NOTE ON SUBDIRECT SUMS OF RINGS

MASAYOSHI NAGATA

In my previous paper “On the theory of semi-local rings,”" we saw that if
a semi-local ring R with maximal ideals p;,. . .,bs is a subdirect sum of local
rings Rppj,> then R is the direct sum of Ry, (proposition 15, (slr)”) and that
a complete semi-local ring is a direct sum of complete local rings (Remark to
proposition 5, (slr)).

The main purpose of the present note is to prove two kinds of generali-
zation (also for non-commutative case) of the first assertion mentioned above
(Theorems 2 and 3). We first introduce in §1 the concept of z-rings and then
we define the concepts of semi-local rings, local rings and so on; it is proved
here that a commutative (semi-) local ring is a (semi-) local ring in the sense
of (slr). It is also remarked that the assumption in Proposition 15, (slr), is a
necessary and sufficient condition in order that a commutative semi-local ring
is a direct sum of local rings. In §2, we prove our main theorems. In
‘§3, we prove a generalization of the second assertion mentioned above for non-
commutative case; in §4 we study rings which are subdirect sums of (a finite
number of) n-rings.

1. Definitions and remarks to commutative case

DerFINITION 1. A ring® R is called an n-ring if R? = R and if for any proper
ideal® a in R there exists a maximal ideal® containing a.

DEFINITION 2. A quasi-semi-local ring is a non-zero z-ring which contains
only a finite number of maximal ideals. A quasi-local ring is a non-zero #-ring
which contains only one maximal ideal.

DEFINITION 3. A quasi-semi-local ring R with maximal ideals p,,. . .,
ps is called a semi-local rmg if ﬂ pi® = (0). In this case we introduce a
topology in R by taking {ﬂ Py n= 1 ,k, ...} as a system of neighbour-

Received Sept. 4, 1950.

1) To appear in Proc. Jap. Acad. and will be referred as (slr) in the present note.

2) This notation is same as in (slr); this denotes the topological quotients ring of p: with
respect to R : See Chapter I, (sir).

% A ring means an associative ring.

4 An ideal means a two-sided ideal.

5) Since R? = R, any maximal ideal is prime (we say an ideal p in a ring R is maximal
if R+ p and if there exists no ideal a such as R > a > p).
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hoods of zero; thus a semi-Jocal ring is a topological ring. A local ring is a
semi-local, quasi-local ring.

LEMMA 1. Let R be a ring and p,,. .., pr be proper prime ideals in R.
Theni\g pi % R.O

h=1

Proof. For h =1, our assertion is trivial. So, we assume that U pi % R,
Let a be an element of R which is not contained in U Di. If aeE Dhs our asser-
tion is true; if not, we take an element b of R such as be ﬂ pi, b e py,* then
a+beé p; for any i (1 £7 < h). This proves our assertxon.

COrROLLARY. Let R be an #z-ring. Then any union of a finite number of
proper ideals does not coincide with K.

ProrosiTioN 1. A commutative quasi-semi-local ring contains the identity.

Proof. This follows from our Lemma 1 (or Corollary to it) and the fact
that a commutative ring R % (0) contains the identity if (and only if) there
exists an element a of R such that aR = R.

CoroLLARY. A commutative semi-local ring is a semi-local ring in the sense
of (slr).

We mention, by the way,

ProrosITION 2. Let a commutative ring R which contains the identity be a
direct sum of rings R; ({=1,...,n) (Ri = (0)). Let {pin; A€ 4;} (for each
i=1,...,n) be the totality of maximal ideals whose images in R; are different
from R;. Then R; is the ring of quotients of S; with respect to R, where S; is
the complementary set oflg‘m with respect to R. If R is a semi-local ring

(or more generally, generalized semi-local ring in the sense of (slr)) then R;
coincides also with the topological quotients ring of S; with respect to R.

Proof. Easy.

2. Main theorems

Lemma 2. Let a ring R be a subdirect sum of ringsR; (4 =1,. . .,n). If
p is a proper prime ideal in R, then for at least one 7 the image of p in R; does
not coincide with R;.

Proof. Let u; be the kernel of natural homomorphism of R onto R;, for
each 7. Then ﬁ, n; = (0). Therefore n; & p for at least one 2.

CoRrROLLARY. Let an #-ring R be a subdirect sum of rings (necessarily »-
rings) Ri (/=1,...,n). If ais a proper ideal in R, then for at least one 7 the

6) Cet theoretical union.
*) We may assume without loss of generality that p: % pj (¢ 4).
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image of a in R; is different from R;.

TuzoreM 1. Let a 7ing R be a subdirect sum of nrings Ri (i=1,...,n)
(n>1). Then R contains R; if (and only if) the following condition is satisfied :
If 9y and V. are two maximal ideals in the direct sum R of R; (i=1,...,n)

such that 1, 2 R, 1:E R, then by N R =P N K.

Proof. We set Ry N\ R = a. We assume that a % R,. Let p, be a maximal
ideal in R, cntaining a, Then p=R ) (by + R.+ . . . + Ry) is a maximal prime
ideal in R. On the other hand, R/a is a subdirect sum of rings R; ({ =2,

.,n). Therefore, for a suitable 2 (¥ > 1), the image of p in Ry is different
from Rp: Let pr be a maximal ideal in R containing the image of p in Ry.
Then p is contained in Ry + ... +Rey + e+ R+ . . . +R,. This shows
that RN+ Re+ ...+ R)=RN R+ ... +Rey+pe+Reys+ ...+ Ry,
contrary to our assumption.

