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THE VON NEUMANN-JORDAN CONSTANT OF
π/2-ROTATION INVARIANT NORMS ON R2

YUKINO TOMIZAWA

Abstract. In this paper, we study the von Neumann-Jordan constant of π/2-

rotation invariant norms on R2. We give some estimations of the constant and

have a relationship between the constant and a ratio of two certain functions.

These results are an extension of existing results of a unitary version of the von

Neumann-Jordan constant.

1. Introduction and preliminaries

This paper is concerned with the von Neumann Jordan constant of Banach spaces.

For a Banach space X, let BX and SX be the unit ball and unit sphere, respectively.

In connection with the famous work [4] of Jordan and von Neumann concerning

inner products, the von Neumann Jordan constant CNJ(X) of X was introduced by

Clarkson in [3] as follows:

CNJ(X) := sup

{
∥x+ y∥2 + ∥x− y∥2

2(∥x∥2 + ∥y∥2)
: x, y ∈ X, (x, y) ̸= (0, 0)

}
.

The constant CNJ(X) can be viewed as a measure of the distortion of BX from the

viewpoint of the parallelogram law. An estimation 1 ≤ CNJ(X) ≤ 2 holds for any

X. It is known that CNJ(X) = 1 if and only if X is a Hilbert space ([4]), and

CNJ(X) < 2 if and only if X is uniformly nonsquare ([7]). So far many papers

were devoted to studying von Neumann-Jordan constant of Banach spaces; see, e.g.,

[1, 3, 6, 8, 10].

A norm ∥·∥ on R2 is said to be absolute if ∥(a, b)∥ = ∥(|a|, |b|)∥ for each (a, b) ∈ R2,

and normalized if ∥(1, 0)∥ = ∥(0, 1)∥ = 1. Typical examples of such norms are the

ℓp-norms ∥ · ∥p given by

∥(a, b)∥p :=

{
(|a|p + |b|p)1/p (1 ≤ p <∞)

max{|a|, |b|} (p = ∞).
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Let AN2 be a collection of all absolute normalized norms on R2. Let Ψ2 be a family

of all convex functions ψ on [0, 1] satisfying max{1 − t, t} ≤ ψ(t) ≤ 1 for each

t ∈ [0, 1]. As was shown in [2] and [6], AN2 is in a one-to-one correspondence with

Ψ2 under an equation ψ(t) = ∥(1− t, t)∥ for each t ∈ [0, 1]. An absolute normalized

norm corresponding to ψ ∈ Ψ2 is denoted by ∥ · ∥ψ; and it satisfies the following

equation:

∥(a, b)∥ψ :=

 (|a|+ |b|)ψ
(

|b|
|a|+ |b|

) (
(a, b) ̸= (0, 0)

)
0

(
(a, b) = (0, 0)

)
.

Moreover, a convex function ψ2 corresponding to the Euclidean norm ∥ · ∥2 is given

by

ψ2(t) :=
(
(1− t)2 + t2

)1/2
.

It should be noted that ψ2(t) = ψ2(1 − t) for each t ∈ [0, 1]. Furthermore, a norm

∥ · ∥ on R2 is said to be π/2-rotation invariant if the π/2-rotation matrix

R(π/2) :=

(
0 −1

1 0

)
is an isometry on (R2, ∥·∥), or equivalently, ∥(a, b)∥ = ∥(−b, a)∥ for each (a, b) ∈ R2.

The purpose of this paper is to study the von Neumann-Jordan constant of π/2-

rotation invariant norms on R2. Let ψ̃ be an element of Ψ2 defined by ψ̃(t) = ψ(1−t)
for each ψ ∈ Ψ2, and ℓ

2
ψ,ψ̃

the space R2 endowed with the norm

∥(a, b)∥ψ,ψ̃ :=


(|a|+ |b|)ψ

(
|b|

|a|+ |b|

)
(ab ≥ 0)

(|a|+ |b|)ψ̃
(

|b|
|a|+ |b|

)
(ab ≤ 0).

