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ON THE DIRICHLET PROBLEM OF PRESCRIBED

MEAN CURVATURE EQUATIONS WITHOUT

H-CONVEXITY CONDITION

KAZUYA HAYASIDA and MASAO NAKATANI

Abstract. The Dirichlet problem of prescribed mean curvature equations is
well posed, if the boundery is H-convex. In this article we eliminate the H-
convexity condition from a portion Γ of the boundary and prove the existence
theorem, where the boundary condition is satisfied on Γ in the weak sense.

§1. Introduction

Let Ω be a bounded domain in Rn, n = 2, with its boundary ∂Ω. We

denote by (x1, . . . , xn) the coordinates in Rn and write D = (D1, . . . ,Dn),

where Di = ∂/∂xi.

We consider the Dirichlet problem

D ·
(

Du
√

1 + |Du|2

)

= nH in Ω(1.1)

with

u = φ on ∂Ω,(1.2)

which was studied by many authors. The equation (1.1) is called by the

prescribed mean curvature equation.

Let |Ω| and ωn be two volumes of Ω and the unit ball in Rn, respectively.

Throughout this article we assume

sup
Ω

|H| < 1

n

(

ωn

|Ω|

)1/n

,(1.3)

which may be replaced in some weaker conditions. That is, (1.3) means that

∫

Ω
|H|n dx < ωn(1.4)
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and for some ε0 > 0
∣

∣

∣

∣

∫

Ω
Hη dx

∣

∣

∣

∣

≤ 1 − ε0
n

∫

Ω
|Dη| dx, η ∈ C1

0 (Ω).(1.5)

But we impose (1.3) on this article for the sake of simplicity.

Serrin [17] solved first the Dirichlet problem (1.1) with (1.2). His result

is as follows: Suppose that ∂Ω ∈ C2,α, φ ∈ C2,α(Ω) for some α with 0 <

α < 1, and H ∈ C1(Ω). If (1.3) and

n

n− 1
|H| ≤ Λ(1.6)

are assumed on ∂Ω, then the problem (1.1) with (1.2) is uniquely solvable

for u ∈ C2,α(Ω), where Λ is the boundary mean curvature of Ω.

The condition (1.6) is called by H-convexity. Afterward Serrin’s result

was extended to the generalized mean curvature equation of higher order

by Ivochkina [6], whose study is closely related to the fully nonlinear elliptic

equation. Recently, Gregori [5] studied the relation between BV solutions

and viscosity solutions for (1.1).

By weakening the above assumptions except for (1.6), many authors

solved the problem (1.1) with (1.2), where the required solutions u are in

C2(Ω) ∩ C(Ω) (see e.g., [1], [2], [4], [18], [20]). The starting point is in two

ways. One is to estimate the generalized BV solution (see e.g., [4]). Another

is to estimate the approximating solution of each perturbed uniformly ellip-

tic equation (see e.g., [18]). In either case it needs to construct the barrier

functions. Further there are a few papers which prove u−φ ∈W 1,1
0 (Ω) (see

e.g., [15], [20]). Their method is also to construct the barrier function. So,

it is difficult to drop the condition (1.6).

Suppose that (1.6) is not assumed. Let H = 0, namely (1.1) be the

minimal surface equation. Then the problem (1.1) with (1.2) is solvable,

if φ is small concerning some norm (see [14], [22]). When H 6= 0, there

is the result of Schulz and Williams [16]. Lancaster [12] showed the non-

existence of solutions for some domain having a reentrant corner. Recently,

Jin and Lancaster [8] investigated the behavior near a reentrant corner of

a solution to a quasilinear elliptic equation in a two dimensional domain.

And Tersenov [21] proved the existence of C2,α(Ω) solutions of the Dirichlet

problem with zero boundary conditions for quasilinear elliptic equations in

some non convex domains Ω. In [21] the condition on Ω is complicated to

be stated. On the other hand, when H = 0, Jenkins and Serrin [7] showed
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previously that a necessary and sufficient condition on ∂Ω for the solvability

of the Dirichlet problem (1.1) with (1.2) for arbitrary continuous φ is that

Λ = 0 everywhere. Afterward Williams [23] constructed a C∞-domain in

R2 and a C∞-function φ such that the limit of the generalized solution at

a point on ∂Ω from inward does not exist.

We consider the case of H = 0. Let u be the generalized BV solution.

The assumption (1.6) guarantees that u = φ on ∂Ω. We suppose that φ ∈
C0,1(∂Ω) and ∂Ω is of class C4. Let A = {x ∈ ∂Ω | Λ(x) < 0, u(x) 6= φ(x)}.
Then by Lau and Lin [13] it was proved that u is Hölder continuous near A

with exponent exactly 1/2, and the trace of u over A is regular according to

the regularity of ∂Ω. More precise results were obtained by Korevaar and

Simon [9] and Simon [19].

In this article our aim is as follows: Let Γ be a portion of ∂Ω, where (1.6)

is not assumed. Instead we assume that Γ is transformed into a hyperplane

by an orthogonal coordinates mapping (see the Definition in the beginning

of Section 2). Then we shall show that there exists a solution u of the Dirich-

let problem (1.1) with (1.2) such that for some α > 0, (u−φ)/(1 + |Du|2)α
belongs to W 1,2 near Γ and its trace over Γ equals 0 (see Theorem 1). This

statement means that u = φ on Γ in the weak sense. In fact the equality

u = φ on Γ, is equivalent to that the trace of (u− φ)/(1 + |Du|2)α vanishes

there, if u is smooth. Next we shall give a sufficient condition in order that

u− φ ∈W 1,1(Ω) and its trace vanishes on Γ (see Theorem 2).

There is the result of Ladyzhenskaya and Ural’ceva [10] and [11] con-

cerning the local interior estimate of approximating solutions. In [11] par-

ticularly, the gradient bound in the interior domain was proved. In this

article, by using the method in [10], we prepare some boundary estimates

in order to prove our theorems.

§2. Result

From now on, let Ω be a bounded domain, and ∂Ω be locally Lipschitz-

continuous. We denote by Bδ(P ) the open ball in Rn with its center P and

with its radius δ. We set the following

Definition. We say that P ∈ ∂Ω has property (A), if the following

holds:

There exist a positive number δ and an one-to-one mapping Φ

Φ : Bδ(P ) 3 (x1, . . . , xn) 7−→ (ξ1, . . . , ξn) ∈ Rn
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satisfying

(I) Φ and Φ−1 are both of class C3 such that

D(ξ1, . . . , ξn)

D(x1, . . . , xn)
> 0 in Bδ(P ).

(II) Φ(P ) = O, Φ(Bδ(P ) ∩ Ω) ⊂ {ξn > 0} and

Φ(Bδ(P ) ∩ ∂Ω) ⊂ {ξn = 0}.

(III) Dxξi ·Dxξj = 0 in Bδ(P ), if i 6= j.