THEOREM 2. Let a ring R be a subdirect sum of n-rings Ry, . . . ,Rs. Then
R is the direct sum of R; (i =1....,n) if (and only if) the following condition
is satisfied : If D, and b, are distinct maximal ideals in the direct sum R of R;
(z=1,...,n), then by N R =0 N R.

Proof. This is an immediate consequence of Theorem 1.

Cororrary 1. If a ring R.is a subdirect sum of (quasi-) semi-local rings
R,,...,R, and if the number of maximal prime ideals” of R is the sum of
those of R;, then R is the direct sum of R; (¢ =1,...,n).

COROLLARY 2. A semi-local ring R with maximal ideals by, ...,ps is 2
direct sum of local rings if and only if each p; is the unique maximal ideal
containing nfj‘ pi”.

CoroLLARY 3, Let a ring R be a subdirect sum of n-rings R,,...,Rs. If
Ri/p; and R;/p; are non-isomorphic to each other for any maximal ideals p; in
R; and p; in R; (i % j), then R is the direct sum of Ry, . .., Rx.

THEOREM 3. If an n-7ing is a subdirect sum of (quasi-) local rings R; (i =1,

...m), then R is a direct sum of suitable m (= n) (quasi-) local rings. (If
moreover R contains n distinct maximal ideals, R is the direct sum of R;.)

Proof. Our assertion is trivial for the case » = 1. Now, assuming that our
assertion is true for the case 7 < f, we prove the case # = . Let R be the di-
rect sum of rings B;,...,Rs. We set a;, = R  R;. Then R/a; is a subdirect
sumof R,,. . .,Ri.1, Ri+s,...,Rn. Hence R/a; is a direct sum of »; (< h)

Y Evidently this number is finite.
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(quasi-) local rings. If m; < h — 1 for some 7, our assertion is true because R
is a subdirect sum of m; + 1 (quasi-) local rings. Therefore we assume that
Rlai=Ry+ ...+ R, +Rin,+ ...+ Ry for any i. Whence, if a; = R; for
some 7, our assertion is true, ie., in this case, R = X. Now, we assume
that a; % R; (for at least one, therefore any, 7). Let b;,...,DPs be the maxi-
mal ideals in R, where pi M\ Ri = R;. Set %N\ R = p;. Since R/a; contains only
h — 1 maximal ideals, one p;, say px, coincides with some pr, say with pa_;.
Therefore, if h =2, R is itself a (quasi-) local ring. If 2 > 2, R contains ele-
ments (5,,0,...,0,az) and (4.,0,...,0, as-;,0) with suitable b;, b. = R, and
an E Ry, an_y & Ri_,y, such that each a@; is not contained in the maximal ideal
in R;. This is a contradiction to our assumption that ps_, = px.

Remark. 1f a semi-local ring R is a direct sum of semi-local rings R;
(t=1,...,n), R is a product space of R;.

3. Complete® semi-local rings

LEmma 3. Let R be a ring such that R*= R. If q, b and ¢ are ideals in R
such that a+ 5= R and a + ¢ = R, then a” + b” = R for any integers m and »,
and a + bc = R (therefore a + (b N ¢) = R).

Proof. Since a+ 8 2 R* =R, we have a+ b>=R. This proves our first
assertion. The second one follows from R = R* < a + be.

THEOREM 4. A complete semi-local ring is a direct sum of complete local
7ings.

Proof. Let pi, . . .,bs be the totality of maximal ideals in a complete semi-
local ring R. We set a;® =j0‘ p/® By Lemma 3, p;# + ;' = R. Let a be an
element of R, Then we can find an element @;,, of a; such that ai,, = a
(mod. p;”). Then the sequence (a;,») (# = 1,2,. . .) is convergent (for each 7).
Let fi(a) be its limit. Then f;(a)= a(mod. ﬁ, pi*), fila)E ("j‘a,-t”).f” This
proves that each p; is the unique maximal ideal containing ﬁ:”i:’ ie., that R is

the direct sum of local rings R; = R/( Fj’p;”) (t=1,...,h). Comp'eteness of
each R; is evident. "

4. Subdirect sums of z-rings

TueoreMm 5. Let a ring R be a subdirect sum of n-rings R,, . . . yRn. Then
(i) R is an n-ring if (and only if) R* = R, and

(ii) R”™ is an n-ring.

Proof. Let n; be the kernel of natural homomorphism of R onto R; (for

8 This means topological completeness.
h

9 This shows that _2‘ fi(@) = a and that R is the direct sum of ideals 0 @™ (i=1,..., k).
i= n=1
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each 7).
(1) Proof of (i).
Let a be an ideal in R such that there exists no maximal ideal containing a.
Then a + n; = R for each 7. Therefore a + ( EW n;) = R, by Lemma 3, ie., a = R.
(2) Proof of (ii). -

It is clear that R" is a subdirect sum of R;,. . .,Rs. Hence, it is sufficient
to prove that R”*1 = R” by virtue of (i). Evidently R?+ n; = R for each 1.
Therefore it is easy to see that R?*' 4+ mn,. . .n, 2 R" ie., R = R”,

Example. Let R be a ring such that R? = (0) (R = (0)). Using the notation
(1, R)™ as in my paper “On the theory of radicals in a ring” ' we construct
aring S=R+ (1, R) (direct sum). Let n, =R, n.={a+ (0, @); e ER). Then
S is a subdirect sum of #z-rings S/n; and S/n.. On the other hand, S is not an
n-ring because $* = (1, R).

Mathematical Institute,
Nagoya University

1) (1, R) is a typical over-ring of a ring R which contains the identity and in which R
is an ideal.
1) To appear in J. Math. Soc. Jap.








