space of the Schwartz distributions on U is denoted by $\mathscr{D}'(U)$.
- (v) For a complete locally convex topological vector space E, put

$$C_{flat}^{N}([0, T]; E) := \{ f \in C^{N}([0, T]; E) : \frac{d^{j}f}{dt^{j}} \Big|_{t=0} = 0 \text{ for } 0 \le j \le N-1 \}.$$

- (vi) Put $(\lambda)_j := \prod_{l=0}^{j-1} (\lambda l)$ for $\lambda \in \mathbb{C}$ and $j \in \mathbb{N}$.
- (vii) For a commutative ring R, the ring of polynomials of λ with the coefficients belonging to R is denoted by $R[\lambda]$. The degree of $F \in R[\lambda]$ is denoted by deg, F.

§2. Statement of the main result

Let q be a positive integer, Ω be a bounded domain in C^n that includes the origin 0, and T be a positive real number. Consider a linear partial differential operator of the form (1.1). We assume only the following weaker condition on the coefficients.

(A-0)
$$a_{j,\alpha} \in \widehat{\mathscr{F}}_q([0, T]; \mathscr{O}(\mathcal{Q})) \ (j+|\alpha| \le m),$$

where

$$\mathcal{F}_{q}([0, T]; \mathcal{O}(\Omega)) := \{ \phi \in C^{\infty}((0, T]; \mathcal{O}(\Omega)) \\ : [s \mapsto \phi(s^{q})] \in C^{\infty}([0, T^{1/q}]; \mathcal{O}(\Omega)) \},$$
$$\widehat{\mathcal{F}_{q}}([0, T]; \mathcal{O}(\Omega)) := \{ \phi \in C^{\infty}((0, T]; \mathcal{O}(\Omega)) \\ : t^{M} \phi(t) \in \mathcal{F}_{q}([0, T]; \mathcal{O}(\Omega)) \text{ for some } M \in \mathbf{N} \}.$$

Let $r(j, \alpha)$ be the generalized vanishing order of $a_{j,\alpha}$ on the hypersurface $\sum := \{(0, x) : x \in \Omega\}$, that is

(2.1)
$$r(j, \alpha) := \sup\{r \in \mathbf{Z} / q : t^{-r}a_{j,\alpha} \in \mathcal{F}_q([0, T]; \mathcal{O}(\Omega))\}.$$

If $r(j, \alpha) = \infty$, then we redefine $r(j, \alpha) := R$ for a sufficiently large R ($R := \max\{r(j, \alpha) : r(j, \alpha) < \infty\} + 1$ will suffice). Put

(2.2)
$$\tilde{a}_{j,\alpha}(t, x) := t^{-r(j,\alpha)} a_{j,\alpha}(t, x) \quad (\in \mathcal{F}_q([0, T]; \mathcal{O}(\Omega))).$$

Note that if $r(j, \alpha) < R$, then $\tilde{a}_{j,\alpha}(0, x) \neq 0$.

Associating a weight $\omega(j, \alpha) := j - r(j, \alpha)$ to each differential monomial $a_{j,\alpha}(t, x) \partial_t^j \partial_x^{\alpha}$, we draw a Newton polygon $\Delta(P)$ using the points $(j + |\alpha|, -\omega(j, \alpha))$ $(j + |\alpha| \le m)$ in (u, v)-plane as follows.

DEFINITION 2.1 ([3]). (1) Put

$$\Delta(P) := ch(\bigcup_{j+|\alpha| \le m} \{(u, v) \in \mathbf{R}^2 : u \le j + |\alpha|, v \ge -\omega(j, \alpha)\}),$$

where ch(A) denotes the convex hull of A. This is called the Newton polygon of P.

FIGURE 1. Newton polygon of $P: \Delta(P)$

(2) Put

 $\hat{V} = \hat{V}(P) := \{(j, \alpha) \in \mathbb{N} \times \mathbb{N}^n : (j + |\alpha|, -\omega(j, \alpha)) \text{ is a vertex of } \Delta(P)\}.$

(3) Put

$$\omega = \omega(P) := \max\{\omega(j, \alpha) \in \mathbf{R} : j + |\alpha| \le m\},\$$

which is the maximum weight of P.

(4) The boundary of $\Delta(P) \cap ([0, \infty) \times \mathbf{R})$ is the union of two vertical half-lines and a finite number of compact line segments with distinct slopes. Each of these compact line segments is called a *lower side* of $\Delta(P)$. The set of the slopes of the lower sides of $\Delta(P)$ is denoted by $S = S(P) (\subset \mathbf{Q})$. For $\mu \in S(P)$, the lower side of $\Delta(P)$ with slope μ is denoted by $L_{\mu} = L_{\mu}(P)$. Put

$$I_{\mu} = I_{\mu}(P) := \{(j, \alpha) \in \mathbb{N} \times \mathbb{N}^{n} : (j + |\alpha|, -\omega(j, \alpha)) \in L_{\mu}(P)\}.$$

Let the right end points of $L_{\mu}(P)$ be (u_1, v_1) . We put $d_{\mu}(P) := u_1$, and call it the *degree* of the slope μ .

If $0 \notin S$, we put $L_0(P) := \{(0, -\omega(0,0))\} = \{(0, -\omega(P))\} \subset \mathbf{R}^2, I_0(P) := \{(0,0)\} \subset \mathbf{N} \times \mathbf{N}^n$, and $d_0(P) := 0$.

By the use of these notions, Fuchsian operators in the sense of M. S. Baouendi and C. Goulaouic [1] are characterized as follows. (In fact, they assumed that the

coefficients belong to $C^{m}([0, T]; \mathcal{O}(\Omega))$. This difference is, however, not essential and hence we ignore the difference of the classes of coefficients.)

PROPOSITION 2.2. The operator P is Fuchsian if and only if $\omega(P) \ge 0$, $S(P) = \{0\}$, and there exist no $(j, \alpha) \in I_0(P)$ such that $\alpha \ne 0$.

