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A CONSTRUCTION OF ASYMPTOTIC SOLUTIONS

AND THE EXISTENCE OF

SMOOTH NULL-SOLUTIONS

FOR A CLASS OF

NON-FUCHSIAN PARTIAL DIFFERENTIAL OPERATORS

TAKESHI MANDAI

§1. Introduction

Consider a partial differential operator

(1.1) P= Σ aja(t,x)dJ

td", am0(t,x)=tκ,
j+\a\<m

where K is a non-negative integer and aia are real-analytic in a neighborhood of

(0,0) €= R, x R*
M. S. Baouendi and C. Goulaouic [1] defined Fuchsian partial differential oper-

ators, and proved the unique solvability of the characteristic Cauchy problems in
the category of real-analytic (or holomorphic) functions, which is a generalization
of the classical Cauchy-Kowalevsky theorem. They also proved a generalization of
the Holmgren uniqueness theorem. Especially, from their results it easily follows
that if P is a Fuchsian operator with real-analytic coefficients, then there exist no
sufficiently smooth null-solutions. Here, a Schwartz distribution u in a neighbor-
hood of (0,0) is called a null-solution for P at (0,0), if Pu = 0 in a neighborhood of
(0,0) and (0,0) e supp u c {t > 0}, where supp u denotes the support of u.

The author considered the characteristic Cauchy problems for a class of oper-
ators wider than the Fuchsian operators in [3]. In that result, he showed the
unique solvability of the characteristic Cauchy problems in the category of func-
tions which are of class C°° with respect to t and real-analytic with respect to x.

He also showed the non-existence of sufficiently smooth null-solutions. (As for
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126 TAKESHI MANDAI

distribution null-solutions, see [4]). This class of operators is defined in terms of

four conditions. He gave a conjecture that if the third condition is violated, then

there exists a C°° null-solution.

In this article, we construct an asymptotic solution of Pu = 0 in the form

oo im

( 1 . 2 ) w ( f , x ) . = e x p l - Σ — Γ T Ϊ — t l t Σ / Σ ( l o g 0 # / * ( # ) ,
\ ; = o MLyJ ' /=o ρ=o

where

(i) M is a non-negative integer, and q is a positive integer,

(ii) μt/ΊO' = 0,1, . . . , M) are positive rational numbers such that μ[0] >

(iii) λ[j] (j = 0,1, . . . , M + 1) and ^ (/ > 0 0 < p < Im) are real-

analytic in a fixed open neighborhood of 0 ^ Rw,

for a class of operators wider than that considered in [3].

Further, using these asymptotic solutions, we prove the conjecture in [3] men-

tioned above under an additional assumption. The C°° null-solution constructed

here is one of the most fastly decaying nontrivial solutions of Pu — 0.

In Section 2, we give the statements of the main theorems. After giving some

preliminaries in Section 3, we prove the main theorems in Sections 4 and 5.

NOTATIONS:

(i) The set of all integers (resp. nonnegative integers) is denoted by Z (resp.

N). Put Ή/q = {p/q :p e N} for a positive integer q, and put Z/q simi-

larly.

(ii) Put & : = tdt.

(iii) For a bounded domain Ω in C", we denote by Θ{Ω) the set of all holo-

morphic functions on Ω.

(iv) The space of the Schwartz distributions on U is denoted by $)'(U).

(v) For a complete locally convex topological vector space E, put

O [ 0 , T];E):= { /EC"([0 ,71;£)

: — = Ofor 0 <j < N- 1}.
dtJ t=o

(vi) Put (λ)j : = Π^ljQ - /) for λ e C and e N.

(vii) For a commutative ring i?, the ring of polynomials of λ with the coeffi-

cients belonging to R is denoted by i?[/ί]. The degree of F ^ R[λ] is de-

noted by degλ F.
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§2. Statement of the main result

Let q be a positive integer, Ω be a bounded domain in C that includes the

origin 0, and T be a positive real number. Consider a linear partial differential

operator of the form (1.1). We assume only the following weaker condition on the

coefficients.

(A-0) ajta e ^ ( [ 0 , 71 Θ(Ω)) (j+\a\£m),

where

^ ( [ 0 , 71 0(Ω)) : = {0 e C°°((0, 71 Θ{Ω))

, 71 0 ( β ) ) : = {0 e= £Γ((0, 7]

* ^ ( [ 0 , 71 U(Ω)) for some M e N}.