We denote by n and τ the inward normal vector and the tangent vector

at ∂Ω ∩Bδ/2(P ), respectively. Then from the above (III) we have

∂

∂n
= anDξn and

∂

∂τ
=

n−1
∑

i=1

aiDξi
,

where ai are C2 functions such that an > 0 and
∑n−1

i=1 |ai| 6= 0 on ∂Ω ∩
Bδ/2(P ). Let 1 ≤ p <∞ and Γ be an open set on ∂Ω. We define

W 1,p
0 (Ω; Γ) = {u | u ∈W 1,p(Ω′) and the trace of u over ∂Ω′ ∩ Γ

vanishes for any subdomain Ω′ of Ω such that

Ω
′ ∩ (∂Ω − Γ) = φ and ∂Ω′ ∩ Γ ⊂ Γ}.

Throughout this article we set the following assumptions:

We take two relatively open subsets Γ1 and Γ2 of ∂Ω, where Γ1 is of

class C3 and each point of Γ1 has property (A). It is not assumed that

∂Ω = Γ1 ∪ Γ2. Let H be a function in C0,1(Ω) satisfying (1.3). Let φ be a

function in C2,1(Ω ∪ Γ1) ∩ C0(Ω) ∩W 1,1(Ω). Further (1.6) is imposed only

on Γ2, namely it is not assumed on Γ1.

Then we solve the Dirichlet problem (1.1) with (1.2). Our first aim is

to prove

Theorem 1. There exists a solution u ∈ C2(Ω)∩C0(Ω∪Γ2)∩W 1,1(Ω)

of (1.1) such that

u = φ on Γ2, and
u− φ

(1 + |Du|2)5/4
∈W 1,2

0 (Ω; Γ1).
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As stated at the end of the previous section, the last relation in Theo-

rem 1 is regarded as u = φ on Γ1, in the weak sense. We take a sequence of

domains {Ωj} as follows: Each ∂Ωj is of class C3 and Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωj →
Ω (j → ∞). Further for any compact set K in Γ1, it holds that ∂Ωj0 ⊃ K

for some j0. Obviously there is a sequence {φj} ⊂ C3(Ω) satisfying

φj → φ in C2,1(Ω ∪ Γ1) ∩ C0(Ω) ∩W 1,1(Ω) (j → ∞).

We take a positive sequence {εj} such that εj → 0 (j → ∞) and

limj→∞

(

εj
∫

Ω |Dφj |2 dx
)

< ∞. It is known that for each j there is a so-

lution uj ∈ C2(Ωj) of










εj∆uj +D ·
(

Duj
√

1 + |Duj |2

)

= nH in Ωj

uj = φj on ∂Ωj

(2.1)

(see [3]).

According to the result of Simon [18], there is a subsequence {uν} of

{uj} and a function u ∈ C2(Ω) such that for any compact subset K of Ω

Dαuν ⇒ Dαu in K (ν → ∞), |α| ≤ 2,(2.2)

u ∈ C0(Ω ∪ Γ2), u = φ on Γ2 and (1.1) holds. The reason for its validity is

due to (1.6).

In [18] the following equation was considerd in place of that in (2.1):

εj∆uj + (1 − εj)D ·
(

Duj
√

1 + |Duj |2

)

= nH.

But the situation is quite parallel.

Next we have

Theorem 2. Assume that ∂uj/∂n = 0 on Γ1∩∂Ωj, for each uj . Then

there is a positive constant d0 depending only on the shape of Γ1 such that

if H = d0 on Γ1, the equation (1.1) is solvable for u ∈ C2(Ω) ∩ C0(Ω ∪ Γ2)

satisfying

u = φ on Γ2, u− φ ∈W 1,1(Ω) ∩W 1,1
0 (Ω; Γ1)

and
u− φ

(1 + |Du|2)1/4
∈W 1,2

0 (Ω; Γ1).
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The constant d0 will be concretely given in the proof of Proposition 4.3

(see (4.27)). Though it is almost impossible to verify the assumption in

the above theorem, we give two examples to show that Theorem 2 is not

meaningless. For this sake we prepare the following.

Let D be a bounded domain in Rn and H̃(x) be a bounded function in

D. For ε > 0 we define the operator Qε:

Qεu =
(

ε
√

1 + |Du|2 + 1
)(

1 + |Du|2
)

∆u

−Diu ·Dju ·DiDju− nH̃(x)
(

1 + |Du|2
)3/2

.

Then the following assertion holds, which is due to Theorem 10.1 in [3].

Suppose that u, v ∈ C2(D) ∩C1(D) and Qεv = Qεu in D. Then v 5 u

in D, if v 5 u on ∂D.

Here we assume that ∂D is of class C1. Let Γ be an open subset of ∂D.

Let φ̃ ∈ C2,1(D) and H̃ ∈ C0,1(D). Then we have

Proposition 2.1. Suppose that u is a function in C2(D) ∩ C1(D)

satisfying

Qεu = 0 in D and u = φ̃ on ∂D.

Then ∂u/∂n = 0 on Γ, if there is a function v ∈ C2(D) ∩C1(D) such that

Qεv = 0 in D, v 5 φ̃ on ∂D,

v = φ̃ on Γ and ∂v/∂n = 0 on Γ.

Proof. By the previous assertion we see that v 5 u in D. Since v = u

on Γ, it holds that ∂v/∂n 5 ∂u/∂n on Γ. This completes the proof.

We give the following two examples satisfying the assumptions in The-

orem 2.

Example 1. Let Γ1 be the arc defined in the example given at the

end of Section 4, where we put R = 1. Let Ω be a bounded domain such

that Ω lies up Γ1 and ∂Ω ⊃ Γ1 (see Figure 1).

Let Γ2 = ∂Ω − Γ1. We assume

1 <

√

π

|Ω| .(2.3)

As stated in this section, we take the approximating sequence {Ωj} of Ω.
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Figure 1.

Let H be a positive function in C0,1(Ω) such that

1

2
5 H <

1

2

√

ω2

|Ω| .(2.4)

From (2.3) it is possible to take such a function H. Retaking Γ2, we may

assume that (1.6) holds there.

We define two positive numbers d1 and d2 as follows:

d1 = − inf{y | (x, y) ∈ Ω}, d2 = sup{y | (x, y) ∈ Ω}.

Taking two real numbers A and B, we set

v(x, y) = A(y + d1)
2 +B.

Let us impose the following assumptions on A and d1 + d2:

A = (supΩ |H|)
(

1 + 4A2(d1 + d2)
2
)3/2

.(2.5)

The two relations (2.4) and (2.5) are not contradictory each other.

Let φ be a function such that φ = v in Ω and φ = v on Γ1. Under the

above conditions we set ε = εj , D = Ωj, Γ = Γ1 ∩ ∂Ωj , H̃ = H and φ̃ = φ

in Proposition 2.1. From (2.4) the condition (1.3) on H is satisfied. Let uj

be the solution satisfying

Qεjuj = 0 in Ωj and uj = φ on ∂Ωj.

Previously we may assume

∂v/∂n = 0 on Γ1.
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From (2.5) we see that Qεjv = 0 in Ω. Therefore it follows from Proposi-

tion 2.1 that

∂uj/∂n = 0 on Γ1 ∩ ∂Ωj.(2.6)

In this case the positive constant d0 in Theorem 2 will be calculated exactly

in the example given at the end of Section 4. That is, we can take d0 = 1/2,

which is independent of d1 + d2. The conditions (2.4) with (2.6), mean that

this example satisfies the assumptions in Theorem 2.