We consider a class of operators wider than the class of Fuchsian operators. First, we assume the following condition.

(A-1) For all $\mu \in S(P)$, there exist no $(j, \alpha) \in I_{\mu}(P)$ such that $\alpha \neq 0$.

DEFINITION 2.3. For $\mu \in S(P)$ with $\mu > 0$, we put

$$\mathcal{C}_{\mu}[P](x;\lambda) := \sum_{(j,0) \in I_{\mu}(P)} \tilde{a}_{j,0}(0,x)\lambda' \in \mathcal{O}(\Omega)[\lambda].$$

We also put

$$\mathscr{C}_0[P](x;\lambda) := \sum_{(j,0)\in I_0(P)} \tilde{a}_{j,0}(0,x)(\lambda)_j \in \mathscr{O}(\Omega)[\lambda].$$

The polynomial $\mathscr{C}_{\mu}[P]$ of λ is called the *indicial polynomial of* P associated with the slope $\mu \in S(P) \cup \{0\}$. Note that $d_{\mu}(P) = \deg_{\lambda} \mathscr{C}_{\mu}[P]$.

For $\mu \in S(P) \cup \{0\}$, we consider the following condition.

(A-2;
$$\mu$$
) If $(j, 0) \in V(P)$ and $j \ge d_{\mu}(P)$, then $\tilde{a}_{j,0}(0,0) \neq 0$.

This is equivalent to the following.

(A-2; μ) For every $\nu \in S(P)$ with $\nu \ge \mu$, the coefficient of the top order term of $\mathscr{C}_{\nu}[P](x; \lambda) \in \mathscr{O}(\Omega)[\lambda]$ does not vanish at x = 0.

Remark 2.4. Note that if $(j, 0) \in \hat{V}(P)$, then $\tilde{a}_{j,0}(0, x) \neq 0$. Thus, the condition $(A-2; \mu)$ is a kind of non-degeneracy at x = 0. Further, the condition $(A-2; \mu)$ for $\mu > 0$ is weaker than the condition (A-2; 0), and (A-2; 0) is equivalent to (A-2) in [3].

Now, the following is one of the three main theorems in this article.

THEOREM 2.5. Assume that P satisfies (A-0) and (A-1). Let $\mu_0 \in S(P) \cap \mathbf{N}/q$, $\mu_0 > 0$, and assume the condition (A-2; μ_0). If λ_0 is a simple root of $\mathscr{C}_{\mu_0}[P](0; \lambda) = 0$, then there exist

(i) $M \in \mathbf{N}$,

- (ii) $\mu[j] \in \mathbb{N} / q(j = 0, 1, ..., M)$, where $\mu_0 = \mu[0] > \mu[1] > \cdots > \mu[M] > 0$,
- (iii) a subdomain Ω_0 of Ω including 0,
- (iv) $\lambda[j] \in \mathcal{O}(\Omega_0)$ $(j = 0, 1, \dots, M+1)$, where $\lambda0 = \lambda_0$,

such that the following holds.

For an arbitrarily given $v_{0,0}(x) \in \mathcal{O}(\Omega_0)$, there exists $v_{l,p}(x) \in \mathcal{O}(\Omega_0)$ $(l \ge 0; 0 \le p \le lm)$ such that a formal series

(2.3)
$$u(t, x) := \exp\left(-\sum_{j=0}^{M} \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]}\right) \cdot t^{\lambda[M+1](x)} \cdot \sum_{l=0}^{\infty} t^{l/q} \sum_{p=0}^{lm} (\log t)^{p} v_{l,p}(x)$$

is an asymptotic solution of Pu = 0. That is, for every $N \in \mathbf{N}$ there holds

(2.4)
$$t^{-\lambda(M+1)(x)} \cdot \exp\left(\sum_{j=0}^{M} \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]}\right) \cdot P\left(\exp\left(-\sum_{j=0}^{M} \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]}\right) \times t^{\lambda(M+1)(x)} \cdot \sum_{l=0}^{N} t^{l/q} \sum_{p=0}^{lm} (\log t)^{p} v_{l,p}(x)\right) = o(t^{N/q-r_{0}}),$$

with some $r_0 \in \mathbf{N}$.

This theorem shall be proved in Section 4. We shall also give a proposition which corresponds to the case of $\mu_0 = 0$ and M = -1.

Remark 2.6. Even if $\mu_0 \in S(P)$ but $\mu_0 \notin \mathbb{N}/q$, we can retake another q such that $\mu_0 \in \mathbb{N}/q$ and (A-0) is satisfied. Hence, we can always apply this theorem with this new q.

Next, we consider the following condition for $\mu \in S(P)$.

- (A-6; μ) If $\nu \in S(P)$ and $\nu > \mu$, then all non-zero roots λ of $\mathscr{C}_{\nu}[P](0; \lambda) = 0$ satisfy Re $\lambda < 0$. Further, there exists $\lambda_0 \in \mathbb{C}$ which satisfies the following.
 - (i) Re $\lambda_0 > 0$,
 - (ii) λ_0 is a simple root of $\mathscr{C}_{\mu}[P](0; \lambda) = 0$ and the other roots λ satisfy Re $\lambda < \text{Re } \lambda_0$.

Remark 2.7. In this section, we define only the conditions (A-0), (A-1), (A-2; μ), and (A-6; μ). This apparently strange numbering is for the consistency with [3]. We shall introduce another condition (A-3) in Section 5.

Using the theorem above, we can show the existence theorem of smooth null-solutions, which is the second of the main theorems.

THEOREM 2.8. Assume the conditions (A-0), (A-1), (A-2; μ_0), and (A-6; μ_0) for some $\mu_0 \in S(P)$ with $\mu_0 > 0$. Then, P has a C^{∞} null-solution at (0,0).

