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CLASSIFICATION OF SEMISIMPLE COMMUTATIVE
BANACH ALGEBRAS OF TYPE I

JYUNJI INOUE, TAKESHI MIURA, HIROYUKI TAKAGI*,
AND SIN-EI TAKAHASI

ABSTRACT. In the first and fourth authors’ paper in 2017, it was shown that
there exists a BSE-algebra of type I isomorphic to no C*-algebras, which solved
negatively a question posed by the fourth author and O. Hatori. However, this
result suggests a further investigation of commutative Banach algebra of type I.
In the first part of the paper, we classify type I algebras into six families by means
of BSE, BED, and Tauberian. It is shown that a Banach algebra of type I is
isomorphic to a Segal algebra in some commutative C*-algebra if and only if it is
Tauberian. In the second part, we give concrete examples of type I algebras to
show that all of six families mentioned above are nonempty.

1. Introduction and overview of main results

Let A be a semisimple commutative Banach algebra with Gelfand space ® 4, and
C®(®,4) the Banach algebra of all bounded continuous complex-valued functions on
®,4 with supremum norm || - ||lo. Put A = {Z : 2 € A}, where 7 is the Gelfand
transform of € A. Let M(A) be the multiplier algebra of A. It is well known
that for each T" € M(A) there exists a unique bounded complex-valued continuous
function 7' on ® 4 such that 7z = 77 for all z € A (cf. [5]). Put ]\//_T(A) ={T:Te
M(A)}. Then we have A C ]\/4\(14) C C*®,). We say that an algebra A is of type I
if ]\/Z(A) = C%(®,4). Let A, be the set of all x € A such that 7 has compact support.
We say that A is Tauberian if A. is norm-dense in A. Any commutative C*-algebra
is a typical Tauberian Banach algebra of type 1.
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In [3], the first and fourth authors have shown that there exists a BSE-algebra of
type I such that it is not isomorphic to any C*-algebra. This solves a question posed
by the fourth author and Hatori (see [9, p.153, Problem 1]) negatively. However,
this result suggests a further investigation of Banach algebras of type L.

The purpose of this paper is to study type I Banach algebras by classifying them
into six families by means of BSE, BED and Tauberian. We also construct a sub-
family of each of these six families. Tauberian algebras and Segal algebras will play
a crucial role in our arguments because, as stated in the section 3, a Banach algebra
of type I is Tauberian if and only if it is isomorphic to a Segal algebra in a certain
commutative C*-algebra. Also it will be clear that any unital Banach algebra of type
I is just isomorphic to a unital commutaitve C*-algebra, and hence the non-unital
case is essential in our arguments.

For the details of Segal algebras, BSE-algebras and BED-algebras, refer to the
next section.

Let Btypd be the collection of all Banach algebras of type I. We define B!

0.0 typel

Btype[’ Bype[ and Btype[ by

Btypd {A € Byiyper : A is of BSE and of BED},

Btypd {A € Byyper : A is of BSE but not of BED},

B?ylljd {A € Byyper : A is not of BSE but of BED},

B?ygd {A € Byyper : A is not of BSE nor of BED},
respectively. By using the Tauberian property, we divide Btyp6 ; (4,7 =0,1) into two
families:

BZ’yJ[’)eI ={A¢c Bz;jpd A is Tauberian}

and

B ={AeB

tiper = : A is not Tauberian}.

ypel -
Since any algebra in B ver 18 Tauberian for j =1 (see Theorem 3.2), these divi-
sions are meaningful in the case j = 0. Thus we have the following disjoint union
representation of Biyper:

o 1,0,1 1,0,0 0,0,1 0,0,0
Btype[ - Btype] U Btype[ U Btype[ U Btype[ U Btype[ U Btype[

We prove that B per Consists of all commutative C*-algebras up to isomorphism
(see Corollary 4.2). We next give a concrete subfamily of Btype 7 which extends the
result obtained in [3]. This will be descreibed in Theorem 5.1. Then we construct
a subfamily of Btll;gfl in Theorem 5.2. For Btype 1, we give two subfamilies in Theo-

rems 6.1 and 6.2. Finally subfamilies of B?ygell and nyge

and 7.3, respectively. We will give such subfamilies by constructing special Banach

;7 are given in Theorems 7.1

function algebras on noncompact locally compact Hausdorff spaces.