In [5, Theorem 3.2], it was shown that any π/2-rotation invariant normed space is

isometrically isomorphic to some Day-James space of the form ℓ2
ψ,ψ̃

. The norm ∥·∥ψ,ψ̃
is also π/2-rotation invariant for each ψ ∈ Ψ2 ([5, Proposition 3.4]). Moreover, the

von Neumann-Jordan constant is invariant under isometric isomorphisms. Hence

for our purpose, it is enough to consider Day-James spaces of the form ℓ2
ψ,ψ̃

; and

throughout this paper, π/2-rotation invariant normed spaces are assumed to be ℓ2
ψ,ψ̃

for some ψ ∈ Ψ2. Henceforth, fix an element ψ in Ψ2 with ψ ̸= ψ2, put the norm

∥ · ∥ = ∥ · ∥ψ,ψ̃ for short, and the space ℓ2
ψ,ψ̃

will be simply denoted by Yψ. Under

this hypothesis, we obtain some estimations of the von Neumann-Jordan constant.

In the second section, we present keys to the proofs of the von Neumann-Jordan

constant in Day-James spaces having relation to π/2-rotation invariant norms. In

the third section, using the keys to the proofs, we get a relationship between the
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constant and the ratio of two certain functions. These results are an extension of

existing results of the unitary version of the von Neumann-Jordan constant ([9]).

2. Auxiliary results on Yψ

In this section, we present keys to the proofs of our results in the next section.

Theorem 2.1. Let a, b > 0 and c ∈ (0, 1]. Then the following two statements are

equivalent:

(I) There exists a pair x, y ∈ SYψ with x+ cy ̸= 0 satisfying ∥x∥2 = ∥y∥2 = 1/a

and ∥x+ cy∥ = b∥x+ cy∥2.
(II) There exist r, s, t ∈ [0, 1] such that ψ(s) = aψ2(s), ψ(t) = aψ2(t), and ψ(r) =

bψ2(r), where r, s, t satisfy one of the following conditions:

(a) r =
sψ(t) + ctψ(s)

ψ(t) + cψ(s)
.

(b)
s

ψ(s)
>
c(1− t)

ψ(t)
and r =

sψ(t) + c(t− 1)ψ(s)

ψ(t) + c(2t− 1)ψ(s)
.

(c)
s

ψ(s)
≤ c(1− t)

ψ(t)
and r =

(1− s)ψ(t) + ctψ(s)

(1− 2s)ψ(t) + cψ(s)
.

Proof. Suppose that (I) holds. Let x, y be elements of SYψ having the properties set

out in (I). Since R(π/2) is an isometric isomorphism on Yψ, by the definition of the

norm of Yψ, we have only to consider two kinds of pairs x, y: one pair which x and

y use the same norm while another which x and y both use different norms. Thus,

we may assume that x is in the first quadrant. The argument separates into two

parts according to the position of y.

Case 1: Suppose that both x, y are in the first quadrant. Thus

x =
1

ψ(s)
(1− s, s) and y =

1

ψ(t)
(1− t, t) (2.1)

for some s, t ∈ [0, 1]. By (I) and the definition of ∥ · ∥2, we obtain 1/a = ∥x∥2 =

ψ2(s)/ψ(s) and 1/a = ∥y∥2 = ψ2(t)/ψ(t). Thus we have ψ(s) = aψ2(s) and ψ(t) =

aψ2(t). Next we obtain

x+ cy =

(
1− s

ψ(s)
+ c

1− t

ψ(t)
,
s

ψ(s)
+ c

t

ψ(t)

)
.
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It is clear that x+ cy ̸= 0 for all s, t ∈ [0, 1] and c ∈ (0, 1]. We have

ψ(t) + cψ(s)

ψ(s)ψ(t)
ψ(r) =

(∣∣∣∣1− s

ψ(s)
+ c

1− t

ψ(t)

∣∣∣∣+ ∣∣∣∣ s

ψ(s)
+ c

t

ψ(t)

∣∣∣∣)ψ(r)
= ∥x+ cy∥ = b∥x+ cy∥2 = b

ψ(t) + cψ(s)

ψ(s)ψ(t)
ψ2(r),

where r is given by the equation set out in (a). Hence ψ(r) = bψ2(r).