The C^{∞} null-solution given in this theorem is one of the most fastly decaying nontrivial solutions as $t \to +0$. In fact, we have the following theorem, which is the last of the main theorems.

THEOREM 2.9. Assume the conditions (A-0), (A-1), (A-2; μ_0), and (A-6; μ_0) for some $\mu_0 \in S(P)$ with $\mu_0 > 0$. Assume that u is a C^0 solution of Pu = 0 for t > 0. If there exist $\delta > \operatorname{Re} \lambda_0$ and $C_0 > 0$ such that the inequality

$$|u(t, x)| \leq C_0 \exp\left(-\frac{\delta}{\mu_0} t^{-\mu_0}\right)$$

holds for $t \ge 0$ in a neighborhood of (0,0), then u = 0 for $t \ge 0$ in a neighborhood of (0,0).

Theorems 2.8 and 2.9 shall be proved in Section 5.

Finally, let us consider a typical example.

EXAMPLE 2.10. First, we consider the following ordinary differential operator decomposed into first order operators.

$$P_0 := t^d (t^{k_1} \vartheta - \lambda_1(t, x)) \cdots (t^{k_r} \vartheta - \lambda_r(t, x)) (\partial_t - \tilde{\lambda}_{r+1}(t, x)) \cdots (\partial_t - \tilde{\lambda}_m(t, x)),$$

where $m, r, d \in \mathbb{N}, 0 \le r \le m, k_j \in \mathbb{N} (1 \le j \le r)$ and $\lambda_j, \tilde{\lambda}_l \in C^{\infty}([0, T]; \mathcal{O}(\Omega))$ $(1 \le j \le r; r+1 \le l \le m)$. Assume that $\lambda_j(0, x) \ne 0$ $(1 \le j \le r)$ and $k_1 \ge k_2 \ge \cdots \ge k_r \ge 0$. For this operator, $S(P_0) = \{k_1, \ldots, k_r, 0\}$ if r < m, and $S(P_0) = \{k_1, \ldots, k_m\}$ if r = m. The condition (A-1) is trivially satisfied, and the condition (A-2; μ) is " if $k_j > \mu$ then $\lambda_j(0, 0) \ne 0$ ". We can also show that

$$\mathscr{C}_{\mu}[P_0](x;\lambda) = \prod_{j:k_j > \mu} (-\lambda_j(0,x)) \cdot \prod_{j:k_j = \mu} (\lambda - \lambda_j(0,x)) \cdot \lambda^{h(\mu) + m - r}$$

for $\mu \in S(P_0)$ with $\mu > 0$, where $h(\mu)$ is the number of k_j 's that satisfy $k_j < \mu$. Thus, the condition (A-6; μ_0) for $\mu_0 > 0$ is the following.

If $k_j > \mu_0$ then Re $\lambda_j(0, 0) < 0$. Further, there exists j_0 such that

(i) $k_{j_0} = \mu_0$, (ii) Re $\lambda_{j_0}(0, 0) > 0$, (iii) If $k_i = \mu_0$ and $j \neq j_0$, then Re $\lambda_i(0, 0) < \text{Re } \lambda_{j_0}(0, 0)$.

Next, we consider a partial differential operator. Put $\mu_j := 0$ $(1 \le j \le m - r)$ and $\mu_{m-r+j} := k_{r+1-j}$ $(1 \le j \le r)$. Also put $\omega_j := d + \sum_{l=1}^j \mu_l$ $(0 \le j \le m)$. Consider an operator

$$P = P_0 + \sum_{j=0}^m t^{\omega_j+1} B_j(t, x; \vartheta, \partial_x),$$

where $B_j(t, x; \vartheta, \partial_x) = \sum_{|\alpha| \le j} b_{j,\alpha}(t, x) \partial_x^{\alpha} \vartheta^{j-|\alpha|}$ and $b_{j,\alpha} \in C^{\infty}([0, T]; \mathcal{O}(\Omega))$. Then, P satisfies the condition (A-1), and there hold $\Delta(P) = \Delta(P_0)$, $S(P) = S(P_0)$, $\mathscr{C}_{\mu}[P] = \mathscr{C}_{\mu}[P_0]$. (See Lemma 3.1.) Hence, P satisfies the condition (A-2; μ_0) (resp. (A-6; μ_0)), if and only if P_0 satisfies (A-2; μ_0) (resp. (A-6; μ_0)).

§3. Preliminaries

In this section, we give some preliminaries for the proofs of the main theorems.

Let P be an operator (1.1) satisfying (A-0). By $t^{j}\partial_{t}^{j} = \vartheta(\vartheta - 1) \dots (\vartheta - j + 1) = (\vartheta)_{j}$, we can easily show the following lemma, which is useful in our arguments.

LEMMA 3.1. We can rewrite P as

(3.1)
$$P = \sum_{j+|\alpha| \le m} b_{j,\alpha}(t, x) \vartheta^j \partial_x^{\alpha}$$

with $b_{j,\alpha} \in \widehat{\mathcal{F}}_q([0, T]; \mathcal{O}(\Omega))$. For this $b_{j,\alpha}$, we define the generalized vanishing order

$$r'(j, \alpha) := \sup\{r \in \mathbb{Z}/q : t^{-r}b_{j,\alpha} \in \mathcal{F}_q([0, T]; \mathcal{O}(\Omega))\}.$$

For $\mu \ge 0$, we put $\omega_{\mu}(P) := \max\{-r'(j, \alpha) + \mu(j + |\alpha|) : j + |\alpha| \le m\}$. Then, we have

$$\begin{split} \Delta(P) &= ch \Big(\bigcup_{j+|\alpha| \le m} \left\{ (u, v) \in \mathbf{R}^2 : u \le j + |\alpha|, v \ge r'(j, \alpha) \right\} \Big), \\ \hat{V}(P) &= \left\{ (j, \alpha) \in \mathbf{N} \times \mathbf{N}^n : (j+|\alpha|, r'(j, \alpha)) \text{ is a vertex of } \Delta(P) \right\}, \\ \omega(P) &= \max\{ -r'(j, \alpha) \in \mathbf{R} : j + |\alpha| \le m \} = \omega_0(P), \\ I_{\mu}(P) &= \{ (j, \alpha) \in \mathbf{N} \times \mathbf{N}^n : -r'(j, \alpha) + \mu(j+|\alpha|) = \omega_{\mu}(P) \}. \end{split}$$

Further, the condition (A-1) is stated as follows:

(A-1) For every
$$\mu \in S(P)$$
, if $-r'(j, \alpha) + \mu(j + |\alpha|) = \omega_{\mu}(P)$, then $\alpha = 0$.