2. Segal algebras, BSE-algebras and BED-algebras
(I) Segal algebras.

H. Reiter investigated Segal algebras in commutative group algebras. For Reiter’s
Segal algebras we refer to [6] and [7]. In [2], the first and fourth authors introduced
the notion of Segel algebras in semisimple commutative Banach algebras A with the
following properties:

(a) A is regular.
(B) There is a bounded approximate identity of A composed of elements in A..

It is obvious that commutative C*-algebras and group algebras on LCA groups
satisfy the conditions («) and (/3).

An ideal S in A is called a Banach ideal in A if S itself constitutes a Banach
space under a norm || - ||s satistying ||al|a < |lalls (@ € S) and |jaz||s < ||al/s||z]a
(a € S,z € A). A dense Banach ideal in A is called a Segal algebra in A if it has
approximate units. When A is equal to a group algebra L'(G) of an LCA group G,
Segal algebras in A coincide with Reiter’s Segal algebras in L'(G). We here present
the following important lemma which asserts that Segal algebras preserve “type I”.

Lemma 2.1. Let A be a Banach algebra of type I satisfying the conditions (o) and
(B), and S be a Segal algebra in A. Then S is also of type I.

Proof. By [2, Theorem B'-(ii)], we identify ®g with ® 4. Take o € C®(®,) arbitrarily.
Since A is of type I, we can take T' € M(A) with o = T. For any = € S, there are
y € S and z € A such that = yz by [2, Theorem A’]. Then we have

07 =Tjz = (Tz)y € S,

hence o yields a linear operator T, from S to itself such that T, (ab) = (T,a)b for
all a,b € S. Note that T, is continuous by the closed graph theorem, so T, is a
multiplier of S with T, = o. This observation implies that M (S) = C*(®s), namely,
S is of type I. O

(IT) BSE-algebras and BED-algebras.

Let A be a semisimple commutative Banach algebra with Gelfand space ®,. We
denote by span(®,) the linear span of ®4 in the dual space A* of A. Therefore, an
arbitrary element p in span(®,) has the unique expression

p=Y_ B

pEP 4



where p is a complex-valued function on ®, with finite support. A function o €
C®(®,) is said to be a BSE-function if there is a constant 3 > 0 such that

> Ble)oly)

pED 4

< Bllpl a-

for all p € span(®,). The BSE-norm of ¢, denoted by |o| psg(a), is the infimum
of all such 3. The norm || - || gsg(a) is written simply as || - ||psp if it will cause no
confusion.

Let Cpsp(®4) be the algebra of all BSE-functions, then it is a semisimple com-
mutative Banach algebra under the BSE-norm (see [9, Lemma 1]). An algebra A is
said to be a BSE-algebra if ]\/4\(/1) = Cpsp(®4) (see [9, p.151, Definition]). If {e)}
is a net in A satisfying the condition

1§w®ﬂ=1 (p € Dy),

then we call it a ®-weak approximate identity of A. We note that M (A) C Cpsp(Pa)
if and only if A has a bounded ®-weak approximate identity (see [9, Corollary 5]).
Therefore, any BSE-algebra has a bounded ®-weak approximate identity. For more
details on BSE-algebras, we refer the reader to [1, 4].

Let K(®4) be the directed set consisting of all compact subsets in ® 4 with respect
to the inclusion order. For o € Cpgp(P4) and K € K(Py), define

> Be)o(e)

PED Y

:p €span(®4), [p|

A <1, ﬂKIO},

HUHBSE,K = sup {

and so we have ||o||pse.x < ||o|Bse. We set

Chsp(®a) = q0 € Cpsp(Pa): i =0p.
Bse(Pa) {U Bse(Pa) KGIICI(%)A) ol BsE,Kx }

Then we see that C% (P 4) is a closed ideal of Cpsp(®4) (see [1, Corollary 3.9]). An
algebra A is said to be a BED-algebra if each function in C%¢5(®4) is precisely the
Gelfand transform of some element of A, that is, A = C%sp(Pa) (see [1, Definition
4.13]).

We now give a basic result for Segal algebras in a Banach algebra of type I.

Lemma 2.2. Let A be a Banach algebra of type I satisfying the conditions («) and
(B), and S be a Segal algebra in A. Then S is a dense subset of C%ep(Ps).