Let r(/\ ^) be the generalized vanishing order of α ; α on the hypersurface

Σ : = {(0, x) :x<Ξ Ω}, that is

(2.1) r(j, a) : = supί r e Z / ? : t~raUa e ^ ( [ 0 , 71 β ( β ) ) } .

If r(;, α) = °°, then we redefine r(j, a) '= R for a sufficiently large i? (R ' =

maχ{r(;, α) : r( j , α) < °o} + 1 will suffice). Put

(2.2) α,ιβ(f, x) : = Γ r y β )fl λ β(ί, x) ( e ^ ( [ 0 , 71 0 ( β ) ) ) .

Note that if r(/', a) < R, then flΛίr(0, x) * 0.

Associating a weight ω(j, a) •= j — r(j, a) to each differential monomial

aja(t, x)dJ

tdχ, we draw a Newton polygon Zl(P) using the points (j' + | α |, —

<̂ >0, <̂ )) (/ " H # I ^ vn) in (w, f)-plane as follows.

DEFINITION 2.1 ([3]). (1) Put

Δ(P) : = cή( U {(M, ί ; ) e R 2 : w < j + | o ; | , ί ; > - ω(;, α ) » ,

where c/z(i4) denotes the convex hull of A This is called the Newton polygon of P.
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" lower sides

FIGURE 1. Newton polygon of P : Δ(P)

(2) Put

V= V(P) : = {(/, α) €ΞN x N * : ( / ' + k l , ~ ω(/\ α)) is a vertex of

(3) Put

ω = ω(P) •= maχ{ω(/, : ; + I ct\ m),

which is the maximum weight of P.

(4) The boundary of Δ(P) Π ([0, oo) x R) i s the union of two vertical half-lines

and a finite number of compact line segments with distinct slopes. Each of these

compact line segments is called a lower side of Δ(P). The set of the slopes of the

lower sides of Δ(P) is denoted by 5 = S(P)(c: Q). For μ ^ S(P), the lower side

of Δ(P) with slope μ is denoted by Lu = Lβ(P). Put

Iμ = Iu(P) := {(/',«) eNxN":0' + kl, - ω(/\ α)) e l ^ } .

Let the right end points of LU(P) be (uv vx). We put dβ(P) '-= uυ and call it

the degree of the slope μ.

If 0 £ S, we put L 0(P) : = {(0, - ω(0,0))} = {(0, - ω(P))} c R2, 70(P)

: = {(0,0)} c N x Nw, and rfo(P) : = 0.

By the use of these notions, Fuchsian operators in the sense of M. S. Baouendi

and C. Goulaouic [1] are characterized as follows. (In fact, they assumed that the
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coefficients belong to Cm([0, T\ Θ(Ω)). This difference is, however, not essential

and hence we ignore the difference of the classes of coefficients.)

PROPOSITION 2.2. The operator P is Fuchsian if and only if ω(P) > 0, S(P) =

{0}, and there exist no (j, a) ^ / 0 ^ su°h

We consider a class of operators wider than the class of Fuchsian operators.

First, we assume the following condition.

(A-l) For all μ e S(P), there exist no (j, a) e Iu(P) such that a Φ 0.

DEFINITION 2.3. For μ e S(P) with μ > 0, we put

We also put

;λ) := Σ δ,0(0,*U'
(;,0>eJfl(P)

X) : = Σ δ y o(O,
(;,0)e/0(P)

The polynomial ^UIP] of /ί is called the indicial polynomial of P associated with the

slope μ e S(P) U {0}. Note that du(P) = deg^ ^ [ P ] .

For ^ G S(P) U {0}, we consider the following condition.

(A-2;^) If 0', 0) <= F(P) and; > du(P), then <ϊΛ0(0,0) Φ 0.

This is equivalent to the following.

(A-2;//) For every y ^ 5(P) with v > μ, the coefficient of the top order

term of # J P ] Cr /?) e ^(fl) [X] does not vanish at x = 0.

2.4. Note that if 0', 0) e F(P), then α>f0(0, x) * 0. Thus, the condi-

tion (A-2; μ) is a kind of non-degeneracy at x = 0. Further, the condition (A-2; μ)

for μ > 0 is weaker than the condition (A-2; 0), and (A-2;0) is equivalent to

(A-2) in [3].