Under (A-1), there holds

(3.2)
$$\mathscr{C}_{\mu}[P](x;\lambda) = \sum_{j=0}^{m} \{b_{j,0}(t,x)t^{\omega_{\mu}(P)-\mu j}\}|_{t=0}\lambda^{j}$$
$$= \begin{cases} [t^{\omega_{\mu}(P)}e^{\lambda t^{-\mu}/\mu}P(e^{-\lambda t^{-\mu}/\mu})]|_{t=0} & (\mu > 0)\\ [t^{\omega(P)}t^{-\lambda}P(t^{\lambda})]|_{t=0} & (\mu = 0) \end{cases}$$

and the condition $(A-2; \mu)$ is stated as follows:

 $(A-2; \mu)$ If $(j, 0) \in \hat{V}(P)$ and $j \ge d_{\mu}(P)$, then $\{b_{j,0}(t, 0) t^{-r'(j,0)}\}|_{t=0} \neq 0$.

It is convenient to consider the operator in the form (3.1) rather than the form (1.1).

Remark 3.2. For $\mu \ge 0$, we can define $\mathscr{C}_{\mu}[P]$ by (3.2), even if $\mu \notin S$. If $\mu \in S$ and $\mu > 0$, then $\mathscr{C}_{\mu}[P]$ has more than one term as a polynomial of λ . If $\mu \notin S$ and $\mu > 0$, then $\mathscr{C}_{\mu}[P]$ has only one term.

The key tool for the proofs of main thorems is the following type of transformation of operators.

LEMMA 3.3. Assume that an operator P of the form (1.1) (or (3.1)) satisfies the conditions (A-0) and (A-1). Let $\mu \in S(P) \cap \mathbb{N}/q$, $\mu > 0$, and assume (A-2; μ). Let λ_1 be a simple root of $\mathscr{C}_{\mu}[P](0; \lambda) = 0$. Take a subdomain Ω' of Ω including 0 and $\lambda(x) \in \mathcal{O}(\Omega')$ so that they satisfy $\lambda(0) = \lambda_1$ and $\mathscr{C}_{\mu}[P](x; \lambda(x)) \equiv 0$ on Ω' . If we put

$$P' := \exp\left(\frac{\lambda(x)}{\mu} t^{-\mu}\right) \circ P \circ \exp\left(-\frac{\lambda(x)}{\mu} t^{-\mu}\right),$$

then P' is an operator on $[0, T] \times \Omega'$ of the form (1.1) and satisfies the following:

- (a) The operator P' satisfies (A-0) and (A-1).
- (b) $S(P') \cap (\mu, \infty) = S(P) \cap (\mu, \infty)$.
- (c) $\mathscr{C}_{\nu}[P'](x; \cdot) = \mathscr{C}_{\nu}[P](x; \cdot)$ for every $\nu > \mu$ and $x \in \Omega'$.
- (d) There holds $\mathscr{C}_{\mu}[P'](x;\lambda) = \mathscr{C}_{\mu}[P](x;\lambda+\lambda(x))$. Further, if $d_{\mu}(P) > 1$, then $\mu \in S(P')$; if $d_{\mu}(P) = 1$, then $\mu \notin S(P')$.
- (e) There exists $\mu' < \mu$ such that $\mu' \in \mathbb{N} / q$ and $S(P') \cap [0, \mu) = \{\mu'\}$.
- (f) $d_{\mu'}(P') = 1$ and P' satisfies (A-2; μ').

The upper part of the dotted line is $\Delta(P)$. The upper part of the real line is $\Delta(P')$. FIGURE 3. $\Delta(P')$ and $\Delta(P)$

(3.3)
$$\exp\left(\frac{\lambda(x)}{\mu}t^{-\mu}\right) \circ \vartheta \circ \exp\left(-\frac{\lambda(x)}{\mu}t^{-\mu}\right) = \vartheta + \lambda(x)t^{-\mu},\\ \exp\left(\frac{\lambda(x)}{\mu}t^{-\mu}\right) \circ \vartheta_x \circ \exp\left(-\frac{\lambda(x)}{\mu}t^{-\mu}\right) = \vartheta_x + \frac{-\lambda_x(x)}{\mu}t^{-\mu}.$$

From these, it is easy to see that P' is an operator of the form (3.1) and satisfies the conditions (A-0), (A-1), and (A-2; μ). It is also easy to see that there hold the conclusions (b), (c). Further, we have $\mathscr{C}_{\mu}[P'](x; \lambda) = \mathscr{C}_{\mu}[P](x; \lambda + \lambda(x))$. Since $\mathscr{C}_{\mu}[P'](x; 0) \equiv 0$ and since $(\partial_{\lambda}\mathscr{C}_{\mu}[P'])(0; 0) = (\partial_{\lambda}\mathscr{C}_{\mu}[P])(0; \lambda_{1}) \neq 0$, we have $(1,0,\ldots,0) \in \widehat{V}(P') (\subset \mathbb{N} \times \mathbb{N}^{n})$. Hence, if $d_{\mu}(P) > 1$, then $\mu \in S(P')$; if $d_{\mu}(P) = 1$, then $\mu \notin S(P')$. Further, there exists $\mu' \in \mathbb{N}/q$ such that $\mu' < \mu$, $S(P') \cap [0, \mu) = \{\mu'\}$, and $d_{\mu'}(P') = 1$. The condition (A-2; μ) and the fact that $(\partial_{\lambda}\mathscr{C}_{\mu}[P'])(0; 0) \neq 0$ imply (A-2; μ').