Proof. Let {ex}ren be a bounded approximate identity of A bounded by f > 0
composed of elements in A.. Then we see from [2, Theorem A’] that {e)}rea is an
approximate identity of S and |le)f||s < B f||s holds for all A € A and f € S. We
see from [2, Lemma 3.4] that S is regular. By Lemma 2.1, S is of type I, and then



Clep(Ps) C CO(Pg) = ]\/4\(5) We observe that S is dense in C%sp(Ps) with the
help of [1, Proposition 4.4]. O

In the rest of this paper, we will identify &g with &4 if S is a Segal algebra in
a semisimple commutative Banach algebra A satisfying the conditions (a) and ().
In fact, [2, Theorem B’-(ii)] states that ®g is homeomorphic to ®4. Especially, in
the case where A is a commutative C*-algebra Cy(X), consisting of all continuous
complex-valued functions on a locally compact Hausdorff space X vanishing at in-
finity, we will identify both ®g and ® 4 with X. In this case, the Gelfand transforms
on S and A are the identity mapping under this identification. Therefore, we may
and do write Cpgp(s)(X) and Chgp s (X) instead of Cpsp(®s) and Cpgp(Ps), re-
spectively. Moreover, we will say that S has a X-weak approximate identity if S
has a ®-weak approximate identity. Also we define C.(X) = (Cp(X))., that is, the
algebra of all continuous complex-valued functions on X with compact supports.

3. Tauberian Banach algebras of type I

In this section, we characterize a Tauberian Banach algebra of type I in terms of
Segal algebras. Moreover, we show that any BED-algebra of type I is Tauberian.

Theorem 3.1. Let A be a semisimple commutative Banach algebra. Then A is a
Tauberian Banach algebra of type I if and only if it is isomorphic to a Segal algebra
in a certain commutative C*-algebra.

Proof. First, assume that A is isomorphic to a Segal algebra in a commutative C*-
algebra. Then A is of type I by Lemma 2.1. Also we see from [2, Theorem A’] that
A is Tauberian.

Conversely, assume that A is a Tauberian Banach algebra of type I. Put S = A
and ||a||s = ||a||a for each a € A. Then S becomes a commutative Banach algebra
which is isomorphic to A. Put X = &4 and so S becomes a Banach ideal in Cy(X)
because A is of type 1.

Now we assert that C.(X) C S. To show this, let f € C.(X) and put K =
supp(f). Take z € X arbitrarily and choose f, € S with f.(x) # 0. There exist a
neighborhood U, of x and g, € Cy(X) such that g,(y) = 1/ f.(y) for all y € U,. Put
er = f+9:, and then e, € S with e, = 1 on U,. Since K is compact, we can find a
finite number of elements z1,--- ,x, € K such that {U,,,---,U,,} is a covering of
K. We now define

ug =1—(1—ez) (1 —e),
and then uyx € S with ux =1 on K. Thus f = fux € S as required.

The above assertion implies that S is a Segal algebra in Cy(X). In fact, it is

sufficient to show that S has approximate units. To do this, let f € S and € > 0 be



chosen arbitrarily. Then there is g € S with compact support such that ||f — g|ls <
£/2 because S is Tauberian. Put K’ = supp(g) and choose exr € C.(X) such that
0<eg <landeg =1on K’ Then we have exgr € S by our assertion. We obtain

lex(f = 9)lls < llexllscllf = glls < &/2.

The above inequalities show that

lexf = [flls < llex f —exglls + llexrg — flls <e/2+[lg = flls <e,
and hence S has approximate units. U

The following theorem describes a relationship between “BED” and “Tauberian”
in a Banach algebra of type I.

Theorem 3.2. Any BED-algebra of type I is Tauberian.

Proof. Let A be a BED-algebra of type I and put X = ®,4. As observed in the proof
of Theorem 3.1, A is isomorphic to a certain Banach ideal S in Cy(X). We will show
that S is Tauberian. To do this, let f € S and € > 0 be chosen arbitrarily. Since
S is of BED, we can find a compact subset K in X with || f|psgx < . Choose
ex € C.(X) such that 0 < ex < 1 and ex = 1 on K. Also, take p € span(X)
arbitrarily and define

a(g) = ) (1 ex(2))plx)g(x)

zeX

for each g € S. Then ¢ is an element of span(X) such that

q(z) = (1 — ex(x))p()

for each z € X. Hence we have

lglls = sup { > (1= ex(2))pla)g(x)

rzeX

:sup{Zp (1 —ex)g(x)

rzeX

< 2sup{ > Bla)h

zeX

19 €5 llglls < 1}

‘g€ Sv HgHS S 1}

the S |hlls < 1}




because ||(1 — ex)glls < lglls + llexlloollglls < 2|lglls for each g € S. Therefore, we
obtain