Example 2. Next let Ω be the annular domain such as

Ω = {(x, y) | 0 < R1 < r < R2}, r =
√

x2 + y2.

We set Γ1 = {r = R1} and Γ2 = {r = R2} (see Figure 2). We put Ωj = Ω

Figure 2.

for all j. Let H be a positive function in C0,1(Ω) satisfying (1.3), where

|Ω| = π
(

R2
2 −R2

1

)

. It is known that the boundary mean curvature Λ equals

1/R2 at each point on Γ2.

We assume

H =
1

2R1
on Γ1 and H 5

1

2R2
on Γ2.

Then (1.6) is satisfied on Γ2. Taking two real numbers A and B, we define

v(x, y) = Ar2 +B

and assume that

2A+ 4A3r2 > H(1 + 4A2r2)3/2 for R1 5 r 5 R2.(2.7)
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Then it is seen that Qεjv = 0 in Ω. And obviously, ∂v/∂n = 0 on Γ1. Let φ

be a function such that φ = v in Ω and φ = v on Γ1. We take uj in such a

way that

Qεjuj = 0 in Ω and uj = φ on ∂Ω.

Applying Proposition 2.1, we have

∂uj/∂n = 0 on Γ1.

Similarly as in Example 1, we can take d0 = 1/2R1. The following inequality

holds:

2t+ 4t3 >
1

2

(

1 + 4t2
)3/2

for t =
1

2
.

This means that we can take a function H and four numbers A, B, R1 and

R2 satisfying the above conditions.

§3. Preliminaries

In this section we prepare some known results for solutions uj in (2.1).

We denote by ( , )j the L2(Ωj)-inner product. Setting vj = uj − φj , we

multiply (2.1) with vj . Then by integration by parts, we have from (1.5)

εj
(

1, |Dvj |2
)

j
+

(

Duj
√

1 + |Duj|2
, Duj

)

j

5 −εj(Dvj , Dφj)j +

(

Duj
√

1 + |Duj|2
, Dφj

)

j

+ (1 − ε0)(1, |Dvj |)j .

We use the assumption on {εj} and the inequality |t| − 1 5 t2/
√

1 + t2

(t ∈ R). Then it follows that

εj
(

1, |Duj |2
)

j
+ (1, |Duj |)j 5 C(3.1)

where C depends on H, φ and Ω, but not on j.

Next we verify the uniform boundedness of uj with respect to j. If

εj = 0, this is due to Chapter 10 in [3]. So, we can proceed in parallel with

it. We rewrite the equation in (2.1) with

Qjuj = εj
(

1 + |Duj |2
)3/2

∆uj +
(

1 + |Duj|2
)

∆uj(3.2)

−Dkuj ·Dhuj ·Dkhuj − nH
(

1 + |Duj|2
)3/2

= 0.



186 K. HAYASIDA AND M. NAKATANI

We put

p = (p1, . . . , pn),

akh
j (p) = εj

(

1 + |p|2
)3/2

δkh +
(

1 + |p|2
)

δkh − pkph,

b(x, p) = −nH(x)
(

1 + |p|2
)3/2

,

Dj = det[akh
j (p)] and D

∗
j = D

1/n
j .

The equation (3.2) becomes akh
j (Duj)DkDhuj+b(x,Duj) = 0. In virtue

of Theorem 10.5 in [3], the following assertion holds:

Let g(p) be in Ln
loc(R

n) and h(x) be in Ln(Ωj) such that

|b(x, p)|
nD∗

j

5
h(x)

g(p)
for (x, p) ∈ Ωj ×Rn

and
∫

Ωj

hn dx 5

∫

Rn

gn dp.

Then the solution uj of (3.2) satisfies

sup
Ωj

|uj | 5 sup
∂Ωj

|uj | + C0 d(Ωj),(3.3)

where d(Ωj) is the diameter of Ωj and C0 depends only on g and h.

In our case we easily see that

Dj =
(

1 + εj(1 + |p|2)3/2
)(

1 + |p|2 + εj(1 + |p|2)3/2
)n−1

.

Hence D
∗
j =

(

1 + |p|2
)(n−1)/n

and

|b(x, p)|
nD∗

j

5 |H(x)|
(

1 + |p|2
)−(n+2)/(2n)

.

It is enough to set

h(x) = |H(x)| and g(p) =
(

1 + |p|2
)−(n+2)/(2n)

.

Since
∫

Rn

gn dp = ωn,

∫

Ωj

hn dx < ωn (from (1.4)),
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the assumptions on the above assertion are satisfied. We define the function

G(t), t = 0 with

G−1(t) =

∫

Bt(O)
gn dp,(3.4)

where Bt(O) = {|p| < t}. Then G is a function from (0, ωn) onto (0,∞).

The constant C0 on (3.3) is given by G
( ∫

Ω h
n dx

)

, which is referred to [3].

Let u be the function in (2.2). We show that

u ∈W 1,1(Ω).(3.5)

Hereafter we denote by the same {ν} any subsequence of {j}. Let Ω′ be

any fixed subdomain of Ω with Ω
′ ⊂ Ω. From (3.1),

∫

Ω′

(

|Duj |1/2
)2
dx are

uniformly bounded with respect to j. Hence

|Duν |1/2 −→ g weakly in L2(Ω′) as ν → ∞.

Thus
∫

Ω′

g2 dx 5 lim
ν→∞

∫

Ω′

|Duν | dx

The right-hand side is uniformly bounded with respect to Ω′ in virtue of

(3.1). This means that g ∈ L2(Ω). On the other hand g = |Du|1/2 from

(2.2). Hence (3.5) is correct.

§4. Main estimate

We suppose the assumptions in the beginning of Section 2. Let uj be

the solution of (2.1). Let P be any fixed point on Γ1. From our assumption

there is the coordinates transformation Φ in the definition of property (A).

We put

hi(x) = |Dxξi|2, i = 1, . . . , n.

and

J(ξ) =
∂(x1, . . . , xn)

∂(ξ1, . . . , ξn)
.

Then hi > 0 in Bδ(P ) and J = (h1 · · · hn)−1/2. Obviously

Dxu ·Dxv = hiDξi
u ·Dξi

v.
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So, |Dxu|2 = hi(Dξi
u)2, which is written by |Eu|2. The first equation in

(2.1) becomes

εj

∫

Ωj

Dxuj ·Dxϕdx+

∫

Ωj

Dxuj ·Dxϕ
√

1 + |Dxuj |2
dx = −n

∫

Ωj

Hϕdx,

ϕ ∈ C∞
0 (Ωj),

from which we have

εjDξi
(JhiDξi

uj) +Dξi

(

Jhi
√

1 + |Euj |2
Dξi

uj

)

= nHJ.(4.1)

We recall that P is mapped to the origin in (ξ1, . . . , ξn)-space. From now

on we consider uj only for sufficiently large j.

Our first object in this Section is to prove the following

Proposition 4.1. There is a positive number ρ such that

∫

Bρ(O)∩{ξn=0}

(

εj +
1

(

1 + |Dξuj |2
)3/2

)

|DξDξk
uj |2 dξ 5 C (<∞),

k = 1, . . . , n− 1,

where ρ and C are independent of j.