By an iterative use of this lemma, we have the following.

PROPOSITION 3.4. Assume that P satisfies (A-0) and (A-1). Let $\mu_0 \in S(P) \cap \mathbf{N}/q$, $\mu_0 > 0$, and assume (A-2; μ_0). Let λ_0 be a simple root of $\mathscr{C}_{\mu_0}[P](0; \lambda) = 0$. Then, there exist

- (i) $M \in \mathbf{N}$,
- (ii) $\mu[j] \in \mathbf{N} / q \ (j = 0, 1, \dots, M)$, where $\mu_0 = \mu[0] > \mu[1] > \dots > \mu[M] > 0$,
- (iii) a subdomain Ω_{M+1} of Ω including 0,
- (iv) $\lambda[j] \in \mathcal{O}(\Omega_{M+1})$ $(j = 0, 1, \dots, M)$, where $\lambda0 = \lambda_0$,

such that the operator

$$P^{(M+1)} := \exp\left(\sum_{j=0}^{M} \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]}\right) \circ P \circ \exp\left(-\sum_{j=0}^{M} \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]}\right)$$

is an operator on $[0, T] \times \Omega_{M+1}$ of the form (1.1) and satisfies the following:

- (a) The operator $P^{(M+1)}$ satisfies (A-0) and (A-1).
- (b) $S(P^{(M+1)}) \cap (\mu_0, \infty) = S(P) \cap (\mu_0, \infty).$
- (c) $\mathscr{C}_{\nu}[P^{(M+1)}](x;\cdot) = \mathscr{C}_{\nu}[P](x;\cdot)$ for every $\nu > \mu_0$ and $x \in \mathcal{Q}_{M+1}$.
- (d) There holds $\mathscr{C}_{\mu_0}[P^{(M+1)}](x;\lambda) = \mathscr{C}_{\mu_0}[P](x;\lambda+\lambda[0](x))$. If $d_{\mu_0}(P) > 1$, then $\mu_0 \in S(P^{(M+1)})$; if $d_{\mu_0}(P) = 1$, then $\mu_0 \notin S(P^{(M+1)})$.
- (e) $S(P^{(M+1)}) \cap [0, \mu_0) = \{0\}.$
- (f) $d_0(P^{(M+1)}) = 1$ and $P^{(M+1)}$ satisfies (A-2; 0).

The upper part of the dotted line is $\Delta(P) = \Delta(P^{(0)})$. The upper part of the real line is $\Delta(P^{(j)})$ $(1 \le j \le M)$. The upper part of the bold real line is $\Delta(P^{(M+1)})$.

FIGURE 4. $\Delta(P) = \Delta(P^{(0)})$ and $\Delta(P^{(M+1)}) \subset \cdots \subset \Delta(P^{(1)})$

Proof. Since λ_0 is a simple root, we can take a subdomain \mathcal{Q}_1 of \mathcal{Q} including 0 and $\lambda[0](x) \in \mathcal{O}(\mathcal{Q}_1)$ such that they satisfy $\lambda0 = \lambda_0$ and $\mathcal{C}_{\mu_0}[P](x;$ $\lambda[0](x)) \equiv 0 \text{ on } \mathcal{Q}_{1}.$ Put $P^{(0)} := P$ and $\mu[0] := \mu_{0}.$ If we put

$$P^{(1)} := \exp\left(\frac{\lambda[0](x)}{\mu[0]} t^{-\mu[0]}\right) \circ P^{(0)} \circ \exp\left(-\frac{\lambda[0](x)}{\mu[0]} t^{-\mu[0]}\right),$$

then by Lemma 3.3, the operator $P^{(1)}$ is also an operator of the form (1.1) on [0, T] $\times \Omega_1$ and satisfies the following:

(a) The operator $\boldsymbol{P}^{(1)}$ satisfies (A-0) and (A-1).

- (b) $S(P^{(1)}) \cap (\mu[0], \infty) = S(P^{(0)}) \cap (\mu[0], \infty).$
- (c) $\mathscr{C}_{\nu}[P^{(1)}](x;\cdot) = \mathscr{C}_{\nu}[P^{(0)}](x;\cdot)$ for every $\nu > \mu[0]$ and $x \in \mathcal{Q}_{1}$.
- (d) There holds $\mathscr{C}_{\mu[0]}[P^{(1)}](x;\lambda) = \mathscr{C}_{\mu[0]}[P^{(0)}](x;\lambda+\lambda[0](x))$. If $d_{\mu[0]}(P^{(0)}) > 1$, then $\mu[0] \in S(P^{(1)})$; if $d_{\mu[0]}(P^{(0)}) = 1$, then $\mu[0] \notin S(P^{(1)})$.
- (e) There exists $\mu[1] < \mu[0]$ such that $\mu[1] \in \mathbf{N}/q$ and $S(P^{(1)}) \cap [0, \mu[0]) = {\mu[1]}.$
- (f) $d_{\mu[1]}(P^{(1)}) = 1$ and $P^{(1)}$ satisfies (A-2; $\mu[1]$).

By (f), we have $\mathscr{C}_{\mu(1)}[P^{(1)}](x;\lambda) = a[1](x)\lambda - b[1](x)$ for some $a[1], b[1] \in \mathcal{O}(\Omega_1)$ with $a[1](0) \neq 0$.

