STOCHASTIC DIFFERENTIAL EQUATIONS
IN A DIFFERENTIABLE MANIFOLD

KIYOSI ITO

The theory of stochastic differential equations in a differentiable manifold
has been established by many authors from different view-points, especially by
P. Lévy [2]", F. Perrin [1], A. Kolmogoroff [1][2] and K. Yosida [1] [2]. It
is the purpose of the present paper to discuss it by making use of stochastic
integrals.?

In §1 we shall state some properties of stochastic integrals for the later -
use. We shall discuss stochastic differential equations in the 7-dimensicnal
Euclidean space in §2 and in a differentiable manifold in §3.

1. Some properties of stochastic integrals. Throughout this note we fix
an 7-dimensional Brownian motion® :
(1.1) Bt w) = (Bt w), B(tw),...,8 (o)), —oli<w,
o (£ 2) being the probability parameter with the probability law P and ¢ keing
the time parameter. We assume that any function of ¢ and w appearing in this
note satisfies the following two conditions:
(1.2) it is measurable in (¢, v),
(1.3) the value it takes at t = ¢, is a B-measurable function? of the joint vari-
able (B(¢, ), v £ ty) for any i.

If it holds
(1. 4) £(s,0) — £t 0) = S:a(t,w)dr + 3 [ bitr, 0)dBi (7, 0)

ussst=v,0E (S Q),

Received March 10, 1950.
1 The numbers in [ ] denote those of the references at the end of this paper.

2 K. Ito [11, [3].

% By an 7-dimensional Brownian motion we understand an 7-dimensional random process
whose components are all one dimensional Brownian motion (Cf. P. Lévy [1] p. 1€6,
8§52, J. L. Doob [1] Theorem 3.9) independent of each other.

4 A mapping f from R4 into R is called to be B-measurable if the inverse image of any
Borel subset of R by f is also a Borel subset of R4, that is an element of the least
completely additive class that contains all rectangular subsets of R4,

A random variable &(w) is called to be a B-measurable function of the joini variable
(t4(w), a€ A) if and only if there exists a B-measurable mapping f from R4 into R
such that ¢(w) = f(¢e(w), a€ A) for every o. Cf. K, Ito [3] §1.

5 The sense of this integral is to be understcod as a stochastic infegral introduced by the
author. Cf. XK. Ito [1], [3] §7, §8.
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then we shall express this relation in the differential form as follows :

(L5)  di(t0) = alt0)dt + 3bi(1,0)dB (L), ust=v, 0E Q.
2

TueoreMm 1.1. If
(L6) d(t,0) = d(t,0)dt + SNb/i(t, 0)dBi(t,0), i=1,2,...,m ust<0,
=1

0= 2y, and if

L7 9t o) =fEE ), ¢ 0)= (8¢ 0),8¢0),. . ., 0),

S being a real-valued function of Cxclass® defined on an open subset of R™ which
contains all the points &(f,w), u =t = v, 0 € 2,, then we have

1.8)  dilt,0) = {S/(6(t,0))ai(t, 0) + 5 S Gt )08t 0011, 0) )
+ SISE(t )b (1 0))dBE, 0) ,

where

of Cid
fi(x}, ..., 2™) = Y & .2, Sfij(xl, .., x™) = oxiox’

We shall here mention only the outline of the proof.” First we shall state
a lemma.

(x...,2™)

LA (e, 0)dBi (s, 0) [ o(s, 0)dF (5, 0)
= 5[ b(s, 0)e(z, 0} + [ 55, 0) [ c(0,0)dp (0, 0) 2B (5, 0)
+ f:c(ﬂ,w) fb(f, 0)dfi(t, 0)dR7 (0, 0) (3 = Kronecker’s delta).

We can prove this lemma first by considering the special case that both
b(r,w) and c(r,w) are uniformly stepwise® in (s,¢) and next by taking the limit
in the general case.