Now, the following is one of the three main theorems in this article.

THEOREM 2.5. Assume that P satisfies (A-0) and (A-l). Let μQ e S(P) Π N/q,

μQ > 0, αwrf assume the condition (A-2; μ0). ///ί0 t5 α simple root of Ήμ[P] (0; λ) —

0, then there exist

(i) IGN,
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(ii) μ{j] *ΞH/q(j= 0,1,...,M), where μo = μ[O] > μ[l] > ••• > μ[Ml > 0,

(iii) a subdomain ΩQ of Ω including 0,

(iv) λ\J] tΞΘ(Ω0) (j = OX..., M + 1), where λ[0](0) = λ0,

such that the following holds.

For an arbitrarily given vOQ(x) e O(ΩQ), there exists vιp(x) <Ξ Θ(Ω0) (/ > 0; 0

< p < Im) such that a formal series

( 2 . 3 ) u ( t , x) ' = e x p - Σ rΊ t l f Σ ί

is an asymptotic solution of Pu = 0. 77ιa£ is, /or every N ^ N f/î re /ιo/<is

( 2 4 )

x tλlM+1]ω . Σ ί/7ί Σ
/=0 p=0

with some r0 €= N.

This theorem shall be proved in Section 4. We shall also give a proposition

which corresponds to the case of μ0 = 0 and M = — 1.

Remark 2.6. Even if μ0 ^ S(P) but ^ 0 ^ N/#, we can retake another q such

that μ0 ^ N/q and (A-0) is satisfied. Hence, we can always apply this theorem

with this new q.

Next, we consider the following condition for μ ^ S(P).

(A-6; μ) If v e S(P) and v > ^, then all non-zero roots ^ of ^ [ P ] (0; >ί) =

0 satisfy Re λ < 0. Further, there exists λ0 ^ C which satisfies the

following.

(i). Re Λo > 0,

(ii) λ0 is a simple root of ίί^LPKO; /0 = 0 and the other roots λ

satisfy Re λ < Re λQ.

Remark 2.7. In this section, we define only the conditions (A-0), (A-l),

(A-2; μ), and (A-6;^). This apparently strange numbering is for the consistency

with [3]. We shall introduce another condition (A-3) in Section 5.

Using the theorem above, we can show the existence theorem of smooth

null-solutions, which is the second of the main theorems.
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THEOREM 2.8. Assume the conditions (A-0), (A-l), (A-2;μ0), and (A-6;μ0) for

some μ0 e S(P) with μ0 > 0. Then, P has a C°° null-solution at (0,0).

The C°° null-solution given in this theorem is one of the most fastly decaying

nontrivial solutions as t~^ + 0. In fact, we have the following theorem, which is

the last of the main theorems.

THEOREM 2.9. Assume the conditions (A-0), (A-l), (A-2; μ0), and (A-6; μQ) for

some μ0 G S(P) with μ0 > 0. Assume that u is a C solution of Pu — 0 for t > 0. If

there exist δ > Re λ0 and Co > 0 such that the inequality

\u(t, x ) | <

holds for t > 0 in a neighborhood of (0,0), then u = 0 for t > 0 in a neighborhood of

(0,0).

Theorems 2.8 and 2.9 shall be proved in Section 5.

Finally, let us consider a typical example.

EXAMPLE 2.10. First, we consider the following ordinary differential oper-

ator decomposed into first order operators.

Po := td(tkl$ ~ λ^t, x))- {tkr$ - λr(t, x)) (dt - λr+1(t, x))- (dt - λjt, x)),

where tn, r, d e N, 0 < r < tn, kj e N ( l < < r) and λj9 λt e C°°([0, 71

Θ(Ω)) (1 < j < r r + 1 < / < m). Assume that ^ ( 0 , x) Φ 0 (1 < < r) and

Ai > k2 > ' '' > kr > 0. For this operator, S(P0) = {kv..., kr, 0} if r < m, and

S(P0) = {kίt. . ., km} if r = m. The condition (A-l) is trivially satisfied, and the

condition (A-2;μ) is " if k} > μ then /}; (0, 0) Φ 0". We can also show that

%U[PO] (x;λ)= Π ( - Λ ;(0, x)) Π (λ - λj(O, x))

for // e S(Po) with μ> 0, where /z(μ) is the number of /c/s that satisfy /ĉ  < μ.