> )1 —ex)f(x)

zeX

=) qx)f(x)
<lq

< 2[lplls~ x e,

> a@)f(x)

¢ K

S* fHBSE,K

which implies ||f — fex|lBses) = |[(1 — ex)fllBses) < 2e. Since S is of BED, it
follows that || - ||s and || - || psk(s) are equivalent, and hence we conclude that S is
Tauberian. O

4. Algebras which belong to Bgy’jloel

We have the following result which gives a characterization of commutative C*-
algebras in terms of BSE and BED.

Theorem 4.1. Let A be a Banach algebra of type 1. Then the following are equivalent
to each other :

(i) A has a bounded approximate identity.
(ii) A is isomorphic to a C*-algebra.
(iii) A is of BSE and of BED.

Proof. (1)< (ii). This is essentially shown in the proof of [9, Theorem 3].

(ii)=-(iii). If A is isomorphic to a C*-algebra, then it is of BSE and of BED by
[9, Theorem 3] and [1, Theorem 5.10], respectively.

(iii)=-(ii). Suppose that A is of BSE and of BED. Since A is a BSE-algebra of
type I, it follows that Cpgr(®4) is isomorphic to the C*-algebra C*(®,). Also, since
C%er(P4) is a closed ideal of Cpsp(®a), we see that C%ep(P4) is isomorphic to a
C*-algebra. By the initial assumption, A is of BED, and then we deduce that it
must be isomorphic to a C*-algebra. O

Recall that an arbitrary commutative C*-algebra is always of type I, and hence
we obtain the following from Theorem 4.1.

Corollary 4.2. The family Btl?;;el consists of all commutative C*-algebras up to
1somorphism.



5. Algebras which belong to Btly’%ekj (k=0,1)

The case of kK = 1.

Let X be a noncompact locally compact Hausdorff space and p a positive continuous
regular Borel measure on X with u(X) = oco. Let LP(X, 1) be the LP-space on X,
where 1 < p < 00, and define

Copl X, 1) = ColX) N1 L7(X. ).
Then Cj,(X, 1) becomes a semisimple commutative Banach algebra with /'-norm:

[flloop = [flloe + LFllp (f € Cop(X, ).

As observed in the proof of [3, Lemma 2.1], Cp,(X, p) is a Segal algebra in Cy(X).
Theorem 3.1 shows that it is a Tauberian Banach algebra of type I. Moreover, we
see that this algebra has a bounded X-weak approximate identity as observed in the
proof of [3, Lemma 2.2]. Therefore, we see from [2, Theorem 9.10] that this Segal
algebra is of BSE.

Since X is noncompact and u(X) = oo, we can find a sequence {Ki, Ky, -}
of compact subsets of X and a sequence {Vi,V5,---} of open subsets of X with
compact closure such that

VinV,=@ (i#j), K,CV, and pu(K,)>1(neN).

For each n € N, choose a continuous complex-valued function f,, on X such that

folt) = (e K,), 0<fu<

— and  supp(fy) € Vi

711/p

Put
F=>fn

Then it is easy to see that f € Co(X) and f ¢ LP(X, u), hence Cp,(X, p) is proper

in Cy(X). This yields that Cy,(X, ¢) has no bounded approximate identity by [2,

Theorem C'-(ii)]. Therefore, we see from Theorem 4.1 that C (X, i) is not of BED.
By summarizing the above arguments, the following theorem is obtained.

Theorem 5.1. Let Cy,(X, u) be as in the above. Then it is a Tauberian Banach
algebra of type I which is of BSE but is not of BED, that is, this algebra belongs to
BLO1

typel *

Remark 1. A family of Segal algebras obtained in [3] is, of course, contained in

B;;;;lp but the family obtained in the above theorem is a wider one than this family.



The case of kK = 0.