Proof. For simplicity Dξ,Dξi
, . . . are denoted by D,Di, . . . , respec-

tively. In the defnition of property (A) we take ρ > 0 in such a way that

Φ(Bδ(P )) ⊃ B2ρ(O). Let ζ be a non-negative function in C∞
0 (B2ρ(O)).

It may be assumed that ζ−1|Dζ|2 and |D(|Dζ|)| are bounded. For sim-

plicity we denote uj and φj by u and φ, respectively. And we denote by

( , ) the L2({ξn = 0})-inner product. Let k be any fixed integer such as

k = 1, . . . , n − 1. Setting v = u − φ (= uj − φj), we multiply (4.1) with

Dk(ζDkv). Then

εj(Di(JhiDiu), Dk(ζDkv)) +

(

Di

( JhiDiu
√

1 + |Eu|2
)

, Dk(ζDkv)

)

(4.2)

= n(JH, Dk(ζDkv))

We estimate the first term on the left-hand side of (4.2). By integration

by parts

(Di(JhiDiu), Dk(ζDkv)) = −(DiDk(JhiDiu), ζDkv)

= (Dk(JhiDiu), Di(ζDkv)),
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since Dkv = 0 on {ξn = 0}. This calculation needs that u is in C3. But it

is avoided, because we can take an approximating sequence of C3 functions

for u. Hence

(Di(JhiDiu), Dk(ζDkv))(4.3)

= (Dk(JhiDiv), Di(ζDkv)) + (Dk(JhiDiφ), Di(ζDkv))

≡ I1 + I2, say.

Obviously

I1 = (ζJhi, (DiDkv)
2) + (JhiDiζ, Dkv ·DiDkv)

+(ζDk(Jhi), Div ·DiDkv) + (Diζ ·Dk(Jhi), Div ·Dkv).

From now on we denote by the same C any positive constant independent

of j. By Cauchy’s inequality we have for δ > 0

|(JhiDiζ, Dkv ·DiDkv)| 5 δ
(

ζJhi, (DiDkv)
2
)

+ C(δ)
(

ζ−1(Diζ)
2, (Dkv)

2
)

and

|(ζDk(Jhi), Div ·DiDkv)| 5 δ
(

ζJhi, (DiDkv)
2
)

+ C(δ)
(

ζ, (Div)
2
)

,

where C(δ) depends on δ but not on j. Hence we obtain

I1 = (1 − 2δ)
(

ζJhi, (DiDkv)
2
)

(4.4)

−C(δ)
(

ζ + |Dζ| + ζ−1|Dζ|2, |Dv|2
)

.

Next we write

I2 = (ζDk(JhiDiφ), DiDkv) + (Diζ ·Dk(JhiDiφ), Dkv).

Let M be a positive constant such that

|φ|, |Dφ|, |DDiφ| 5 M,

where M depends on the support of ζ, but not on j. Then

|(ζDk(JhiDiφ), DiDkv)| 5 δ
(

ζJhi, (DiDkv)
2
)

+ C(δ)M2,

and

|(Diζ ·Dk(JhiDiφ), Dkv)| 5 C
[(

|Dζ|, |Dv|2
)

+M2
]

.
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Hence

I2 = −δ
(

ζJhi, (DiDkv)
2
)

− C(δ)
[(

|Dζ|, |Dv|2
)

+M2
]

.(4.5)

Combining (4.4) and (4.5) with (4.3), we obtain

(Di(JhiDiu), Dk(ζDkv))(4.6)

=
1

2

(

ζJhi, (DiDkv)
2
)

− C
[(

ζ + |Dζ| + ζ−1|Dζ|2, |Dv|2
)

+M2
]

.

Here we note the following: If (4.3) is correct for k = n, then (4.6) is so.

Next we estimate the second term on the left-hand side of (4.2). Simi-

larly by integration by parts
(

Di

( JhiDiu
√

1 + |Eu|2
)

, Dk(ζDkv)

)

(4.7)

=

(

Dk

( JhiDiu
√

1 + |Eu|2
)

, Di(ζDkv)

)

=

(

Dk

( JhiDiu
√

1 + |Eu|2
)

, Di(ζDku)

)

−
(

Dk

( JhiDiu
√

1 + |Eu|2
)

, Di(ζDkφ)

)

≡ I3 + I4, say.

If (4.7) holds for k = n, the following argument is also correct for the case

of k = n, except for the terms I32 and K1. First we estimate I3. Using the

equality

Dk

(

JhiDiu
√

1 + |Eu|2

)

=
Jhi

√

1 + |Eu|2

(

DiDku− hlDlu ·Diu ·DkDlu

1 + |Eu|2
)

+
Dk(Jhi) ·Diu
√

1 + |Eu|2
− 1

2
· Dkhl · (Dlu)

2

(

1 + |Eu|2
)3/2

JhiDiu,

we have

I3 =

(

Jζhi
√

1 + |Eu|2
,
(

DiDku
)2 − hlDlu ·Diu ·DkDlu

1 + |Eu|2 DiDku

)

(4.8)

+

(

ζDk(Jhi)
√

1 + |Eu|2
, Diu ·DiDku

)

−1

2

(

JζhiDkhl
(

1 + |Eu|2
)3/2

, (Dlu)
2Diu ·DiDku

)
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+

(

JhiDiζ
√

1 + |Eu|2
, DiDku ·Dku− hlDlu ·Diu ·DkDlu

1 + |Eu|2 Dku

)

+

(

Dk(Jhi) ·Diζ
√

1 + |Eu|2
, Diu ·Dku

)

−1

2

(

JhiDiζ ·Dkhl

(1 + |Eu|2)3/2
, (Dlu)

2Diu ·Dku

)

≡
6
∑

i=1

I3i, say.

Obviously

|I35|, |I36| 5 C(|Dζ|, |Du|).
We estimate I34. The idea of the estimation of I34 is due to [10]. Let us set

three vectors as follows:

a = (
√

hiDiζ), b = (
√

hiDiu), c = (
√

hiDiDku).

Then
∣

∣

∣

∣

hiDiζ ·DiDku− hiDiζ · hlDlu ·Diu ·DkDlu

1 + |Eu|2
∣

∣

∣

∣

=

∣

∣

∣

∣

a · c − (a · b)(b · c)

1 + |b|2
∣

∣

∣

∣

5

(

|a|2 − (a · b)2

1 + |b|2
)1/2(

|c|2 − (b · c)2

1 + |b|2
)1/2

.

Hence we see that

|I34| 5

(

J |a||Dku|
√

1 + |Eu|2
,

(

|c|2 − (b · c)2

1 + |b|2
)1/2

)

.

By Cauchy’s inequality

|I34| 5 δ

(

Jζ
√

1 + |Eu|2
, hi(DiDku)

2 − hihlDiu ·Dlu ·DiDku ·DkDlu

1 + |Eu|2
)

+C(δ)
(

ζ−1|Dζ|2, |Du|
)

, δ > 0.