In order to prove (1.8) we need only to compute the following expression :

7(5,0) = 2(t,0) = 2P, 0) = 2R, 0)), £ =t + 2 (s =),
= S/ (@R, 0)) (E (B, 0) — 8 (1, 0))

1 . . . .
+ ?;Ei, (fi7 (0, ) + sijn(0)) (& (P, 0) = E(EP), 0)) (3P, 0) — §7ED, 0))
8 A function is called to be of Ci-class if its partial derivatives of the second order are
all continuous.
7} The author will publish the proof in details in another note.
) b(r,w) is called to be uniformly stepwise in (s,t) if there exist a division of the inter-
val (s,2): s=t <t <...<t,=1 independent of w such that b(r, ) b(ti-1, ), ti-s
£t£4,i=12,...,n Cf. K, Itd [1], [3] §7.
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by making use of the above lemma and to take the limit as 7% - .

TueoreM 1.2. The functions a(l,0), bi(t,w), i=1,2,...,7, are uniquely
determined by £(t,w) in the sense that
dé(t,0) = a(t,w)dt + S bi(t, ) dFi(t, 0)
= d(t, w)dt + izi(t, 0)dBi(t,w), ust=<v, 0oE L,

implies ' 5 )
a(t,0) = at,w), bi(t,0) =bi(t,w), i=1,2,...,r,

Jor almost all (t,0), uzst=<v, vE 2.
Proof. It suffices to show that
Et,w) =0, u=st=zv, veE 2,
implies
a(t,w) =0, bi(tbw)=0, i=1,2...,7,
for almost all ({,w), u=t=v, vE 2,
By Theorem 1 we have

(s, 0) = &t 0))* = s:(z(E(T, ) = §(s,0))a(r, w) + ‘Zbi(r, w)®)dr
+ 30 205 0) — £(5,0)bi(5, )z, 0)

from which it follows that

1

SHE@+ o (v = u),0) = 8+ 2% (0 = #),00)* —> [ STo(r, 0)s

in probability. But the left side is always equal to 0 by the assumption and so
we obtain

S0z, 0y =0
for almost all o in £2;, which completes the proof.
We have already obtained the following inequality ¥
t . v
(1.9) P { sup | [ o(s,0)dp0 (5, 0)| = @) = o, [ B@G, o))t
= 0{v—u) (asv->u).

The following theorem gives us a more precise evaluation in the case that b(f, 0)
is uniformly bounded.

THEOREM 1.3. In the case:

(1.10) bto)| =K (nst<v,0e2), 0=v—ala/2KY),
we have

¢ . (2 e 2g)2
@ A s | [ 0)dpi(s 0) = ap < SO BE

=0(v — %) (asv->u).

9 Cf. K. Ité6 [1] Th. 8, [3]. Pr(W(w)) = P({w; A(w)}), E((w)) = SQ&(Q)P(JG)-
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Proof. By Theorem 1.1 we have
(ot 01087, W)= (s 0yat+2 [ st,0) b(c,0)d8(r, 0)dF ¢, ) -

But (1.10) implies
aﬂ
5 -

Therefore the left side of (1.11) is less than

S:b(t, w)idt =

P, { sup | ['ot,0) [0, 0)dp (r0)dpit, 0)| = 5 )

= (&) B0 [ b 0)dgic0)a = (2) K SONEE L e

on account of (1.9).

2. Stochastic differential eguation on the r-dimensional Euclidean space.
In this paragraph we shall treat a stochastic differential equation :
2.1 dgi(t, w) = a'(t,é(t, w))dt + 31054 (8, (2, 0))dR (t, 0) ,
Eho) = (Bho). . TGO i=1,2...,7, ut<o,
with the initial condition
(2.2) & (u,0) =c(0), i=12,...,r,
where ¢i(w), i=1,2,...,7 are B-measurable functions of (83(r,0), v £ %).