Let X be a noncompact o-compact locally compact Hausdorff space and p a positive
Borel measure on X. Let 7 be a continuous complex-valued function on X such that
7(z) > 0 for all x € X and 1/7 € Cy(X), where (1/7)(z) = 1/7(x) (x € X). Note
that there do exist such a function 7 because X is o-compact. Furthermore, let
{Vi}zex be a family of open neighbourhoods V,, of x € X with compact closure. We
define

S = ST,{VI}(X7 :U’)
~{recux) il = sup [ 150000 < |

and

1flls = [[flloc + 117

for each f € S. Then (S, |-||s) is a natural Banach function algebra on X. Actually,
it is apparent that C.(X) C S, hence S separates strongly the points of X. By a
routine argument, we see that S is a Banach module over Cy(X). We now prove
that S is natural. Let ¢ € ®g be chosen arbitrarily and take e, € S with p(e,) = 1.
For any f € Cy(X), we can find a sequence {f,} in S which converges uniformly to
f because S is uniformly dense in Cy(X). Then we have

i faep = Fuealls < Tm1fo = fulle lleslls =0,

and hence {¢(f,)}52, converges to a complex number. We define

P(f) = lim o(fn)
for each f € Cy(X). This is well-defined because we can easily see that o(f) does
not depend on a choice of {f,}°2,. Apparently, ¢ is an element of ®¢,(x) = X with
©|ls = @, hence S is natural. Therefore, ®5 can be identified with X by [8, Theorem

3.2.4].
We assume that (X, u) and {V, },cx have the following properties:

(a) There are two positive constants m, and M, such that m, < p(V,) < M,
for all z € X.

(b) For any compact subset K in X, there is € X such that V, C X \ K.

(¢) Given x € X, a neighbourhood V of x and € > 0, there is a neighbourhood
U of x such that U CV and u(U) < e.

Then we have the following

Theorem 5.2. Under the assumptions (a),(b) and (c), the Banach algebra S =
S v,1 (X, ) has the following properties:

(i) S is of type I.



(i) S is not Tauberian.
(iii) S is of BSE but is not of BED.

1,0,0

Namely, S belongs to B, ..

Proof. (i) We can easily see that S is a Banach module over C*°(X), and hence
M(S) = C*(X), namely S is of type L.

(ii) We have [|1/7]|, < M, < oo by (a), hence 1/7 € S. Let h be an arbitrary
function in S with compact support. We can choose xy € X with V., C X\ supp(h)
by (b). Then we have from (a) that

1
S —h

T

1
S —h

T

>
S

1
> /V O = ) >0

which implies that S is not Tauberian.
(iii) To see that S is of BSE, let A be the directed set consisting of all finite subsets
of X with inclusion order, and take A = {z1,--- ,z,} € A arbitrarily. By (c), we

T

can find a family {Uy,---,U,} consisting of open subsets in X such that

1
i i © Vo, i) <
7€ Ui C Ve ) < —

i

and U;NU; =0 (i#7)

forall i = 1,--- ,n, where M; = sup{7(z) : * € V,,}. Next, we choose a finite set
{€xys €z, } in C.(X) such that

er,(z;) =1, 0<e, <1 and supp(e,) CU;

forall i =1,--- ;n. We define ey by

n
€\ = E €z, -
i=1

Then we have that ey(z;) =1 (1 <i <n) and

lells = llealloo + leall, = 1+ sup Z / a0 (1)d(1)

rzeX

<1+Z/ e, ()T (8)dp(t) <1+Z/ Mipu(t)

Thus, {ex}aea is a bounded X-weak approximate identity of S. Therefore, we have
that M(S) C Cpsgs)(X) by [9, Corollary 5]. Hence S must be of BSE because S
is of type I by (i). S is not Tauberian by (ii), and then Theorem 3.2 shows that S
is not of BED. 0

Remark 2. If X is a locally compact o-compact Hausdorff space with a positive
continuous regular Borel measure p, then (c) is automatically satisfied.



Remark 3. Let G be a locally compact o-compact noncompact group with contin-
uous left Harr measure p. Then the conditions (a), (b) and (c¢) are automatically
satisfied. In fact, take an open neighbourhood V, of the identity element e with com-
pact support and put V,, = xV, for eachx € G. Thenm,, = M, = p(V.) = p(Vz) >0
and hence (a) is satisfied. Let K be an arbitrary compact set in G. If K NV, # &
for all z € G\ K, then G\ K C KV,7! hence G must be compact because KV,
has compact closure. This contradicts that G is noncompact. Thus, we see that (b)
is satisfied. Also, since p is continuous and regular, it follows from Remark 2 that
(c) is satisfied.