Hence

I31 + I34 =
1

2
I31 − C

(

ζ−1|Dζ|2, |Du|
)

.
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On the other hand

(

1 + |Eu|2
)

hi(DiDku)
2 − hihlDiu ·Dlu ·DiDku ·DlDku

= |c|2 + |b|2|c|2 − (b · c)2 = |c|2.

Combining the above inequalities with (4.8) we obtain

I3 =
1

2

(

Jζhi
(

1 + |Eu|2
)3/2

, (DiDku)
2

)

+ I32 + I33(4.9)

−C
(

|Dζ| + ζ−1|Dζ|2, |Du|
)

.

Now we estimate the remained terms I32 and I33. By integration by

parts

I32 = −1

2

(

Dk

( ζDk(Jhi)
√

1 + |Eu|2
)

, (Diu)
2

)

.

Hence

I32 = −1

2

(

Dk(ζDk(Jhi))
√

1 + |Eu|2
, (Diu)

2

)

(4.10)

+
1

2

(

ζDk(Jhi)
(

1 + |Eu|2
)3/2

, hlDlu ·DkDlu · (Diu)
2

)

+
1

4

(

ζDk(Jhi)
(

1 + |Eu|2
)3/2

, Dkhl · (Dlu)
2(Diu)

2

)

≡
3
∑

i=1

Ji, say.

Easily

|J1|, |J3| 5 C(ζ + |Dζ|, |Du|).(4.11)

Since

J2 =
1

2

(

ζJDkhi
(

1 + |Eu|2
)3/2

, hlDlu ·DkDlu · (Diu)
2

)

+
1

2

(

ζDkJ · hi
(

1 + |Eu|2
)3/2

, hlDlu ·DkDlu · (Diu)
2

)

,
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we have

J2 + I33 =
1

2

(

ζDkJ · hi
(

1 + |Eu|2
)3/2

, hlDlu ·DkDlu · (Diu)
2

)

=
1

2

(

ζDkJ
(

1 + |Eu|2
)3/2

, |Eu|2hlDlu ·DkDlu

)

=
1

2

(

ζDkJ
√

1 + |Eu|2
, hlDlu ·DkDlu

)

−1

2

(

ζDkJ
(

1 + |Eu|2
)3/2

, hlDlu ·DkDlu

)

.

Setting

K1 =
1

2

(

ζDkJ
√

1 + |Eu|2
, hlDlu ·DkDlu

)

,

we see that

|J2 + I33 −K1| 5 C

(

ζ
√

1 + |Eu|2
, |DDku|

)

.(4.12)

By integration by parts

K1 = −1

4

(

Dk

( ζDkJ · hl
√

1 + |Eu|2
)

, (Dlu)
2

)

.

Hence

K1 = −1

4

(

Dk(ζDkJ · hl)
√

1 + |Eu|2
, (Dlu)

2

)

+
1

4

(

ζDkJ · hl
(

1 + |Eu|2
)3/2

, hiDiu ·DiDku · (Dlu)
2

)

+
1

8

(

ζDkJ ·Dkhi · hl
(

1 + |Eu|2
)3/2

, (Diu)
2(Dlu)

2

)

.

Here we write with K2 the second term on the right-hand side. Then

K2 =
1

4

(

ζDkJ
(

1 + |Eu|2
)3/2

, |Eu|2hiDiu ·DiDku

)
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=
1

4

(

ζDkJ
√

1 + |Eu|2
, hiDiu ·DiDku

)

−1

4

(

ζDkJ
(

1 + |Eu|2
)3/2

, hiDiu ·DiDku

)

=
1

2
K1 −

1

4

(

ζDkJ
(

1 + |Eu|2
)3/2

, hiDiu ·DiDku

)

.

From the above we have

|K1 −K2| 5 C(ζ + |Dζ|, |Du|),
∣

∣

∣

∣

K2 −
1

2
K1

∣

∣

∣

∣

5 C

(

ζ
√

1 + |Eu|2
, |DDku|

)

.

Writing 1
2K1 = (K1 −K2) +

(

K2 − 1
2K1

)

, we obtain from these inequalities

|K1| 5 C

[

(

ζ
√

1 + |Eu|2
, |DDku|

)

+ (ζ + |Dζ|, |Du|)
]

.

Therefore it follows from (4.12) that

|J2 + I33| 5 C

[

(

ζ
√

1 + |Eu|2
, |DDku|

)

+ (ζ + |Dζ|, |Du|)
]

.(4.13)

Combining (4.10), (4.11) and (4.13) with (4.9), we conclude that

I3 =
1

2

(

Jζhi
(

1 + |Eu|2
)3/2

, (DiDku)
2

)

(4.14)

−C
[

(

ζ + |Dζ|+ ζ−1|Dζ|2, |Du|
)

+

(

ζ
√

1 + |Eu|2
, |DDku|

)

]

.

Lastly we estimate I4. We can write

−I4 =

(

Jζhi
√

1 + |Eu|2
, DiDku ·DiDkφ− hlDlu ·Diu ·DkDlu

1 + |Eu|2 DiDkφ

)

+

(

ζDk(Jhi)
√

1 + |Eu|2
, Diu ·DiDkφ

)
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−1

2

(

JζhiDkhl
(

1 + |Eu|2
)3/2

, (Dlu)
2Diu ·DiDkφ

)

+

(

JhiDiζ
√

1 + |Eu|2
, DiDku ·Dkφ− hlDlu ·Diu ·DkDlu

1 + |Eu|2 Dkφ

)

+

(

Dk(Jhi) ·Diζ
√

1 + |Eu|2
, Dkφ ·Diu

)

−1

2

(

JhiDiζ ·Dkhl
(

1 + |Eu|2
)3/2

, Dkφ · (Dlu)
2Diu

)

.

Hence

|I4| 5 CM

[

1 +

(

ζ + |Dζ|
√

1 + |Eu|2
, |DDku|

)

]

.

Therefore, from (4.7) and (4.14), it follows that

(

Di

( JhiDiu
√

1 + |Eu|2
)

, Dk(ζDkv)

)

=
1

2

(

Jζhi
(

1 + |Eu|2
)3/2

, (DiDku)
2

)

−C(1 +M)

[

1 +
(

ζ + |Dζ| + ζ−1|Dζ|2, |Du|
)

+

(

ζ + |Dζ|
√

1 + |Eu|2
, |DDku|

)

]

.

By Cauchy’s inequality

(

ζ + |Dζ|
√

1 + |Eu|2
, |DDku|

)

5 δ

(

Jζhi
(

1 + |Eu|2
)3/2

, (DiDku)
2

)

(4.15)

+C(δ)
(

ζ + ζ−1|Dζ|2,
√

1 + |Eu|2
)

.

Accordingly we obtain

(

Di

( JhiDiu
√

1 + |Eu|2
)

, Dk(ζDkv)

)

=
1

4

(

Jζhi
(

1 + |Eu|2
)3/2

, (DiDku)
2

)

(4.16)

−C(M)
[

1 +
(

ζ + |Dζ| + ζ−1|Dζ|2, |Du|
)]

.