Case 2: Suppose that y is in the fourth quadrant. Thus

y =
1

ψ(t)

(
t,−(1− t)

)
(2.2)

for some t ∈ [0, 1] (and x has the same form as (2.1) in Case 1). As in the preceding

paragraph, it follows that ψ(t) = aψ2(t) since 1/a = ∥y∥2 = ψ2(1 − t)/ψ(t) =

ψ2(t)/ψ(t). We obtain

x+ cy =

(
1− s

ψ(s)
+ c

t

ψ(t)
,
s

ψ(s)
− c

1− t

ψ(t)

)
.

We note that x+ cy ̸= 0. Now, we put∣∣∣∣ s

ψ(s)
− c

1− t

ψ(t)

∣∣∣∣ (1− s

ψ(s)
+ c

t

ψ(t)
+

∣∣∣∣ s

ψ(s)
− c

1− t

ψ(t)

∣∣∣∣)−1

=


sψ(t) + c(t− 1)ψ(s)

ψ(t) + c(2t− 1)ψ(s)
=: r1

(
s

ψ(s)
>
c(1− t)

ψ(t)

)
· · · (i)

−sψ(t) + c(1− t)ψ(s)

(1− 2s)ψ(t) + cψ(s)
=: r2

(
s

ψ(s)
≤ c(1− t)

ψ(t)

)
. · · · (ii)

(2.3)

In the case of c = 1, it must be (s, t) ̸= (1, 0), but it can be (s, t) = (0, 1). Thus the

magnitude correlation of s and t is divided into two cases in (2.3).
In the case of (2.3)(i), x+ cy is in the first quadrant. We have

ψ(t) + c(2t− 1)ψ(s)

ψ(s)ψ(t)
ψ(r1) =

(∣∣∣∣1− s

ψ(s)
+ c

t

ψ(t)

∣∣∣∣+ ∣∣∣∣ s

ψ(s)
− c

1− t

ψ(t)

∣∣∣∣)ψ(r1)
= ∥x+ cy∥ = b∥x+ cy∥2 = b

ψ(t) + c(2t− 1)ψ(s)

ψ(s)ψ(t)
ψ2(r1).

Hence ψ(r) = bψ2(r), where r is given by the equation set out in (b). In the case of

(2.3)(ii), x+ cy is in the fourth quadrant. We put

1− r2 = 1− −sψ(t) + c(1− t)ψ(s)

(1− 2s)ψ(t) + cψ(s)
=

(1− s)ψ(t) + ctψ(s)

(1− 2s)ψ(t) + cψ(s)
=: r′2.

Since ψ̃(t) = ψ(1− t) for all t ∈ [0, 1], we have

(1− 2s)ψ(t) + cψ(s)

ψ(s)ψ(t)
ψ(r′2) =

(∣∣∣∣1− s

ψ(s)
+ c

t

ψ(t)

∣∣∣∣+ ∣∣∣∣ s

ψ(s)
− c

1− t

ψ(t)

∣∣∣∣)ψ̃(r2)
= ∥x+ cy∥ = b∥x+ cy∥2 = b

(1− 2s)ψ(t) + cψ(s)

ψ(s)ψ(t)
ψ2(r

′
2).
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Hence ψ(r) = bψ2(r), where r is given by the equation set out in (c). This completes

the proof of (I) ⇒ (II).