6. Algebras which belong to B?é;d

In this section, we will give two subfamilies of B> . To do this, let X be a non-

typel
compact locally compact Hausdorff space.

(1)
Assume that X is o-compact. Then we can choose a sequence {Uy, Uy, - - - } of open

subsets of X with compact closure such that U; S U C U, G Us C--- and
U U, = X. For each n € N, choose z,, € U,, \ U,_1, where Uy = (), and define

CO,]L{M}(X) = {f € CO(X) : Z |f(xz)’p < OO} )

for 1 < p < oo. Then it becomes a semisimple commutative Banach algebra under
[*-norm:

oo 1/p
1 oy = [1f1lo + (Z If(xi)l”> (f € Coptaiy(X)).
i=1

In this case, we have the following

Theorem 6.1. The Banach algebra Cyp 12,1(X) is a BED-algebra of type I but is

not a BSE-algebra, that is, this algebra belongs to Bgy’;)e].

Proof. We first show that Cy ), 1,3 (X) is a Segal algebra in Cy(X). Since each com-
pact subset of X is contained in some U,, it follows that C.(X) C Cj p (2,1 (X),
hence Cj, , {z,3(X) is a dense Banach ideal in Cy(X). Then it is sufficient to show
that Co, p (,) (X) has approximate units. To see this, take f € Cy ) (2,3(X) and e > 0
arbitrarily. Then there is V. € N such that

> If)l <er/2r.

i=Nz+1



Put
K={zecX:|f(x)|>e/2} UUx,,
and let U be an open neighbourhood of K with compact closure. Choose a contin-

uous function e on X such that e|x = 1,e[x\v = 0 and 0 < e < 1. Then e is in
C.(X) and

oo 1/p
If = felloop oy = sup |f(z)(1 —e(2))] + ( > )1 — €(Ii))|”>

<egf24+¢e/2=¢

holds. Then Cj p,(2,1(X) has approximate units as required.

By the above argument and Theorem 3.1, we see that Cy , (,,3(X) is a Tauberian
Banach algebra of type I. Furthermore, we see that Cj , (5,3 (X) has no bounded X-
weak approximate identity. In fact, suppose on the contrary that it has a bounded
X-weak approximate identity {ey}rca bounded by 5. Then for each n € N, we can
find A\, € A such that

1
nr/2 < ‘|€>\n"oo,p7{$i} < B

This is a contradiction because n is arbitrary. Thus we see that Cp p (5,3(X) is not
of BSE by [9, Corollary 5].

Finally, we show that Cj , (5,1(X) is of BED. In fact, since Cy p, (2,1(X) is Taube-
rian, it follows from [1, Proposition 4.1] that

Co,p,{wi}<X) c C%SE(CO,,,,{IZ.}(X))(X)-

To show the reverse inclusion, let f € C’%SE(CO oy xy(X). Take £ > 0 arbitrarily,
and hence there is Ky € KC(X) with || f||pse.x, < €. Let p.(g9) = g(z) for x € X and
9 € Co,pz:3(X). Since ||pzlle, , .., 00 < 1 and pulr, = 0 for all z ¢ Ko, it follows
that

|f@)] < fllBsexr, <€

for all z ¢ Ky, and hence f € Cy(X). Next, we need to show Y > |f(z;)]P < oo.
To do this, take n € N arbitrarily and consider the space 4, where 1/p+ 1/q = 1.
Then we can choose a = (ay,--- ,a,) € (4 such that

n 1/p
- (Z \f(asmp) . (6.1

Moreover, let p, € span(X) be a functional defined by p,(z;) = a; fori =1,2,--- |n

n

Z ai f(x;)

i=1

lallz =1 and

and p, () = 0 otherwise. Then we have from Horder-Rogers’ inequality and the first



equation of (6.1) that

n

IPallcy oy = sup aig(w;)
ot 9€C0 p (2,3 (X) Zz:;
”gHoo,p,{zi}Sl
1/q n 1/p
< (Zw) (ngump)
HECOp {wz} i=1
”gHoo o {z; }<1
< 1.
Hence,
n n p n p
Z |f (@) = Z a; f(xi) sup Zﬁ(%)f(x
i=1 i=1 pEspan(X) i1

||p||coyp’{1i}(x)*§1

= Hf”%SE(CO,p,{zi}(X)) <0

holds by the second equation of (6.1). Since n is arbitrary, it follows that

Z]f ) < || flpsm (Coprayy (X)) < X

as required, that is, f € Cp p (2,1(X). Consequently, we have

Cop ey (X) = O%SE(CO’p,{mi}(X))(X)ﬂ
namely, Co, p z,3(X) is of BED. O

(IT)
Let A = Cy(X) and 7 an unbounded complex-valued continuous function on X. For
n € N, define