If $\mu[1] = 0$, then put M = 0. Consider the case when $\mu[1] > 0$. We can take a subdomain Ω_2 of Ω_1 including 0 such that $a[1](x) \neq 0$ on Ω_2 , and hence we can take $\lambda[1] \in \mathcal{O}(\Omega_2)$ such that $\mathscr{C}_{\mu(1)}[P^{(1)}](x; \lambda[1](x)) \equiv 0$ on Ω_2 .

If we put

$$P^{(2)} := \exp\left(\frac{\lambda[1](x)}{\mu[1]} t^{-\mu[1]}\right) \circ P^{(1)} \circ \exp\left(-\frac{\lambda[1](x)}{\mu[1]} t^{-\mu[1]}\right),$$

then by Lemma 3.3 and by $d_{\mu(1)}(P^{(1)}) = 1$, the operator $P^{(2)}$ is also an operator of the form (1.1) and satisfies the following:

- (a) The operator $P^{(2)}$ satisfies (A-0) and (A-1).
- (b) $S(P^{(2)}) \cap (\mu[1], \infty) = S(P^{(1)}) \cap (\mu[1], \infty).$
- (c) $\mathscr{C}_{\nu}[P^{(2)}](x;\cdot) = \mathscr{C}_{\nu}[P^{(1)}](x;\cdot)$ for every $\nu > \mu[1]$ and $x \in \Omega_2$.
- (d) There holds $\mathscr{C}_{\mu(1)}[P^{(2)}](x;\lambda) = \mathscr{C}_{\mu(1)}[P^{(1)}](x;\lambda+\lambda[1](x)) = a[1](x)\lambda$, and $\mu[1] \notin S(P^{(2)})$.
- (e) There exists $\mu[2] < \mu[1]$ such that $\mu[2] \in \mathbb{N}/q$ and $S(P^{(2)}) \cap [0, \mu[1]] = {\mu[2]}.$
- (f) $d_{\mu[2]}(P^{(2)}) = 1$ and $P^{(2)}$ satisfies (A-2; $\mu[2]$).

We can continue this procedure unless $\mu[j] = 0$. Since $\mu[j] \in \mathbb{N}/q$ and $\mu[0] > \mu[1] > \cdots \ge 0$, we necessarily reach $\mu[M+1] = 0$.

The following lemma is used to construct each term of infinite series in asymptotic solutions.

LEMMA 3.5. Let $Q(x; \lambda) \in \mathcal{O}(\Omega)[\lambda]$ and $\Lambda \in \mathcal{O}(\Omega)$. Assume that $Q(x; \Lambda(x)) \neq 0$ on Ω . Then, we can solve the equation

(3.4)
$$Q(x;\vartheta)v = t^{A(x)} \sum_{p=0}^{L} g_p(x) (\log t)^p, \quad g_p \in \mathcal{O}(\Omega) \ (0 \le p \le L)$$

as $v = t^{A(x)} \sum_{p=0}^{L} v_p(x) (\log t)^p$, $v_p \in \mathcal{O}(\Omega) (0 \le p \le L)$.

Proof. By an easy calculation, we have

$$Q(x;\vartheta)(t^{\Lambda(x)}(\log t)^{\flat}) = \sum_{j=0}^{\flat} {\binom{\flat}{j}} (\partial_{\lambda}^{j}Q)(x;\Lambda(x)) \cdot t^{\Lambda(x)}(\log t)^{\flat-j}$$

Hence, (3.4) is equivalent to

$$Q(x; \Lambda(x)) \cdot v_{p}(x) + \sum_{j=1}^{L-p} {p+j \choose j} (\partial_{\lambda}^{j}Q)(x; \Lambda(x)) \cdot v_{p+j}(x) = g_{p}(x) \quad (p = 0, 1, ..., L).$$

 \square

Thus, by $Q(x; \Lambda(x)) \neq 0$, we can uniquely determine $v_L, v_{L-1}, \ldots, v_0$.

§4. Proof of Theorem 2.5

In this section, we prove Theorem 2.5. First, we give the existence of an asymptotic solution with no exponential factor, which corresponds to the case $\mu_0 = 0$ and M = -1 in Theorem 2.5. Although we use only the case when $\deg_{\lambda} \mathscr{C}_0[P] = 1$ in the proof of main theorems, this proposition has its own value.

PROPOSITION 4.1. Assume that P satisfies (A-0), (A-1), and (A-2; 0). Let $\lambda(x) \in \mathcal{O}(\Omega_0)$ satisfy

- (i) $\mathscr{C}_0[P](x;\lambda(x)) \equiv 0$ on Ω_0 ,
- (ii) $\mathscr{C}_0[P](x;\lambda(x)+l/q) \neq 0 \text{ on } \Omega_0 \text{ for } l \in \mathbb{N} \setminus \{0\},$

for some subdomain Ω_0 of Ω including 0. Then, for an arbitrarily given $v_{0,0}(x) \in \mathcal{O}(\Omega_0)$, there exist $v_{l,p}(x) \in \mathcal{O}(\Omega_0)$ $(l \ge 0; 0 \le p \le lm)$ such that

(4.1)
$$u(t, x) := t^{\lambda(x)} \cdot \sum_{l=0}^{\infty} t^{l/q} \sum_{p=0}^{lm} (\log t)^p v_{l,p}(x)$$

is an asymptotic solution of Pu = 0. That is

$$t^{-\lambda(x)} P\Big(t^{\lambda(x)} \cdot \sum_{l=0}^{N} t^{l/q} \sum_{p=0}^{lm} (\log t)^{p} v_{l,p}(x)\Big) = o(t^{N/q - \omega(P)}),$$

for every $N \in \mathbf{N}$.