On the other hand

|(JH, Dk(ζDkv))| = |(Dk(JH), ζDkv)|
5 C‖H‖1,∞(ζ, |Dv|)
5 C‖H‖1,∞[(ζ, |Du|) +M ],
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where ‖ ‖1,∞ is the C0,1(Ω)-norm. Combining the above, (4.6), (4.16) and

(4.2) with (3.1), we finally conclude that

εj
(

ζ, |DDku|2
)

+

(

ζ
(

1 + |Eu|2
)3/2

, |DDku|2
)

is uniformly bounded with respect to j. This completes the proof.

If we eliminate the assumption k 6= n in Proposition 4.1, we have

Proposition 4.2. Let ρ be the positive number in Proposition 4.1. Let

k = 1, . . . , n. Then there is a positive constant C independent of j such that

∫

Bρ(O)∩{ξn=0}

|DξDξk
uj|2

(

1 + |Dξuj|2
)7/2

dξ 5 C.

Proof. The equation (4.1) can be written with

Jhi

(

εjD
2
i u+Di

( Diu
√

1 + |Eu|2
)

)

= F1 + nJH,

where

|F1| 5 C(1 + εj |Du|).

Hence

Jhn

(

εjD
2
nu+Dn

( Dnu
√

1 + |Eu|2
)

)

= −
∑

i6=n

Jhi

(

εjD
2
i u+Di

( Diu
√

1 + |Eu|2
)

)

+ F1 + nJH.

This becomes

εjD
2
nu+

1
√

1 + |Eu|2

(

1 − hn(Dnu)
2

1 + |Eu|2
)

D2
nu = F2 + nh−1

n H,

where

|F2| 5 C

[

1 + εj |Du| +
(

εj +
1

√

1 + |Eu|2

)

∑

(i,k)6=(n,n)

|DiDku|
]

.
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Accordingly

(

εj +
1

(

1 + |Eu|2
)3/2

)

|D2
nu| 5 |F2| + C|H|,

which means that
(

ζ
(

1 + |Eu|2
)7/2

, (D2
nu)

2

)

5 C

[

1 + ε2j (ζ, |Du|) + ε2j
∑

(i,k)6=(n,n)

(

ζ
(

1 + |Eu|2
)1/2

, (DiDku)
2

)

+
∑

(i,k)6=(n,n)

(

ζ
(

1 + |Eu|2
)3/2

, (DiDku)
2

)]

.

Therefore from Proposition 4.1 and (3.1) we have obtained the required.

In Proposition 4.1, the estimation contains the second derivatives

DξDξk
uj, but we have assumed that k 6= n. If k = n, we have the fol-

lowing

Proposition 4.3. Suppose that ∂uj/∂n = 0 on Γ1 ∩ ∂Ωj for each j.

Then there is a positive constant d0 depending only on Γ1 such that if H =

d0 on Γ1, it holds that

∫

Bρ(O)∩{ξn=0}

(

εj +
1

(

1 + |Dξuj |2
)3/2

)

|DξDξnuj |2 dξ 5 C, j = 1, 2, . . . ,

where ρ and C are two positive constants independent of j.

Proof. As in the proof of Proposition 4.1, we denote uj(φj) with u(φ),

respectively. And v = u − φ (= uj − φj). Our assumption means that

Dnu = 0 on {ξn = 0}. We write by 〈 , 〉 the L2({ξn = 0})-inner product.

We multiply (4.1) with Dn(ζDnv), where ζ is the function in the proof

of Proposition 4.1. We define

Ii =

{

−〈Di(JhiDiu), ζDnv〉 (i 6= n),

0 (i = n).
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Then it holds that

(Di(JhiDiu), Dn(ζDnv) = (Dn(JhiDiu), Di(ζDnv)) + Ii,(4.17)

In fact, it is trivial for i = n. If i 6= n, by integration by parts

(Di(JhiDiu), Dn(ζDnv))

= −〈Di(JhiDiu), ζDnv〉 − (DiDn(JhiDiu), ζDnv)

= −〈Di(JhiDiu), ζDnv〉 + (Dn(JhiDiu), Di(ζDnv)).

Hence (4.17) is correct.

Similarly we obtain
(

Di

( JhiDiu
√

1 + |Eu|2
)

, Dn(ζDnv)

)

(4.18)

=

(

Dn

( JhiDiu
√

1 + |Eu|2
)

, Di(ζDnv)

)

+ Ji,

where

Ji =







−
〈

Di

( JhiDiu
√

1 + |Eu|2
)

, ζDnv

〉

(i 6= n),

0 (i = n).

We estimate Ii and Ji, respectively. Let M be the constant in the proof of

Proposition 4.1. First we see that

|Ii| 5 CM〈ζ, |Dnv|〉
5 CM

[

δ〈ζ, (Dnv)
2〉 + C(δ)

]

, δ > 0,

and
〈

ζ, (Dnv)
2
〉

= −
(

1, Dn(ζ(Dnv)
2)
)

5
(

ζ + |Dζ|, |Dv|2
)

+
(

ζ, (D2
nv)

2
)

.

Hence

|Ii| 5 CM
[

δ
(

ζ, (D2
nv)

2
)

+
(

ζ + |Dζ|, |Dv|2
)

+ C(δ)
]

(4.19)

Next we estimate Ji for i 6= n. By integration by parts

Ji =

〈

JhiDiu,
Di(ζDnv)
√

1 + |Eu|2

〉

=

〈

JhiDiu,
Di(ζDnu)
√

1 + |Eu|2

〉

−
〈

JhiDiu,
Di(ζDnφ)
√

1 + |Eu|2

〉

.
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Thus we can write

Ji = A1 +A2,(4.20)

where

A1 =

〈

JhiDiφ, ζ
DiDnu

√

1 + |Eu|2

〉

, |A2| 5 CM.

In general, let f(t), g(t) and h(t) be three given functions such that

g, h > 0. It is easily seen that

(

log(
√
hf +

√

g + hf2)
)′

=
1√

hf +
√

g + hf2

×
[√

hf ′ + (
√
h)′f +

1

2
(g + hf2)−1/2(2hff ′ + h′f2 + g′)

]

=

√
hf ′

√

g + hf2
+

(
√
h)′f√

hf +
√

g + hf2
+

h′f2 + g′

2
√

g + hf2
(
√
hf +

√

g + hf2
)
.

Hence

f ′
√

g + hf2
=

1√
h

(

log(
√
hf +

√

g + hf2)
)′ − h′

2h

f√
hf +

√

g + hf2

− 1

2
√
h

h′f2 + g′
√

g + hf2(
√
hf +

√

g + hf2)
.

We set

f = Dnu, ψ =
∑

k 6=n

hk(Dku)
2, g = 1 + ψ and h = hn.