Thus, the condition (A-6; μ0) for μ0 > 0 is the following.

If /c; > μ0 then Re ̂ ( 0 , 0) < 0. Further, there exists j 0 such that

(i) kJo = μ0,

(ii) Re^ ; o(O, 0) > 0 ,

(iii) If kj = μ0 and j Φ j 0 , then Re Λy(0, 0) < Re ̂ o (O, 0).

Next, we consider a partial differential operator. Put μ ; •= 0 (1 < j < m, —

r) and μm_ r + ; •= / c r + w (1 < < r). Also put ω ; : = rf + Σ / = i μt (0 < j <m).

Consider an operator
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m

P = P0+Σtω'+1Bj(t,x;d,dx),

where Bj(t, x £, dx) = Σ, α ,< ; bjιa(t, x)d^~lal and bj>a e C°°([0, 71

Then, P satisfies the condition (A-l), and there hold Δ(P) = Δ(P0), S(P) =

S(P0), %μ[P] = ^ [ P o ] (See Lemma 3.1.) Hence, P satisfies the condition (A-2;

μ0) (resp. (A-6; μ0)), if and only if Po satisfies (A-2; μ0) (resp. (A-6; μ0)).

§3. Preliminaries

In this section, we give some preliminaries for the proofs of the main

theorems.

Let P be an operator (1.1) satisfying (A-0). By tJd[ = £(£ - 1). . . G9 - + 1)

= ($) ; , we can easily show the following lemma, which is useful in our arguments.

LEMMA 3.1. We can rewrite P as

(3.1) P= Σ bja(t,x)$da

x,
j+\a\<m

with bja €= ̂ ( [ 0 , T\ ;Θ(Ω)). For this bja, we define the generalized vanishing

order

r'(j, a) : = supίr e Z/q : Γ\a e ^ ( [ 0 , 71 Θ(Ω))}.

For μ > 0, we put ωu(P) ' = max{— r'(j, a) + μ(j + | α |) :/ + | α | < m). Then,

we have

Δ(P) = ch( U {(«, v) *ΞR2:u<j+\a\,v> r'(j, a)}),
Ί+\a\<m '

V(P) = {(j, a) e N x N w : 0' + I α I, r'(j, a)) is a vertex ofΔ(P)}t

ω(P) = max{- r'(j, a) e R : ; + | a \ < m} = ωo(P),

Iβ(P) = {(j,a) ^ N x rfi-r'ij.a) +μ(j+\a\) =ωu(P)}.

Further, the condition (A-l) is stated as follows :

(A-l) For every μ G 5(P), if - r'(j, a) + μ(j + | a |) = ω^ίP), tfwn α = 0.

Under (A-l), there holds

(3.2) «W[P] ( r Λ) = Σ {&; oC x)*'"'0''""'} L=o λ'
j 0
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and the condition (A-2; μ) is stated as follows:

(A-2; μ) If (j, 0) and j > du(P), then {bjt0(t, 0)t r 3> Ί \t=0 Φ 0.

It is convenient to consider the operator in the form (3.1) rather than the

form (1.1).

Δ(P)

FIGURE 2. ωu{P)

Remark 3.2. For μ > 0, we can define ^ [ P ] by (3.2), even if μ <έ S. If

μ G S and μ > 0, then ^ [ P ] has more than one term as a polynomial of λ. lί μ &

S and μ> 0, then ^ [ P ] has only one term.

The key tool for the proofs of main thorems is the following type of trans-

formation of operators.

LEMMA 3.3. Assume that an operator P of the form (1.1) (or (3.1)) satisfies the

conditions (A-0) and (A-l). Let μ ^ S(P) Π N / # , μ > 0, and assume (A-2;μ). L<?ί

^! 6̂  a simple root of %>U[P] (0; λ) = 0. Tα/?e α subdomain Ωf of Ω including 0 and

/ίCr) e Θ(Ω') so that they satisfy λ(0) = λx and %\YP\ (x λ(x)) = 0 on Ωr. If we

put
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u) ° P ° exp( —

then P' is an operator on [0, 71 X Ωr of the form (1.1) and satisfies the following'.