Proof. We can formally expand P with respect to t as

$$P = t^{-\omega} \Big(\mathscr{C}_0[P](x;\vartheta) + \sum_{h=1}^{\infty} B_h(x,\partial_x;\vartheta) t^{h/q} \Big)$$

where $B_h(x, \partial_x; \theta) = \sum_{j+|\alpha| \le m} b_{h,j,\alpha}(x) \partial_x^{\alpha} \theta^j$ with $b_{h,j,\alpha} \in \mathcal{O}(\Omega)$ and $\omega := \omega(P)$. Hence, we have only to find $v_{l,p}$ that satisfy

$$\mathscr{C}_{0}[P](x;\vartheta)\left(t^{\lambda(x)+l/q}\sum_{\substack{p=0\\p\neq=0}}^{lm}(\log t)^{p}v_{l,p}(x)\right)$$

= $-\sum_{h=0}^{l-1}B_{l-h}(x,\partial_{x};\vartheta)\left(t^{\lambda(x)+l/q}\sum_{\substack{p=0\\p\neq=0}}^{hm}(\log t)^{p}v_{h,p}(x)\right) \ (l \in \mathbf{N}).$

Since

$$\begin{split} \mathscr{C}_{0}[P](x;\vartheta)(t^{\lambda(x)}v_{0,0}(x)) &= \mathscr{C}_{0}[P](x;\lambda(x)) \cdot t^{\lambda(x)}v_{0,0}(x) \equiv 0, \\ \partial_{x}(t^{\lambda(x)+l/q}(\log t)^{p}v(x)) \\ &= t^{\lambda(x)+l/q}(\log t)^{p}(\partial_{x}v)(x) + t^{\lambda(x)+l/q}(\log t)^{p+1}(\partial_{x}\lambda)(x)v(x), \end{split}$$

and since

$$\mathscr{C}_0[P](x;\lambda(x)+l/q) \neq 0 \ (l \ge 1) \quad \text{on } \mathcal{Q}_0$$

we can get $v_{l,p}$ with an arbitrarily given $v_{0,0}$ by applying Lemma 3.5.

Proof of Theorem 2.5. We can apply Proposition 3.4 to P. By (f) of the proposition, we have

$$\mathscr{C}_{0}[P^{(M+1)}](x;\lambda) = a[M+1](x)\lambda - b[M+1](x)$$

for some a[M+1], $b[M+1] \in \mathcal{O}(\mathcal{Q}_{M+1})$ with $a[M+1](0) \neq 0$. Hence, we can take a subdomain Ω_0 of Ω_{M+1} including 0 such that $a[M+1](x) \neq 0$ on Ω_0 . We can take $\lambda[M+1] \in \mathcal{O}(\Omega_0)$ such that $\mathcal{C}_0[P^{(M+1)}](x; \lambda[M+1](x)) \equiv 0$ and $\mathscr{C}_0[P^{(M+1)}](x; \lambda[M+1](x) + l/q) \neq 0 \text{ on } \Omega_0 \text{ for } l \in \mathbf{N} \setminus \{0\}.$ By applying Proposition 4.1 to $P^{(M+1)}$, we can construct an asymptotic solu-

tion

(4.2)
$$v = t^{\lambda[M+1](x)} \cdot \sum_{l=0}^{\infty} t^{l/q} \sum_{p=0}^{lm} (\log t)^p v_{l,p}(x)$$

of $P^{(M+1)}v = 0$ for an arbitrarily given $v_{0,0} \in \mathscr{O}(\Omega_0)$.

Thus, the proof of Theorem 2.5 is completed.

 \square

§5. Proof of Theorems 2.8 and 2.9

In this section, we prove Theorems 2.8 and 2.9.

- First, we introduce another condition (A-3).
- (A-3) If $\mu \in S(P)$ and $\mu > 0$, then all the non-zero roots λ of $\mathscr{C}_{\mu}[P](0; \lambda) = 0$ satisfy Re $\lambda < 0$.

From the results in [3], we easily get the following theorem, which shall be used later.

THEOREM 5.1. Assume the conditions (A-0), (A-1), (A-2; 0), and (A-3). Then, there exist $N_0 \in \mathbf{N}$, $T_0 > 0$, and a domain Ω_0 including 0 for which the following holds:

(1) For every $N \ge N_0$ and every $f \in C_{flat}^{N-\omega(P)}([0, T]; \mathcal{O}(\Omega))$, there exists a unique $u \in C_{flat}^N([0, T_0]; \mathcal{O}(\Omega_0))$ such that Pu = f on $[0, T_0] \times \Omega_0$.

(2) If $u \in t^{N_0} \times C^0([0, T]; \mathcal{D}'(\Omega \cap \mathbf{R}^n))$ and Pu = 0 for t > 0 in a neighborhood of (0,0), then u = 0 for t > 0 in a neighborhood of (0,0). Especially, there exists no sufficiently smooth null-solution for P at (0,0).

In (2) of this theorem, the domain where u = 0 may depend not only on the domain where Pu = 0 but also on u itself. As for solutions in $C^{0}([0, T]; C^{0}(\Omega \cap \mathbf{R}^{n}))$, however, we can show the existence of a common domain of uniqueness, by a standard argument as follows.

COROLLARY 5.2. Assume the same assumptions as in the theorem above. Then there exists $N_0 \in \mathbf{N}$ such that for every $T' \in (0, T)$ and every open neighborhood U'of $0 \in \mathbf{R}^n$, there exist $T'' \in (0, T')$ and an open neighborhood U'' of 0 for which the following holds. If $u \in t^{N_0} \times C^0([0, T]; C^0(\Omega \cap \mathbf{R}^n))$ and Pu = 0 on $(0, T') \times U'$, then u = 0 on $(0, T'') \times U''$.

Proof. Put $K := \{u \in t^{N_0} \times C^0([0, T]; C^0(\mathcal{Q} \cap \mathbb{R}^n)) : Pu = 0 \text{ on } (0, T') \times U'\}$. This is a closed subspace of a Fréchet space $t^{N_0} \times C^0([0, T]; C^0(\mathcal{Q} \cap \mathbb{R}^n))$, and hence it is also a Fréchet space. Let $\{T_n\}_{n \in N}$ be a decreasing sequence of positive real numbers converging to 0 and let $\{U_n\}_{n \in N}$ be a fundamental system of open neighborhoods of 0. Put $L_n := \{u \in K : u = 0 \text{ on } (0, T_n) \times U_n\}$, which are closed subspaces of K. By Theorem 5.1-(2), there holds $K = \bigcup_{n=0}^{\infty} L_n$. Since a Fréchet space is a Baire space, there exists an n such that L_n has an inner point, that is $L_n = K$.