From the above, it follows that

DiDnu
√

1 + |Eu|2
=

1√
hn
Di

(

log(
√

hnDnu+
√

1 + |Eu|2)
)

− 1

2hn

Dihn ·Dnu√
hnDnu+

√

1 + |Eu|2

− 1

2
√
hn

Dihn · (Dnu)
2

√

1 + |Eu|2
(√
hnDnu+

√

1 + |Eu|2
)

− 1

2
√
hn

Diψ
√

1 + |Eu|2
(√
hnDnu+

√

1 + |Eu|2
) .
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Thus we have

A1 =

〈

Jhi
ζ√
hn
Diφ, Di

(

log(
√

hnDnu+
√

1 + |Eu|2)
)

〉

(4.21)

−1

2

〈

Jhi
Dihn

hn
ζDiφ,

Dnu√
hnDnu+

√

1 + |Eu|2

〉

−1

2

〈

Jhi
Dihn√
hn

ζDiφ,
(Dnu)

2

√

1 + |Eu|2
(√
hnDnu+

√

1 + |Eu|2
)

〉

−1

2

〈

Jhi
ζ√
hn
Diφ,

Diψ
√

1 + |Eu|2
(√
hnDnu+

√

1 + |Eu|2
)

〉

≡
4
∑

i=1

A1i, say.

Since Dnu = 0 on {ξn = 0}, we have

1 5
√

hnDnu+
√

1 + |Eu|2 5 2
√

1 + |Eu|2,

from which

0 5 log
(

√

hnDnu+
√

1 + |Eu|2
)

5 log 2 +
1

2
log
(

1 + |Eu|2
)

on {ξn = 0}.

Now we estimate A11. By integration by parts

A11 = −
〈

Di

(

Jhi
ζ√
hn
Diφ

)

, log
(

√

hnDnu+
√

1 + |Eu|2
)

〉

.

Hence

|A11| 5 CM
[

1 +
〈

ζ + |Dζ|, log(1 + |Eu|2)
〉]

.

Since

〈

ζ + |Dζ|, log(1 + |Eu|2)
〉

= −
(

1, Dn((ζ + |Dζ|) log(1 + |Eu|2))
)

,

and
∣

∣Dn log(1 + |Eu|2)
∣

∣ 5 C

(

1 +
|DDnu|

√

1 + |Eu|2

)

,

we obtain

|A11| 5 CM

[

1+
(

ζ+ |Dζ|, |DDnu|
√

1 + |Eu|2
)

+
(

|Dζ|+ |D|Dζ||,
√

1 + |Eu|2
)

]

.
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Obviously |A12|, |A13| 5 CM , and

|Diψ| 5 C

[

∑

k 6=n

(Dkφ)2 +
∑

i,k 6=n

|Diφ||DiDkφ|
]

on {ξn = 0}.

Hence

|A14| 5 CM.

From the above and (4.21) it follows that

|A1| 5 CM

[

1 +
(

ζ + |Dζ|, |DDnu|
√

1 + |Eu|2
)

(4.22)

+
(

|Dζ| + |D(|Dζ|)|,
√

1 + |Eu|2
)

]

.

Therefore we obtain by (4.20)

|Ji| 5 the right-hand side of (4.22).

By Cauchy’s inequality it follows that

|Ji| 5 CM

[

1 + δ
(

ζ,
|DDnu|2

(1 + |Eu|2)3/2

)

(4.23)

+C(δ)
(

ζ + |Dζ| + ζ−1|Dζ|2 + |D(|Dζ|)|,
√

1 + |Eu|2
)

]

.

Lastly we have

(JH, Dn(ζDnv)) = (JH, Dn(ζDnu)) − (JH, Dn(ζDnφ))

and

(JH, Dn(ζDnu)) = −(Dn(JH), ζDnu) − 〈JH, ζDnu〉.

Hence combining (4.17) and (4.18) with (4.1), we obtain

εj(Dn(JhiDiu), Di(ζDnv))(4.24)

+

(

Dn

( JhiDiu
√

1 + |Eu|2
)

, Di(ζDnv)

)

+ n〈JH, ζDnu〉

= −n(Dn(JH), ζDnu) − n(JH, Dn(ζDnφ)) − εj
∑

i

Ii −
∑

i

Ji.
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Here we use (4.19), (4.23) and (3.1). Then we can put

the right hand side of (4.24) = G,(4.25)

where

|G| 5 C(M + 1)

[

εjδ
(

ζ, (D2
nu)

2
)

+ εjM
2 + δ

(

ζ,
|DDnu|2

(1 + |Eu|2)3/2

)

+ C(δ)

]

.

Hereafter we proceed in parallel with the proof of Proposition 4.1, by

replacing Dk with Dn. The situation is different only for the two terms I32
and K1 in the proof of Proposition 4.1. By integration by parts

I32 = −1

2

(

Dn

( ζDn(Jhl)
√

1 + |Eu|2
)

, (Dlu)
2

)

− 1

2

〈

ζDn(Jhl)
√

1 + |Eu|2
, (Dlu)

2

〉

and

K1 = −1

4

(

Dn

( ζDnJ · hl
√

1 + |Eu|2
)

, (Dlu)
2

)

− 1

4

〈

ζ
DnJ · hl
√

1 + |Eu|2
, (Dlu)

2

〉

.

On the last equality we set K1 = K̃1 + L. Let K2 be the same in the

proof of Proposition 4.1, where k is replaced with n. Let Ai (i = 1, 2, . . .)

be the terms, which will be decided later such that

|Ai| 5 C

[

(

ζ,
|DDnu|

√

1 + |Eu|2
)

+ (ζ + |Dζ|, |Du|)
]

.

Then we can write

K2 =
1

2
(K̃1 + L) −A1, J2 + I33 = K̃1 + L+A2

and

K̃1 = K2 +A3.

Here we use the equality:

1

2
K̃1 = (K̃1 −K2) +

(

K2 −
1

2
K̃1

)

=
1

2
L+A3 −A1.

Then

J2 + I33 = 2L+ (2A3 − 2A1 +A2).
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Thus (4.13) holds for k = n. It needs to estimate the above two boundary in-

tegrals. The remained part of the proof is similar to that of Proposition 4.1.

If l 6= n, Dlu = Dlφ on {ξn = 0} and
∣

∣

∣

∣

〈

ζDn(Jhl)
√

1 + |Eu|2
, (Dlφ)2

〉∣

∣

∣

∣

,

∣

∣

∣

∣

〈

ζDnJ · hl
√

1 + |Eu|2
, (Dlφ)2

〉∣

∣

∣

∣

5 CM.

Hence, from (4.24) it is enough to prove

n〈JH, ζDnu〉 −
1

2

〈

ζDn(Jhn)
√

1 + |Eu|2
, (Dnu)

2

〉

(4.26)

−1

2

〈

ζDnJ · hn
√

1 + |Eu|2
, (Dnu)

2

〉

= 0.

Since Dnu = 0 on {ξn = 0}, we have

Dnu =
√

hn
(Dnu)

2

√

1 + |Eu|2
,

from which (4.26) holds if

nJ
√

hnH − 1

2
Dn(Jhn) − 1

2
DnJ · hn = 0 on {ξn = 0}.

Thus we can take d0 as follows:

Jd0 =
1

2n

( 1√
hn
Dn(Jhn) +DnJ ·

√

hn

)

.(4.27)

We have finished the proof.

We give an example of the constant d0 in (4.27).

Example 3. Let us denote by CR the circumference with its center

(0,−R) and with its radius R. Let Γ1 be an open arc on CR such that Γ1

contains the origin (see Figure 3). Let Ω be a bounded domain in the exterior

of CR such that ∂Ω ⊃ Γ1. We transform Γ1 into a flat and calculate J and

h2. For this sake we use the polar coordinates transformation x = ξ2 cos ξ1,

y = −ξ2 sin ξ1 −R. Then

J =
D(x, y)

D(ξ1, ξ2)
= ξ2, h2 = (Dxξ2)

2 + (Dyξ2)
2 = 1.