This stochastic differential equation is equivalent to a stochastic integral equation :

(2.3) . .
gt 0) = ci(w) + §ai(r, &(r,0))dr + ) f bj (7, é(r,w))dB (v, 0), u<t=£v.

THEOREM 2.1. Under the following four assumptions 'V :
(2.4) Ez}la"(i, x) —d'(t,y)* = Alx - yJ°,
% lbji(ta x) - b.ii(ta x)lg = B”x - y”2 5

where ) ]
=yl = Z} [x* — 2,
(2.5) ai(t, x), bji(t, %) are all continuous in t for any x.
(2.6) g]ai(t, x| Ay, %‘,)bji(t, x2)|* £ By,
2.7 E(c(0))=C, i=12,...,r,

(A, B, A,, B, C being constants independent of (i,x)), there exists one and only
one solution of the equation (2.3).

19 The i-component of 7-dimensional vectors x, ¥, c(0), ¢(£, 0), 7(¢, ») etc. are denoted by
a?, ¥i, ci(w), ¢(t ), 7¢(2, 0) etc. respectively.

1 1t is possible to show this theorem without any use of the assumption (2.'6), (2.7) by
the method the author has used in one-dimensional case (K. Ité [1], [3] Th. 11) but
it is unnecessary for our present purpcse to do so.
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Proof of the existence. We shall make use of the successive approximation
method to find a solution of (2.3). We define £,(f,0), # =1.2,. . ., recurively
as follows:

2.8) Ei(t,w) =cl(w), i=1,2,...,7,
(2:9) &:i(t,0) = (@) + (@5, Enus(5, 0 + D[ 655, nas(r, 0))dB (5, 0) .

Then we have

St 0) - &t o) = 33 (@i (s, 0))dr + 33 [ B Ce, 8olr, 0)) i, o)

= (r+ D3 lﬁa"(f, o(z, )|+ > J2sz. e o)) (5, 00}

@10) E(i(t ) - &l o))
= (r+ D {330 - 0 [ B@(c. 4065, 000 + 5[ B (5, 6u(r, 0))dr )
2 (7 + D{0 0 [ B (5. (e, 0))ds + [ BT (5, 6u(, 0)))de
£ (7+D{(v —u)A, + Bi}(t ~ u),

in making use of (2.6). In the same manner we obtain
(2.11) E(|¢n(t, 0) = &p-s(E 0)[P)
t
£ (74 D{(v - u)A + B}S E{||t n-1(7, 0) = Ens(r, 0)*}dr
by virtue of (2.4). From (2.10) and (2.11) it follows that

@12)  E(at0) — Gty < K Z W) K0 0"

b

K being a constant determined by A,, B, 4, B, u and v.
Since

IR SICETILERY

n=1 n!
we see, by Borel-Cantelli’s theorem, that there exists a function £(#, w) such that
E(j6(, w) — &n(t, 0)|F) = O for each ¢.
&t w),i=1,2,...,r, are clearly B-measurable functions of (8(r,w),t < ¢) for
each ¢, But we have further
[ B(en(t, 0) = eat0))dt >0 (m,n— ),
from which we see that &/(f,0), 1 =1,2,...,7, are all measurable in (¢, ).
Taking the limit of (2.9) as » - «, we see that £(f, w) satisfies (2.3).

Proof of the uniqueness. Let £(f,w) and (¢, w) satisfies (2.3). In the same
manner as (2.12) we have
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E(|¢(t0) - E¢t 0)[P) = I_f’&);‘_}&f S0,

which completes the proof.

THEOREM 2.2. Assume (2.4), (2.5), (2.6), (2.7) and

(2.13) ai(t,x), bi(t,x) =0 for xegU

and

(2.14) c(w)eU,

U being an open subset of R'. Then the solution £(t,w) of (2.3) satisfies
(2.15) ftw)EU, u<t=w,

Jor almost all w.