For the converse, let r, s, t be elements of [0, 1] satisfying one of the three conditions

set out in (II). If r, s, t satisfy (a), then the elements x = ψ(s)−1(1 − s, s) and

y = ψ(t)−1(1 − t, t) have the desired properties. Similarly, in the cases of (b) and

(c), it is enough to consider x = ψ(s)−1(1 − s, s) and y = ψ(t)−1
(
t,−(1 − t)

)
. The

proof is complete. □

Theorem 2.2. Let a, b > 0 and c ∈ (0, 1]. Then the following two statements are

equivalent:

(I) There exists a pair x, y ∈ SYψ with x− cy ̸= 0 satisfying ∥x∥2 = ∥y∥2 = 1/a

and ∥x− cy∥ = b∥x− cy∥2.
(II) There exist r, s, t ∈ [0, 1] such that ψ(s) = aψ2(s), ψ(t) = aψ2(t), and ψ(r) =

bψ2(r), where r, s, t satisfy one of the following conditions:

(a1)
1− s

ψ(s)
≥ c(1− t)

ψ(t)
,

s

ψ(s)
≥ ct

ψ(t)
, and r =

sψ(t)− ctψ(s)

ψ(t)− cψ(s)
.

(a2) r =
(1− s)ψ(t) + c(t− 1)ψ(s)

(1− 2s)ψ(t) + c(2t− 1)ψ(s)
satisfying one of the following conditions:

(1)
1− s

ψ(s)
>
c(1− t)

ψ(t)
and

s

ψ(s)
<

ct

ψ(t)
.

(2)
1− s

ψ(s)
<
c(1− t)

ψ(t)
and

s

ψ(s)
>

ct

ψ(t)
.

(b)
1− s

ψ(s)
≤ ct

ψ(t)
and r =

(s− 1)ψ(t) + ctψ(s)

(2s− 1)ψ(t) + cψ(s)
.

(c)
1− s

ψ(s)
>

ct

ψ(t)
and r =

sψ(t) + c(1− t)ψ(s)

ψ(t) + c(1− 2t)ψ(s)
.

Proof. Suppose that (I) holds. Let x, y be elements of SYψ having the properties set

out in (I). Suppose that x is in the first quadrant.

Case 1: Suppose that both x, y are in the first quadrant. Thus we have (2.1) for

some s, t ∈ [0, 1]. By (I), we obtain 1/a = ∥x∥2 = ψ2(s)/ψ(s) and 1/a = ∥y∥2 =

ψ2(t)/ψ(t). Thus we have ψ(s) = aψ2(s) and ψ(t) = aψ2(t). Next we obtain

x− cy =

(
1− s

ψ(s)
− c

1− t

ψ(t)
,
s

ψ(s)
− c

t

ψ(t)

)
.

— 129 —



We note that x− cy ̸= 0. Now, we put∣∣∣∣ s

ψ(s)
− c

t

ψ(t)

∣∣∣∣ (∣∣∣∣1− s

ψ(s)
− c

1− t

ψ(t)

∣∣∣∣+ ∣∣∣∣ s

ψ(s)
− c

t

ψ(t)

∣∣∣∣)−1

=


sψ(t)− ctψ(s)

ψ(t)− cψ(s)
=: r1

(
1− s

ψ(s)
≥ c(1− t)

ψ(t)
and

s

ψ(s)
≥ ct

ψ(t)

)
· · · (i)

−sψ(t) + ctψ(s)

(1− 2s)ψ(t) + c(2t− 1)ψ(s)
=: r2

(
1− s

ψ(s)
>
c(1− t)

ψ(t)
and

s

ψ(s)
<

ct

ψ(t)

)
· · · (ii)

sψ(t)− ctψ(s)

(2s− 1)ψ(t) + c(1− 2t)ψ(s)
=: r3

(
1− s

ψ(s)
<
c(1− t)

ψ(t)
and

s

ψ(s)
>

ct

ψ(t)

)
. · · · (iii)

(2.4)

We note that if c = 1, then we cannot get r1. Moreover, we must have s ̸= t in the

case of c = 1, but we can choose s = t in the case of c < 1.