(a) Tfo operator P ' satisfies (A-0) and (A-l).

(b) S ( P O n (μ, oo) = s(P) n (μ, «>).

(c) ^ J P I (x •) = ^ [ P ] (x •) for every v > μ and x e fl'.

(d) ΓΛβre ΛoWs ^ [ P Ί ( x λ) = %β[P] (x;λ + λ(x)). Further, if du(P) > 1,

thenμ e S(P') i / d / P ) = 1, fftenμ ^ 5 ( P 0 .

(e) T/ι^ ^i5ί5 ^ < μ such that μ' ^N/q and S(P0 Π [0, //) = {μ'}.

(f) d^(P0 = 1 and Pr satisfies (A-2; //).

The upper part of the dotted line is Δ(P).

The upper part of the real line is Δ(P').

FIGURE 3. Δ(P') and Δ(P)

Proof First, note that
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(λ{x) Λ ( λ(x) Λ u

expl 1 1 ° & ° expl 1 I = # + ΛCz)ί ,
\ μ I \ μ I

From these, it is easy to see that Pf is an operator of the form (3.1) and satisfies

the conditions (A-0), (A-l), and (A-2;μ). It is also easy to see that there hold the

conclusions (b), (c). Further, we have ^[P ' ]Cr λ) = %u[P](x;λ + λ(x)). Since

^ [ P Ί C r O) = 0 and since ( 9 ^ [ P 1 ) ( 0 ; 0) = (dββ[P]) (0; λj Φ 0, we have

(1,0, . . . , 0) €= V(Pf) ( c N x Nw). Hence, if du(P) > 1, then μ e S(P0 if

d^(P) = 1, then μ £ S(P0. Further, there exists μ' ^ Ή/q such that μ" < μ,

S(P0 Π [0, μ) = {//}, and rf^(P0 = 1. The condition (A-2;μ) and the fact that

( 9 ^ [ P ' ] ) ( 0 ; 0) =£ 0 imply (A-2; μ') •

By an iterative use of this lemma, we have the following.

PROPOSITION 3.4. Assume that P satisfies (A-0) and (A-l). Let μ0 e 5(P) Π

N/^, μ0 > 0, and assume (A-2;μ0). L ί̂ /ί0 6β α simple root of ^ Q [ P ] ( 0 ; λ) = 0.

Then, there exist

(i) M e N ,

(ii) μ[;] e N/? 0 = 0A, . .,Λί), whereμo = μ[0] > μ[l] > > μ[M] > 0,

(iii) α subdomain ΩM+1 of Ω including 0,

(iv) /i[;] G Θ(ΩM+1) (j = 0 , 1 , . . . , M)

such that the operator

e x p i ' ) p e x p l ά f

is an operator on [0, 7] X ΩM+1 of the form (1.1) and satisfies the following:

(a) The operator P satisfies (A-0) and (A-l) .

(b) 5 ( P < M + 1 ) ) Π (μ0, oo) = S{P) ίΊ (μ0, co).

(c) ^ [ P < M + 1 > ] (x •) = #„[/»] (x •) /or βv«y y > f

(d) TΛere holds <SUo[Pm+υ] (x X) = ^ J P ] (x λ + λ[0] (x)) . // ^ 0 ( P ) > 1,
( M 1 ) ° < Λ ί + 1 )S ( P < Λ ί + 1 ) ) .

(e) S(P(M+1)) ΓΊ [0, jMo) = {0}.

(f) do(Pm+ϊ)) = 1 and P < Λ ί + 1 > sαίts/ϊes (A-2; 0).
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The upper part of the dotted line is Δ(P) = Δ(P(0)).

The upper part of the real line is Δ(Pω) (1 < j < M).

The upper part of the bold real line is Δ(P(M+1)).

FIGURE 4. Δ(P) = Δ(P(0)) and Δ(P(M+1)) c

Proo/. Since Λo is a simple root, we can take a subdomain Ωγ of β including

0 and λ[0](x) e ^ ( β x ) such that they satisfy / i [ 0 ] ( 0 ) = ^ 0 and ^ 0 L P ] C r ;

(o> :Put P ( o > : = P and ^[0] : = μ0. If we put

'">

λίθ](x) ._,

-,(1)
then by Lemma 3.3, the operator P is also an operator of the form (1.1) on [0, 7]

X Ωλ and satisfies the following:

(a) The operator P satisfies (A-0) and (A-l).
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(b) S(P ) Π (μ[OJ, oo) = S(P ) Π (μ[OJ, oo).