Aymy={feA: fr"e A(0<k<n)}

and .
1fllemy =D NF™ e (f € Arwy)-
k=0

Note that 7 is a local A-function, that is, fr € A holds for all f € A.. Therefore,
it follows from [2, Theorem 5.4 (ii)] that A, is a Segal algebra in A, hence it is of
type I from Lemma 2.1. Moreover, we see from [2, Remark 9.11 (b)] that A, is of
BED but is not of BSE.

By summarizing the above arguments, the following theorem is obtained.

Theorem 6.2. Let A, be as in the above. Then A, is a BED-algebra of type I

but is not a BSE- algebm that s, this algebra belongs to Btypd



In addition, we have from [2, Proposition 8.2 (ii)] that
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7. Algberas which belong to B> (k=0,1)

typel
The case of k = 1.

Let X be a locally compact Hausdorff space. Let S; and S; be two Segal algebras
in Cy(X). Then S; N Sy is a Segal algebra in Cy(X) with norm ||f|s, + || f]|s, for
f € S1 NSy (see [2, Theorem D’]). We denote by S; A Sy such a Segal algebra in
Co(X). Under this notation, we have the following

Theorem 7.1. Assume that S is not of BSE, Sy is of BSE and S SZ Sa. Then

(i) S1 A Sy is a Tauberian Banach algebra of type I.
(ii) S1 A Sy is neither of BSE nor of BED.

Namely, Si N\ Sy belongs to B?Z;g’elf.

Proof. (i) This follows directly from Theorem 3.1.

(ii) We first show that S7 A Sy is not of BSE. In fact, suppose on the contrary that
S1 A Sy is of BSE, so it has a bounded X-weak approximate identity, say {ex}iea-
Since |lexlls; < lealls,ns, for all A € A, it follows that {ey}iea is also a bounded
X-weak approximate identity of S;. Therefore, S; must be of BSE with the help of
[2, Theorem 9.10]. This contradicts that S; is not of BSE.

We next show that Sy A S, is not of BED. We first assert that Cpgp(s,as,)(X) =
Cpsr(s)(X) holds. Clearly Cpsp(s,as,)(X) € Crss;)(X) because [|p|(s;as,)- <
|p|ls: for all p € span(X). To show the reverse inclusion, take o € Cpgp(s,)(X)
arbitrarily. Then by [9, Theorem 4], we can find a bounded net {o)}rea in S; such
that limy oy(z) = o(z) for all x € X. Also, since Sy is of BSE, it has a bounded
X-weak approximate identity, say {u;}ic;. Put oy; = oyu; foreach A € A and i € 1.
Since both S; and S, are ideals of Cy(X), it follows that {ox;}(n:eaxs is a net in
S1 A Sy such that limy ; o) ;(x) = o(x) for all z € X. Moreover,

lonillsins, = lloawlls, + [loauills, < lloalls luilloo + lloalloollwills,
< lloalls lluills, + llolls, [luills,
< 2sup [joa s, x sup [[uslls, < o0
AEA el
for all A € A and 7 € I. Thus, we see that {0 ;}(ni)eaxr is a bounded net in S; A S,.
Then it follows that ¢ € Cpsg(s,ns,)(X) with the help of [9, Theorem 4] again.
Thus, we see that the reverse inclusion holds as required. Our assertion implies that

two BSE-norms ||| sse(siasy) and |- |Bse(s) on Cpsesins:) (X) = Crsp(s,)(X) are
equivalent. Note also that S; is the || -||s,-norm closure of C.(X) by [2, Theorem A’]



and that the ||-||s,-norm closure of C.(X) is contained in the |- || psg(s,)-norm closure
of S1AS; because Co(X) € S1ASy and || f| Bses:) < || flls, for all f € S;. Moreover,
note that S; A SQH'HBSE(SMS?) = C%SE(SMSQ)(X) holds by Lemma 2.2. Therefore, we
have
S1 A S, ; S, = m”'”ﬁ C mn'”BSE(Sl) _ m”'HBSE(SlASQ)
= C%SE(SU\SQ)(X)?
which implies that S; A S5 is not of BED. OJ