Proof. It suffices to prove that the totality 2, of w for which &(f,w) & U
for some ¢ has P-measure 0. Assume that P(£2;) > 0. Since &(¢, w) is continu-
ous in ¢ for each o, there exist ¢t and s (¥ £t = s < v) such that

(2.16) &(r,o)eEU fort=r<s, & ow)=x8&(s,0)
on.an w-set 2:(E £,) with positive P-measure. From (2.13), (2.14), and (2. 16)
it follows that
ai(r,&(r,0)) =0, bji(r,8(r,0)) =0, ssr<t, 0 EQ,
and so we have

. . : ¢ . ,
§(s,0) = §(t,0) + (@ (5, 6(r.0)dr + [ 5/ (5, 55, 0))dI(r, 0) = (2, 0) .
almost everywhere on 2., which contradicts with (2. 16).

3. Stochastic differential equation in a differentiable manifold.

Given any 7-dimensional differentiable manifold of C,-class'® M. By a con-

tinuous random motion in M we understand an M-valued function = (¢, w) of #
and w which is measurable in « for each ¢ and continuous in ¢ for each w. Here-
after we assume that
3.1 n(t,w) is a B-measurable function of (3(r,w), 7 =1).
Let §(t,0) = (8'(4, 0), &4, 0),. . .,8 (4 0)) be any local coordinate of w(Z, w).
If. we define £(f, 0) = 0 in case =(¢,») is outsides of the coordinate neighbour-
hood, (¢, w) proves to be a B-measurable function of 8(r,w), = < ¢, on account
of (3.1). We can easily see that £(¢,w) is measurable in (Z, »).

We shall consider a stochastic differential equation :

1) By definition an 7-dimensional differentiable manifold of C:-class is a Hausdorff space
with the second countability axiom and with coordinate neighbourhoods, each homeo-
morphic to the interior of a sphere of r~dimensional Euclidean space and such that the

coordinate relationships between the coordinates of the two intersecting neighbourhoods
are of Cs-class.
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(3.2) dii(t,0) = a'(t,£(t, ))dt + 336 (2, £(8, 0))dRI (4 ) ,
which means that

(3.2) &t w) — &(s,0) = (:ai(r,s(f, 0))dr + EStbji(r,E(r,w))dﬁf(r,w)

for any o such that zn(v,w) is contained in the coordinate neighbourhood for
s€r<t.

The functions a’(f,x) and b (¢, %), (x = (x,4% .. .,%")) depend upon the
special choice of the local coordinate. We assume that they are transformed
between two local coordinates ¥ and ¥ in the following manner :

i

o ox' 1 3
@ (L5 =3 50 a*(t, %) + — %]l Sabord 7 (2B (1 %),

(3.3) -
bit,%) = zkzg—;ikb,-k(t, ).

Now we shall explain the reason why we choose such a transformation law.
Let x = (x',%2,...,%) and ¥ = (2, 4% .. .,x") be two local coordinates defined
on a neighbourhood U in M such that
(3.4) o= i, ..., i=1,2,...,7,

and let £(f,w)(€(¢4, 0)) denote the x (¥)-coordinate of n(f,w). Then we have
(3.2) and
(3.2) FEi(t,0) = T(LE(E 0))dE + S35 (1, E(t 0))dE (¢, 0),
(35 Fto) =f@¢e), Eto). .., FHo), i=12...,7.
In making use of Theorem 1.1 we deduce from (3.2) and (3.5)
@3.6) dFi(t,0) = {S/e (6 0))a (1 (4 0))
3 SR 0) b 3 )b 1 (8 ) Jat
+ SISV 0) ) (2 ) 0)

whenever 7 (f,w) is contained in U. By Theorem 1.2 it follows from (3.2") and
(3.6) that

@ (1, (5,0)) = S 0) a5 51 0)
3 V(S 0B 5 E )b E(L))

b (8, £(10)) = S (64 0))b (8, £ (1, 0)) -

In order to express a sufficient condition for the equation (3.2) to have a
unique solution, we define the boundedness of a'(t,x) and b; (t,x) as follows.