(c) ^ v [ P α ) ] (x ) = ^ J P ( 0 ) ] (x;-) for every v > μ[0] and x e Ωv

(d) There holds ^ [ 0 ] [ P ω ] (^ ^) = ^ [ 0 ] [ P ( 0 ) ] (x >ί + >ί[0] (x)). If ^ [ 0 ] ( P ( 0 ) )

> 1, then μ[0] e S(P ( 1 ) ); if dm{Pi0)) = 1, then μ[0] ^ S ( P α ) ) .

(e) There exists μ[l] < μ[0] such that μ[l] ^N/q and 5 ( P α ) ) Π [0,

μ[0]) = iμ[l]}.

(f) du[1](Pa)) = 1 and P ( 1 ) satisfies (A-2;μ[l]).

By (f), we have <gu[1][Pω] (x X) = a[ϊ\(x)λ - b[ϊ](x) for some a[ϊ], b[l] e

Θ(ΩX) with α[l](0) ^ 0.

If μ[ l ] = 0, then put M = 0. Consider the case when μίl] > 0. We can take

a subdomain Ω2 of β χ including 0 such that ail] (x) Φ 0 on Ω2, and hence we can

take λίl] e 0 ( β 2 ) such that ^ U ] [ P ( 1 > ] (x >ί[l] (x)) = 0 on fl2.

If we put

( 2 ) . (λ[l](x) Λ-u[1]\ (1)

then by Lemma 3.3 and by dβ[1](P ) = 1, the operator P is also an operator of

the form (1.1) and satisfies the following:

(a) The operator P ( 2 ) satisfies (A-0) and (A-l).

(b) SCP ( 2 ) ) n (μ[ϊ\, oo) = s(pa)) n (^[i], oo).

every v > μίl] and x e fl2.(c) %V[P(2)] (x ) = %v[Pω] (x ) for every v > μίl] and x e fl2.

(d) There holds ^ f l ] [ P ( 2 ) ] (x ^) = ^ f l ] [ P α ) ] ( x ^ + λ[l] (x)) =

a n d μ t l ] ^ 5 ( P ( 2 ) ) .

(e) There exists μ[2] < μ[l] such that //[2] e N / ? and 5(P ( 2 ) ) Π [0,

(f) ^ [ 2 ] ( P ( 2 ) ) = 1 and P ( 2 ) satisfies (A-2;μ[2]).

We can continue this procedure unless μ[j] = 0. Since μ[j] ^t$/q and

μ[0] > μίl] > * > 0, we necessarily reach μ[M + 1] = 0. D

The following lemma is used to construct each term of infinite series in

asymptotic solutions.

LEMMA 3.5. Let Q{x λ) e C(Ω) [λ] and Λ^Θ(Ω). Assume that Q(x

Λ(x)) Φ 0 on Ω. Then, we can solve the equation

tMx)(3.4) Q(x ;$)υ = tMx) Σ gp{x)(log t)p, gt e ί?(fl) (0 < p < L)
p=0
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as v = tMx) Σ»=o υp{x) (log t)p, υp e 0(Ω) (0<p<L).

Proof By an easy calculation, we have

Q(x;8)(tΛM(\ogtΫ) = Σ(P) (d'λQ)(x;Λ(x)) tΛ<x)(\og i)p~'.

Hence, (3.4) is equivalent to

Q(x;Λ(x)) vp(x)

+ Σ? ( P + J ) (dίQ)(x ;Λ(x)) vp+!(x) = gp(x) (p = 0 , 1 , . . . , L).

Thus, by Q(x ;Λ(x)) Φ 0, we can uniquely determine vu vL_lf..., v0. Π

§4. Proof of Theorem 2.5

In this section, we prove Theorem 2.5. First, we give the existence of an

asymptotic solution with no exponential factor, which corresponds to the case

μo = 0 and M = — 1 in Theorem 2.5. Although we use only the case when degλ

ί?0[P] = 1 in the proof of main theorems, this proposition has its own value.