Now, we give a proof of Theorem 2.8.

Proof of Theorem 2.8. We may assume that $\mu_0 \in \mathbf{N}/q$ without loss of generality, and we can apply Proposition 3.4 to P. The operator $P^{(M+1)}$ satisfies (A-0), (A-1) and (A-2; 0). By the assumption (A-6; μ_0) for P and by the conditions (c), (d), (e) in Proposition 3.4, the operator $P^{(M+1)}$ satisfies (A-3). Further, as we have shown in the proof of Theorem 2.5, the operator $P^{(M+1)}$ has a formal solution (4.2) with $v_{0,0} \equiv 1$.

If we put

$$v_N := t^{\lambda[M+1](x)} \cdot \sum_{l=0}^{qN} t^{l/q} \sum_{p=0}^{lm} (\log t)^p v_{l,p}(x)$$

and $g_N := P^{(M+1)}(v_N)$ for sufficiently large $N \in \mathbf{N}$, then we have

$$g_N \in C^{N-r_0}_{flat}([0, T]; \mathcal{O}(\Omega_0))$$

where Ω_0 is a subdomain of Ω including 0 and $r_0 \in \mathbf{N}$, both independent of N. By Theorem 5.1, we get $w_N \in C_{flat}^{N+\omega(P^{(M+1)})-r_0}([0, T_0]; \mathcal{O}(\Omega'_0))$ such that $P^{(M+1)}(w_N) =$ $-g_N$, where $T_0 > 0$ and Ω'_0 is a subdomain of Ω_0 including 0. Thus, $v := v_N + w_N$ satisfies $P^{(M+1)}(v) = 0$ and $t^{-\lambda(M+1)(x)}v(t, x) \to 1(t \to +0)$. Note that Corollary 5.2 implies that v is independent of N for sufficiently large N in a neighborhood of (0,0).

Since Re $\lambda0 > 0$ by the assumption, we can easily show that

$$u(t, x) := \exp \left(-\sum_{j=0}^{M} \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]} \right) \cdot v(t, x)$$

belongs to $C^{\infty}_{flat}([0, T_0]; \mathcal{O}(\Omega'_0))$. Thus, u is a C^{∞} null-solution for P.

Next, we give a proof of Theorem 2.9.

Proof of Theorem 2.9. If we take δ' as $\delta > \delta' > \operatorname{Re}\lambda_0$, and if we put $v := \exp(\delta' t^{-\mu_0}/\mu_0)u$, then we have $v \in t^N \times C^0([0, T]; \mathcal{D}'(\Omega_0 \cap \mathbf{R}^n))$ for every $N \in \mathbf{N}$ with some domain Ω_0 and T > 0. We also have

$$0 = P\left(\exp\left(-\frac{\delta'}{\mu_0}t^{-\mu_0}\right)v\right) = \exp\left(-\frac{\delta'}{\mu_0}t^{-\mu_0}\right)\tilde{P}v,$$

that is, $\tilde{P} v = 0$, where $\tilde{P} := \exp(\delta' t^{-\mu_0}/\mu_0) \circ P \circ \exp(-\delta' t^{-\mu_0}/\mu_0)$. We have only to show that v = 0 for t > 0 in a neighborhood of (0,0).

By an argument similar to and easier than that in the proof of Lemma 3.3, the

operator $ilde{P}$ is an operator of the form (1.1) and satisfies the following:

- (a) The operator \tilde{P} satisfies (A-0), (A-1), and (A-2; μ_0).
- (b) $S(\tilde{P}) \cap (\mu_0, \infty) = S(P) \cap (\mu_0, \infty)$.
- (c) $\mathscr{C}_{\nu}[\tilde{P}](x;\cdot) = \mathscr{C}_{\nu}[P](x;\cdot)$ for every $\nu > \mu_0$ and $x \in \Omega_0$.
- (d) $\mathscr{C}_{\mu_0}[\tilde{P}](x;\lambda) = \mathscr{C}_{\mu_0}[P](x;\lambda + \delta').$
- (e) $S(\tilde{P}) \cap [0, \mu_0] = {\{\mu_0\}}.$

By (d) and the condition $(A-6; \mu_0)$ for P, all the roots λ of $\mathscr{C}_{\mu_0}[\tilde{P}](0; \lambda) = 0$ satisfy $\operatorname{Re} \lambda < 0$. This and the conditions (c), (e) imply that the operator \tilde{P} satisfies (A-3). Further, also by (d), we have $\mathscr{C}_{\mu_0}[\tilde{P}](0; 0) \neq 0$. This and the assumption (A-2; μ_0) imply (A-2; 0). Thus, we can apply Theorem 5.1 to \tilde{P} , and hence, we have v = 0 for t > 0 in a neighborhood of (0,0).

REFERENCES

- Baouendi, M. S. and Goulaouic, C., Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math. 26 (1973), 455-475.
- [2] —, Cauchy problems with multiple characteristics in spaces of regular distributions, Russian Math. Surveys 29 (1974), 72-78.
- [3] Mandai, T., Characteristic Cauchy problems for some non-Fuchsian partial differential operators, J. Math. Soc. Japan 45 (1993), 511-545.
- [4] —, Distribution null-solutions for a class of non-Fuchsian partial differential operators, in preparation.

Department of Mathematics Faculty of General Education Gifu University Yanagido 1-1, Gifu 501-11 Japan

E-mail address: mandai@cc.gifu-u.ac.jp