DEeFINITION. By a canonical coordinate around p we understand any local
coordinate which maps a neighbourhood of p onto the interior of the unit sphere
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in the 7-dimensional Euclidean space R” and especially transforms p to the centre
of the sphere.

By a canonical coordinate system on M we understand a collection of cano-
nical coordinates such that, for any point of M, there exists a canonical coordi-
nate around the point in the collection.

ai(t, %), b7, x), 4,7 =1,2, . . ., r are called to be bounded if and only if there
exists a canonical coordinate system and a constant K such that we have always
3.7 la@tx), pEx)<K, i,j=1,2,...,7, u<t<v, xS,
for any coordinate of the system.

TueoreM 3.1. We assume that ai(t, x), bi(t, %), 4,7 =1,2,. . .,r, 0=t =1,
are all
3.8) bounded {n the sense of the above definition,

3.9) continuous in t for each x,
and
(3.10) of Ci-class in x jor each ¢.

Then there exists one and only one solution of the stochastic differential equa-

tion (3.2) with the initial condition:
(%, 0) = p(0),
where p(w) is an M-valued B-measurable function of (B(r,w), v < ¢).

Proof of the existence. We shall denote by {xp =(x5'. . .25"): pEM} a
canonical coordinate system which satisfies (3.7) and by S(S,, S;) the interior
of the sphere with the centre at the origin 0 and with the redius 1(1/3, 2/3),
and by Up(Uy') the totality of all the points of M whose xs-coordinate lies in
S(S;). Since M satisfies the second countability axiom, we obtain a sequence
in M: {pn} for which {U,,'} covers the whole space M. We denote x3,, U,
and Uy, respectively by x» = (%,,...,%4), U, and U,. We define V. by

Vn = Un’ - :‘:—]:m, (” %2) > V] = Ul,-
It is clear that
M= i Vo J®
n=l]

Now we shall define a random motion 7m(#,w) which satisfies the equation
(3.2) on an w-set (Z') whose P-measure tends to 1 as m - .
We define a function i1(x) on R” by

13} In this paper we denote the sum of disjoint sets by .
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(1 (] = 2/3)
i = 0 (14 = 5/6)
L5 — 6lx (2/3 <%l < 5/6)

and @(t,x) and b/i(t,x) by
@it x) = a(t, x)A(x), bi(t,x) = bi(t,2)A(x).
Then @i(f,x) and b;i(¢, x) satisfies the assumptions in Theorem 2.1 and
ai(t,x) =0, bii(t,x) =0, 4,j=212,...,r, xe&S.
We devide the time-interval (u,v) into m equal subintervals with
u=u ... <un="0.
We define Cuy(w) = (C)(w),...,C(w)) by

E’ the x,-coordinate of p(w) if p(w) E Va
{0=(,0,...,0 if p(w) & Va,

and consider a stochastic integral equation:

Cnl(w) =

2 (t0) = Ci, (o) + 5;06«7, 2n(e,0))de + 33 v\'if‘}n(n 24(r,0))dB7 (5, 0)
1=1,2,...,7, w=t=u,.
By Theorem 2.1 and Theorem 2.2 we can see that this equation has a unique
solution such that
Ext,w)ES, u=£t=u,

for almost all o.

We define mm(t,0), #o £t = u;, in the following way :
(3.11) 7, (¢, ) = the point in M with the x,-coordinate £,(¢, w) when p(w) & Via;
mm(t,w), o £t =< u,, is clearly determined up to P-measure O.

Next we consider a stochastic differential equation:

. . t . t o .
At 0) =C(0) + S an' (v, En(r,w))dr + Zj 0%, (1, £,(1, 0))dB (1, 0) ;
“ 7 JuY
i=1,2...,7, u, £t =u.,
where
 the xu-coordinate of ma(#,») if 7m(th,w) EVa

Cng((‘)) =
{0=(0,0,...,0) if wm(2t1,0) € Va.