PROPOSITION 4.1. Assume that P satisfies (A-0), (A-l), and (A-2; 0). Let

λ(x) e Θ(Ω0) satisfy

(i) %0[P](x;λ(x)) =0onfi 0 ,

(ii) %Q[P](x;λ(x) +l/q) Φ 0 on Ωo for I e N\{0},

for some subdomain Ωo of Ω including 0. Then, for an arbitrarily given voo(x) G

Θ(Ω0), there exist υι>p(x) e 0(ΩO) (I > 0; 0 < p < Im) such that

(4.1) u(t, x) -= t Σ t Σ (logt) vιp(x)

is an asymptotic solution of Pu = 0 . That is

.—λ(x) Til ,λ(x) v-i Λ/q yr-y /Λ .\p / \\ /,N/q—ω(P)\

t P\t 'Σt Σ (logt) υιp(x)j = o(t ),

for every N G N.

f. We can formally expand P with respect to t as
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P =
0[P] (x;$) + Σ Bh(x, dx &)th/q),

h=ί '

where Bh(x, dx $) = Σj+laϊ<m ίv ; α Cr)9> ; with bhJ>a e β(Ω) and ω : = ω(P).

Hence, we have only to find vιp that satisfy

Σ (log *)'»„(*)
p=0

= ~ Σ B,_h(x, dx;$)(fx)+ι/q Σ ( logO^.ω) (/ e N).

Since

«ot^]Cc 9){tKx)υ0Λ(x)) = «0[P] Or ^U)) ^(x>vo,o(x) Ξ 0,

dx(tUx)+l/q(\ogtΫv(x))

= tMx)+ι/q(logt)p(dxv)(x) + tMx)+l/q(logt)p+1(dJ)(x)v(x),

and since

%OIP](x ;λ(x) + l/q) Φ 0 (/ > 1) on βOf

we can get vιp with an arbitrarily given v0>0 by applying Lemma 3.5. D

Proof of Theorem 2.5. We can apply Proposition 3.4 to P. By (f) of the prop-

osition, we have

ίίo[P ( M + 1 )] (x λ) = a[M + 1] (x)λ - b[M + 1] (x)

for some a[M + 1], b[M + 1] e Θ(ΩM+1) with α[Af + 1] (0) ^ 0. Hence, we can

take a subdomain ιβ0 of i3M+1 including 0 such that a[M + l](x) Φ 0 on β0. We

can take λ[M + 1] e= β(β 0) such that ^ 0 [ P ( M + 1 ) ] ( i ; ^ [ M + l ] ( i ) ) = 0 and

o o n β 0 f o r / G N \ {0}.

By applying Proposition 4.1 to P , we can construct an asymptotic solu-

tion

(4.2) υ = tλlM+mx)-Σ t'/q Σ (log t)\lt(x)
1=0 p=0

of P v = 0 for an arbitrarily given v00 ^ Θ(Ω0).

Thus, the proof of Theorem 2.5 is completed. EH
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§5. Proof of Theorems 2.8 and 2.9

In this section, we prove Theorems 2.8 and 2.9.

First, we introduce another condition (A-3).

(A-3) If μ e S(P) and μ > 0, then all the non-zero roots λ of ^ [ P ] ( 0 ;

λ) = 0 satisfy Re λ < 0.

From the results in [3], we easily get the following theorem, which shall be

used later.

THEOREM 5.1. Assume the conditions (A-0), (A-l), (A-2; 0), and (A-3). Then,

there exist No G N, To > 0, αn^ α domain Ωo including 0 for which the following

holds :

(1) For gvery N > No and every f ^ C / / α ί

ω ([0, T\ Θ(Ω)), there exists a unique

thatPu= f on [0, To] x Ωo.

(2) / / w e Λ X C°([0, 71 ®'(£? Π Rw)) and Pu = 0 for t > 0 in a neighborhood

of (0,0), ί/ι#n w = 0 for t > 0 tn a neighborhood of (0,0). Especially, there exists no

sufficiently smooth null-solution for P at (0,0).

In (2) of this theorem, the domain where u — 0 may depend not only on the

domain where Pu — 0 but also on u itself. As for solutions in C ([0, 71 C (Ω

Π R )), however, we can show the existence of a common domain of uniqueness,

by a standard argument as follows.