In the case of (2.4)(i), x− cy is in the first quadrant. For r1, an argument similar

to that in Case 1 of Theorem 2.1, we have ψ(r) = bψ2(r), where r is given by the

equation set out in (a1). In the cases of (2.4)(ii) and (iii), x − cy is in the fourth

and second quadrant, respectively. We note that r2 = r3. We have

1− r2 = 1− −sψ(t) + ctψ(s)

(1− 2s)ψ(t) + c(2t− 1)ψ(s)
=

(1− s)ψ(t) + c(t− 1)ψ(s)

(1− 2s)ψ(t) + c(2t− 1)ψ(s)
=: r′2.

For r′2, an argument similar to that in Case 2 of Theorem 2.1 shows that ψ(r) =

bψ2(r), where r is given by the equation set out in (a2).

Case 2: Suppose that y is in the fourth quadrant. Then we have (2.2) for some

t ∈ [0, 1] (and x has the same form as in Case 1). As in the preceding paragraph,

it follows that ψ(t) = aψ2(t) since 1/a = ∥y∥2 = ψ2(1 − t)/ψ(t) = ψ2(t)/ψ(t). We

obtain

x− cy =

(
1− s

ψ(s)
− c

t

ψ(t)
,
s

ψ(s)
+ c

1− t

ψ(t)

)
.

We note that x− cy ̸= 0. Now, we put(
s

ψ(s)
+ c

1− t

ψ(t)

)(∣∣∣∣1− s

ψ(s)
− c

t

ψ(t)

∣∣∣∣+ s

ψ(s)
+ c

1− t

ψ(t)

)−1

=


sψ(t) + c(1− t)ψ(s)

(2s− 1)ψ(t) + cψ(s)
=: r4

(
1− s

ψ(s)
≤ ct

ψ(t)

)
· · · (i)

sψ(t) + c(1− t)ψ(s)

ψ(t) + c(1− 2t)ψ(s)
=: r5

(
1− s

ψ(s)
>

ct

ψ(t)

)
. · · · (ii)

(2.5)

In the case of c = 1, it must be (s, t) ̸= (0, 1), but it can be (s, t) = (1, 0). Thus the

magnitude correlation of s and t is divided into two cases of (2.5)(i) and (ii).

In the case of (2.5)(i), x− cy is in the second quadrant. We note that

1− r4 = 1− sψ(t) + c(1− t)ψ(s)

(2s− 1)ψ(t) + cψ(s)
=

(s− 1)ψ(t) + ctψ(s)

(2s− 1)ψ(t) + cψ(s)
=: r′4.
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For r′4, an argument similar to that in Case 2 of Theorem 2.1 shows that ψ(r) =

bψ2(r), where r is given by the equation set out in (b). In the case of (2.5)(ii), x−cy
is in the first quadrant. For r5, an argument similar to that in Case 1 of Theorem

2.1 shows that ψ(r) = bψ2(r), where r is given by the equation set out in (c). This

completes the proof of (I) ⇒ (II).

For the converse, let r, s, t be elements of [0, 1] satisfying one of the three conditions

set out in (II). If r, s, t satisfy (a1) or (a2), then the elements x = ψ(s)−1(1 − s, s)

and y = ψ(t)−1(1 − t, t) have the desired properties. Similarly, in the cases of (b)

and (c), it is enough to consider x = ψ(s)−1(1 − s, s) and y = ψ(t)−1(t,−(1 − t)).

The proof is complete. □

In this context, we have the following lemmas.

Lemma 2.3. Let b > 0, ψ(s) = bψ2(s) and ψ(t) = bψ2(t) for s, t ∈ [0, 1]. Then

sψ(t) + tψ(s)

ψ(t) + ψ(s)
=

(1− s)ψ(t) + (t− 1)ψ(s)

(1− 2s)ψ(t) + (2t− 1)ψ(s)
.

Proof. We have

{sψ(t) + tψ(s)}{(1− 2s)ψ(t) + (2t− 1)ψ(s)} − {ψ(t) + ψ(s)}{(1− s)ψ(t) + (t− 1)ψ(s)}

= {t(2t− 1)− (t− 1)}ψ(s)2 + {s(1− 2s)− (1− s)}ψ(t)2

= {t2 + (t− 1)2}ψ(s)2 − {s2 + (s− 1)2}ψ(t)2

= ψ2(t)
2ψ(s)2 − ψ2(s)

2ψ(t)2

=
(ψ(t)

b

)2
ψ(s)2 −

(ψ(s)
b

)2
ψ(t)2 = 0.