In making use of Theorem 2.1 and Theorem 2.2 again we see that this equa-
tion has a unique solution such that
En(t,(l))ES, ﬂ]étéug,

for almost all w. We define mm(t,»), #, £ t < u. by (3.11) again. By continuing
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this procedure we define mm(t,w), # £ ¢ £ v. Now we define 2%, by
28 = {0 tm(Up-1,0) E Vi, tm(ttr, 0) E Vi,6n(r,0) ES: for ur-, £ v £ wp}
and put
Qm = 37 O - - O

POl eeenm 07 =1 hm *
We shall prove that

3.12) nm(l, w) satisfies (3.2) almost everywhere on 2
and that
(3.13) PR2™)~->1 asm—> .

Let x be any local coordinate defined on U, and nnm(f,w) lie in U for ¢, < ¢
£ 1, and o € 2%(S 2™), In order to show (3.12) it is sufficient to prove that
the x-coordinate £(¢, w) of mm(t, w) satisfies

(3.14) dti(t,0) = @'t £(, 0))dt + ;b,-i(t,e(t, o)At w), hst£t,, 0 E Q.

In case 0 €2, 25, ,, - - - 25, 2% we have
ag, (o) =a; (¢, (to))dt+ ijﬁzk_,i(t, &y (B, 0))ABI(E, 0)

up =1 < ue,
and so
(3.15) a#, (L) =al, (L &n (L, 0))dt + Ejb’;,k_,j(t,é ey (B 0))ARI (E, 00)
Up1 =1 = up,

since &u,.,(¢,w) € S; by the definition of 2, _, ..

By Theorem 1.1 and the transformation law (3.3) we can deduce (3.14)
from (3.15), which proves (3.12).

In order to prove (3.3) it suffices to show
(3.16) P{.Q;,O,,‘ e .Q’;,k_mk’gnk) =1 -G1A/mHP2,,,, - . o m) s

k=1,2,...,
where !7,%. = f}Q,,M and G is a constant which depends neither on m nor on
n=j
%4 but only on K, » and v; in fact it follows from (3.16) that
Po™ = (1 - G(l/m)2)E}P(.Q',,o,,l.fzg'zl ne .Q’;;;l__znm_l) =1-GA/m)*»Hm->1

(as m—> o).
Let w; and w, denote the joint variables

(B(r,0), v = u) and (B(r,0) — B(ur, 0), ur £ v < V)
respectively. Then &,(¢,0) and C%, ,,,(0) are expressible as &, (¢, w;, w:) and

Ci, k1:(@1). By the above procedure by which we have defined 7n(f, w) we have
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t
Emlt, 01, 00) = Clry(@0) + [ @8, (5, Gt 01, 00))lt
t -
+ 32, B (2 el 01, 00))dB 0, )

Since the stochastic integral appearing in the above expression is a B-mesur-
able function of Zf,kj (t,ni(t, 05, w2)) and o; is independent of w., we see, by
Fubini’s theorem in Lebesgue integral, that

t
Em(t, 0% 03) = Chpy, (@) + j‘ukﬁi'k(r’ Ene(7, 0, o) )dr
t b .
+ 2 S”I b”kf(ra 6711;(1', (D,O, (lJ'_u) )dﬁ] (T, (l))
7 e

for almost all w except possibly for w," of P,;-measure 0, P,, being the proba-
bility law of w;.