COROLLARY 5.2. Assume the same assumptions as in the theorem above. Then

there exists Λ ί o £ N such that for every Tr ^ (0, 7) and every open neighborhood Uf

of 0 ^ R , there exist T" ^ (0, TO αwd an o£en neighborhood U" of 0 /or which the

following holds. If u e Λ x C°([0, 7] C°(β Π Rw)) and Pu = 0 on (0, TO x

U', then u = 0 on (0, T'O x £Γ.

Λoo/. Put iΓ : = {« e Λ x C°([0, 71 C°(^ Π Rw)) : P ^ = 0 on (0, TO

x ί/'}. This is a closed subspace of a Frechet space f° x C°([0, 7] C°(Ω Π

R )), and hence it is also a Frechet space. Let iTn}nsN be a decreasing sequence

of positive real numbers converging to 0 and let iUn}n€ΞN be a fundamental system

of open neighborhoods of 0. Put Ln '-— iu e K : w = 0 on (0, TM) x Un), which

are closed subspaces of K By Theorem 5.1-(2), there holds K = U^=OLW. Since a

Frechet space is a Baire space, there exists an n such that Ln has an inner point,

that is Ln = K. D
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Now, we give a proof of Theorem 2.8.

Proof of Theorem 2.8. We may assume that μ0 ^ N / # without loss of gener-

ality, and we can apply Proposition 3.4 to P. The operator P satisfies (A-0),

(A-l) and (A-2; 0). By the assumption (A-6; μ0) for P and by the conditions (c),

(d), (e) in Proposition 3.4, the operator P satisfies (A-3). Further, as we have

shown in the proof of Theorem 2.5, the operator P + has a formal solution (4.2)

with v00 = 1.

If we put

,λlM + Ώ(x) ^ Λ/q Ά n Λp / χ

vN = t - Σ, t 2u (log t) vι>p{x)vι>p{
1=0 p=Q

and gN'-= P (vN) for sufficiently large N ^ N, then we have

& e θ ^ T\;0(ΩQ)),

where Ωo is a subdomain of Ω including 0 and r0 e N, both independent of N. By

Theorem 5.1, we get wN e C^^^'^iίO, To] 0{Q$) such that PiM+1\wN) =

— gN, where To > 0 and Ωf

Q is a subdomain of Ωo including 0. Thus, v '-— vN +

wN satisfies PiM+Ώ(υ) = 0 and Cλm+mx)υ(t, x) ~+ l ( ί - > + 0). Note that Corol-

lary 5.2 implies that υ is independent of N for sufficiently large N in a neighbor-

hood of (0,0).

Since Re λ[0] (0) > 0 by the assumption, we can easily show that

J ι;(ί,v

belongs to Cjlat([0, To] Θ(Ω$). Thus, u is a C°° null-solution for P. Π

Next, we give a proof of Theorem 2.9.

Proo/ o/ Theorem 2.9. If we take δ' as <5 > δ" > Re/l0, and if we put v ' =

exp(δΊ~μo/μo)u, then we have υ e ^ x C°([0, 7] ©'(flo n R " ) ) f o r e v e r Y

iV ^ N with some domain iQ0 and Γ > 0. We also have

that is, P i ; = 0, where P'= expiδ't Uo/μo) ° P ° e x p ( - 57 Uo/μo). We have

only to show that v = 0 for / > 0 in a neighborhood of (0,0).

By an argument similar to and easier than that in the proof of Lemma 3.3, the
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operator P is an operator of the form (1.1) and satisfies the following:

(a) The operator P satisfies (A-0), (A-l), and (A-2; μ0).

(b) SCP) Π (μ09 oo) =S(P) Π (μ0, oo).

(c) %V[P] Cr •) = <gv[P](x •) for every v > μ0 and x e β 0 .

(d) ^ o [ P ] Or Λ) = ^ o [ P ] Cr Λ + 50.

(e) S(P) Π [0, μ0] = W .

By (d) and the condition (A-6;μ0) for P, all the roots λ of %UQ[P] (0', λ) = 0

satisfy Re λ < 0. This and the conditions (c), (e) imply that the operator P satis-

fies (A-3). Further, also by (d), we have %Uo[P] (0 0) Φ 0. This and the assump-

tion (A-2; μ0) imply (A-2; 0). Thus, we can apply Theorem 5.1 to P, and hence, we

have v = 0 for / > 0 in a neighborhood of (0,0). D
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