The above theorem gives many Segal algebras belonging to ny’?)’ell. For example,

let S; = Co(R™);) and Sy = Cy,(R", dw), where n € N, 1 < p < 1/a and dx is the
Lebesgue measure on R"” with 7(z) = |z|*+1 (z € R"). Then S is a Segal algebra
of type I in Cy(R™) which is not of BSE by Theorem 6.2. Also Sy is a BSE Segal
algebra of type I in Cy(R"™) by Theorem 5.1. Define
1/|z|Y/P
. { flal? (fa] > 1)
1 (lz] <1).

Then we can easily see that f € S;\ Ss, and hence S; € Ss. Thus, by Theorem 7.1,
we obtain the following

Corollary 7.2. If 7(z) = |z|*+ 1 (z € R"), 1 < p < n/a and dz is the Lebesgue

measure on R", then Co(R"™),1)y A Cop(R™, dx) belongs to Bg;g’ell.

The case of k = 0.

Let X be a noncompact locally compact Hausdorff space and 7 a continuous complex-
valued function on X such that inf,cx 7(z) > 1 and 1/7 € Cy(X). Define

Co(X;7) = {f € C*(X): sup |f(z)|7(x) < oo}
and
[ flloo,r = sup |f(2)|7(z)

for each f € Cy(X; 7). By aroutine argument, we see that Cy(X; 7) is a commutative
Banach algebra with norm || - ||« such that

Ce(X) C Co(X;7) C Co(X).

Therefore, Cy(X;7) becomes a dense Banach ideal in Cy(X). Also Co(X;7) is
natural. In fact, let ¢ be an arbitrary element of ®¢,(x,7). Choose h € Cy(X;T)
with ¢(h) # 0 and define

P(f) = w(hf)/e(h)



for each f € Cy(X). This is well-defined because the right hand side of the above
equation is independent of a choice of h. By an easy calculation, we see that ¢ is a
nonzero complex homomorphism on Cy(X), and hence we can find x € X such that
o(f) = f(x) holds for all f € Cy(X). This implies that ¢(f) = f(x) holds for all
[ € Co(X;7), namely, Co(X;7) is natural as required. Therefore, ®¢,(x;r) can be
identified with X by [8, Theorem 3.2.4]. Then we have the following

Theorem 7.3. Let Cy(X;7) be as in the above. Then
(i) Co(X;7) is not Tauberian.
(ii) Co(X;7) is a Banach algebra of type I but is neither of BSE nor of BED.

Namely, Co(X;T) belongs to B?y’gfl.

Proof. (i) Suppose that Cy(X;7) is Tauberian. Put h = 1/7, and then it must be
in Cy(X;7). Therefore, we can find f € Co(X;7) with compact support such that
|h — fllo.r <1 by hypothesis. On the other hand, we have

— f(x)|7(x) =sup |1l — f(z)7(z)| > 1.

zeX

1
(@)
Thus, we reach to a contradiction.

(ii) Note that Co(X;7) is an ideal of C?(X), and hence C*(X) C M(Cy(X;T))
holds. Also, since ®¢(x;r) can be identified with X, it follows that M(Cy(X;7)) C
C*(X). Thus we obtain M (Co(X;7)) = C*(X), that is, Co(X;7) is of type 1. Also,
since Cyp(X;7) is a Banach algebra of type I but is not Tauberian, it follows from
Theorem 3.2 that Co(X;7) is not of BED. Finally, we show that Cy(X;7) is not
of BSE. Suppose on the contrary that Cy(X;7) is of BSE, hence it has a bounded
X-weak approximate identity, say, {ex}rea bounded by 5. Then we can choose
zo € X and A9 € A such that 7(xg) > 26 + 1 and |ey,(zo) — 1| < 1/2 because
sup,cx 7(z) = 0o by the assumption on 7. Then we have

Hh - fHoo,‘r = sup
zeX

20+ 1 1
B > lexglloo,r = sup [exy (@)[7(x) > ex, (o) |7 (20) > =0+,
zeX 2 2
which is a contradiction. O
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