1 2 k A 1 .
oonPoyng -+ - L1, and g, are expressed in the form:

{w; vy E E}, {0; mm(t, w) E Vo, sup NEm(E, 0)]] < 2/3},
U=t =Uk+)

E, being a subset of R{-=*%], and the latter w-set includes the w-set

{w; sup uk”&zk(t, ) = Copra(0)]| <1/3},

Up-1=t=

as Cye41(w) € S,. Therefore the left side of (3.16) is greater than
PloeE E, sup |gmlt,0) — Cornlo)] < 1/3}
Up-1St=Uk
= Pr{(.l)] (= E) ’ sup ank(t, Wy, (—02) - C”kk-H (CU])” < 1/3}
Uy =t=uk

=S P{ sup
Fy Ug-1=t

- Eni(t, 0%, wg) ~ Correr(@)]] < 1/3)P.0,(dw,°)

-

(by the independence of w; and w,)
= SF (1 = G(1/m)*)Puy(dw®) (by Theorem 1.3)
71

=1 -G1/m)*)Pr(w, E E}),
which proves (3.16).
In order to obtain a solution of (3.2) we need only to put
m (¢, w) for w € W
m(t, w) =
n:(f, w) for wE QU — Q=D m =2,3,. ..
As to the uniqueness, by making use of the uniqueness of the solution of

(2.3), we can easily prove that any solution of (3.2) is coincident with the so-
lution above obtained, which completes the proof of our theorem.

Example 1. 1f M is a closed manifold, the condition (3.8) follows from
{3.10) and so we can do without this condition (3.8).
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Example 2. Let M be a Lie group. If ai(4, x) and b;7 (2, x) are left (or right)-
invariant with regard to the group operation, then the condition (3.8) follows
from (3.10), In considering this fact we can define Brownian motions on the

Lie group.
A relation between the process we have defined above by the stochastic dif-

ferential equation (3.2) and the Fokker-Planck equation is given by the follow-
ing theorem.

THEOREM 3.2. The solution of (3.2) is a simple Markoff process on M and
the transition probability law F(t,p,s, E)——the conditional probability law of
7(s,w) under the condition that n(t,w) = p——is coincident with the probability
law of the solution n(s,w) (s=1) of (3.2) with the initial condition:

(3.17) n(t,w) =D
If f(p) is a bounded function of C.-class defined on M, then we have, as

st

@18 {[ s@F s sd) - 1))

: 2 , 1 ; ; s
> (e tw) g5+ 5 3 0L DB D) g )

x being a local coordinate of p.

Proof. The first part can be easily proved in the same way as the proof
of (3.16). We shall prove the second part. We fix a local coordinate x around
p for which a’(¢, %), bji(¢,x) are all bounded and we denote by U the coordinate
neighbourhood of x. We shall denote the solution of (3.2) with the initial con-
dition: 7 (f,w) = p by the same notation n(f,w) and the x-coordinate of n(f,w)
with £(#, w), where we define &(f,w) =0 if n(¢,0) & U.

Whenever 7 (s, w) lies in U, we have

(3.19)  £i(s,0) = 2 + [ ai(r.é(r,0))dr + 3 [ 6(c, £(5, 0))dF (5, 0)
and so, by Theorem 1.1,
3200 SE(s0) —fx) = [{SdEima)iGE o)
+ 3 (5, (e, )8 (5, (5, 0)) ) de
+ 33§ 30055 £(5,0) VilE (7, 0)) (5, 0) -

In making use of Theorem 1.3 we can easily see that
Pn(r,0) U for some 7, t<1t=s) =0 (s—1t)
Thus we see that f(=(s,w)) — f(p) coincides with the right side of (3.20) ex-
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cept possibly on an w-set of P-measure O(s — #)%. Since f(p) is bounded on M
by the assumption, we have

il [ s @F @b s.da) - 79y ] = EL 5 0) =S 2D

s—1t s—t

= 2 ESed 0 e 0)

+ S E(5, 0B (5, )5 (E (5 ) e + OGs — 7]

. of 1 . . oY
AP = o H 7 < =
- zz_,a (¢, %) agt () 5 izjkbk (8, 2)07 (2, %) ax‘ax’(x) (s=>10),
which proves (3.18).
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