Hence

the right-hand side of (4.27) =
1

2
,

namely we can take d0 = 1/2R.
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Figure 3.

§5. Proof of our Theorems

Let {uj} be the sequence of solutions in (2.1) and u be the function in

(2.2). We recall that (3.5) holds. We denote by the same {ν} any subse-

quence of {j}. Before proving our Theorems we prepare the following

Proposition 5.1. There is a positive sequence {αν} with αν → 0

(ν → ∞) such that for 1 5 i 5 n

Diuν
(

1 + |Duν |2
)αν

→ Diu in L1(Ω′) as ν → ∞,

where Ω′ is any subdomain of Ω such that ∂Ω′ ∩ ∂Ω ⊂ Γ1 and Ω
′ ∩Γ2 = φ.

Proof. By the convergence theorem

Diu
(

1 + |Duν |2
)αν

→ Diu in L1(Ω′) (ν → ∞).

Hence it is sufficient to prove that

Di(uν − u)
(

1 + |Duν |2
)αν

→ 0 in L1(Ω′) (ν → ∞).(5.1)

From (2.2) we can take a sequence {Gk}, subdomains of Ω such that

Gk ⊂ Ω, Gk ↑ Ω (k → ∞) and

Diuν ⇒ Diu in Gk (ν → ∞).
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We denote with the same notation any subsequence of {uν}. Then we may

assume that

|Diuν −Diu| <
1

ν
in Gν .

Let us take a positive sequence {αν} such that αν → 0 (ν → ∞) and

|Ω −Gν |2αν → 0 (ν → ∞).(5.2)

We set
∫

Ω′

|Di(uν − u)|
(

1 + |Duν |2
)αν

dx =

∫

Gν

+

∫

Ω′−Gν

≡ Iν + Jν , say.

Easily, Iν → 0 (ν → ∞). And

|Jν | 5

∫

Ω′−Gν

|Diuν |1−2αν dx+

∫

Ω′−Gν

|Diu| dx.

Since u ∈W 1,1(Ω),

∫

Ω−Gν

|Diu| dx→ 0 (ν → ∞).

By Hölder’s inequality

∫

Ω′−Gν

|Diuν |1−2αν dx 5 |Ω −Gν |2αν

(
∫

Ω′

|Duν | dx
)1−2αν

.

Hence Jν → 0 (ν → ∞) from (5.2) and (3.1). Thus we obtain (5.1). This

completes the proof.

Now we prove Theorem 1.

Proof of Theorem 1. Let P be any fixed point on Γ1 and δ be a suffi-

ciently small positive number. Let ζ be any fixed function in C∞
0 (Bδ(P )).

Since from (3.3)

∣

∣

∣

∣

Di

(

uν − φν
(

1 + |Duν |2
)5/4

)
∣

∣

∣

∣

5 C

(

1 +
|DDiuν |

(

1 + |Duν |2
)7/4

)

in Bδ(P ),

it follows from Proposition 4.2 that
{

ζ(uν−φν)/(1+|Duν |2)5/4
}

is uniformly

bounded in W 1,2
0 (Ω). Hence a subsequence of

{

ζ(uν − φν)/(1 + |Duν |2)5/4
}
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converges weakly to a function w in W 1,2
0 (Ω). On the other hand, from (2.2)

it converges to
{

ζ(u− φ)/(1 + |Du|2)5/4
}

pointwise in Ω. Therefore by the

usual argument

w =
ζ(u− φ)

(

1 + |Du|2
)5/4

∈W 1,2
0 (Ω),

which implies that (u − φ)/(1 + |Du|2)5/4 ∈ W 1,2
0 (Ω; Γ1). In Section 2 we

have already stated that the boundary condition is satisfied on Γ2. Thus

Theorem 1 holds.

Proof of Theorem 2. We take the sequence {αν} in Proposition 5.1.

Let 1 5 i 5 n. We have

Di

(

uν − φν
(

1 + |Duν |2
)αν

)

− Di(uν − φν)
(

1 + |Duν |2
)αν

= −2αν(uν −φν)
Duν ·DDiuν

(

1 + |Duν |2
)αν+1 .

Hence from (3.3)

∣

∣

∣

∣

Di

(

uν − φν
(

1 + |Duν |2
)αν

)

− Di(uν − φν)
(

1 + |Duν |2
)αν

∣

∣

∣

∣

5 Cαν
|DDiuν |

(

1 + |Duν |2
)(2αν+1)/2

.

Let P be any fixed point in Γ1 and δ > 0 be small. Then from Proposition 4.3

∫

Bδ(P )∩Ων

|DDiuν |2
(

1 + |Duν |2
)3/2

dx 5 C.

Accordingly by Schwarz inequality

∫

Bδ(P )∩Ων

|DDiuν |
(

1 + |Duν |2
)(2αν+1)/2

dx

5

(
∫

Ων

√

1 + |Duν |2 dx
)1/2(∫

Bδ(P )∩Ων

|DDiuν |2
(

1 + |Duν |2
)3/2

dx

)1/2

5 C (from (3.1)).

We take any function ψ ∈ C∞
0 (Bδ(P )) and denote by ( , ) the L2(Ω)-

inner product. Then from the above it follows that

(

Di

( uν − φν
(

1 + |Duν |2
)αν

)

, ψ

)

−
(

Di(uν − φν)
(

1 + |Duν |2
)αν

, ψ

)

→ 0 (ν → ∞).(5.3)
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On the other hand
(

Di

( uν − φν
(

1 + |Duν |2
)αν

)

, ψ

)

= −
(

uν − φν
(

1 + |Duν |2
)αν

, Diψ

)

and
Diφν

(

1 + |Duν |2
)αν

→ Diφ in L1(Ω ∩ {suppψ}) (ν → ∞).

Hence from Proposition 5.1 we have
(

Di(uν − φν)
(

1 + |Duν |2
)αν

, ψ

)

→ (Di(u− φ), ψ) (ν → ∞).

Further it follows from (2.2), (3.3) and the convergence theorem that

uν − φν
(

1 + |Duν |2
)αν

→ u− φ in L1(Ω ∩ {suppψ}) (ν → ∞).

Combining the above with (5.3), we obtain

(u− φ, Diψ) = −(Di(u− φ), ψ),

which means that u− φ ∈W 1,1
0 (Ω; Γ1).

Next it is known that u ∈ C0(Ω ∪ Γ2) and u = φ on Γ2, by the usual

method of barrier functions (see e.g., [18]).

Lastly we have
∣

∣

∣

∣

Di

(

uν − φν
(

1 + |Duν |2
)1/4

)∣

∣

∣

∣

5 C

(

(

1+|Duν |2
)1/4

+
|DDiuν |

(

1 + |Duν |2
)3/4

)

in Bδ(P ).

Using Proposition 4.3, we proceed in parallel with the proof of Theorem 1.

Then the final statement in Theorem 2 is obtained. We complete the proof.
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