□

Lemma 2.4. Let b > 0, ψ(s) = bψ2(s) and ψ(t) = bψ2(t) for s, t ∈ [0, 1]. Then

sψ(t) + (t− 1)ψ(s)

ψ(t) + (2t− 1)ψ(s)
=

(s− 1)ψ(t) + tψ(s)

(2s− 1)ψ(t) + ψ(s)
.

Proof. We have

{sψ(t) + (t− 1)ψ(s)}{(2s− 1)ψ(t) + ψ(s)} − {ψ(t) + (2t− 1)ψ(s)}{(s− 1)ψ(t) + tψ(s)}

= {s(2s− 1)− (s− 1)}ψ(t)2 + {(t− 1)− t(2t− 1)}ψ(s)2

= {s2 + (s− 1)2}ψ(t)2 − {t2 + (t− 1)2}ψ(s)2

= ψ2(s)
2ψ(t)2 − ψ2(t)

2ψ(s)2

=
(ψ(s)

b

)2
ψ(t)2 −

(ψ(t)
b

)2
ψ(s)2 = 0.

□
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Lemma 2.5. Let b > 0, ψ(s) = bψ2(s) and ψ(t) = bψ2(t) for s, t ∈ [0, 1]. Then

(1− s)ψ(t) + tψ(s)

(1− 2s)ψ(t) + ψ(s)
=
sψ(t) + (1− t)ψ(s)

ψ(t) + (1− 2t)ψ(s)
.

Proof. By the proof of Lemma 2.4, we have

{(1− s)ψ(t) + tψ(s)}{ψ(t) + (1− 2t)ψ(s)} − {(1− 2s)ψ(t) + ψ(s)}{sψ(t) + (1− t)ψ(s)}

= {s2 + (s− 1)2}ψ(t)2 − {t2 + (t− 1)2}ψ(s)2 = 0.

□

Lemma 2.6 ([9], Lemma 2.2). If x, y ∈ Yψ are such that x±y ̸= 0 and ∥x∥2 = ∥y∥2,
then

∥x+ y∥2
∥x+ y∥

=
∥x− y∥2
∥x− y∥

.

By Lemmas 2.3, 2.4, 2.5, and 2.6, Theorems 2.1 and 2.2 are reduced to the

following theorem in the case of c = 1.

Theorem 2.7 ([9], Theorem 2.3). Let a, b > 0. Then the following two statements

are equivalent:

(I) There exists a pair x, y ∈ SYψ with x± y ̸= 0 satisfying ∥x∥2 = ∥y∥2 = 1/a,

∥x+ y∥ = b∥x+ y∥2 (and ∥x− y∥ = b∥x− y∥2).
(II) There exist r, s, t ∈ [0, 1] such that ψ(s) = aψ2(s), ψ(t) = aψ2(t), and ψ(r) =

bψ2(r), where r, s, t satisfy one of the following conditions:

(a) s ̸= t and r =
sψ(t) + tψ(s)

ψ(t) + ψ(s)
.

(b) (s, t) ̸= (1, 0), s+ t ≥ 1, and r =
sψ(t) + (t− 1)ψ(s)

ψ(t) + (2t− 1)ψ(s)
.

(c) (s, t) ̸= (0, 1), s+ t ≤ 1, and r =
(1− s)ψ(t) + tψ(s)

(1− 2s)ψ(t) + ψ(s)
.

Proof. By Lemma 2.6, if ∥x + y∥ = b∥x + y∥2, then ∥x− y∥ = b∥x− y∥2. We note

that the function t 7→ t/ψ2(t) is strictly increasing. Now we consider Theorems 2.1

and 2.2 in the case of c = 1.

Case (a): It is clear that Theorem 2.2(II)(a1) cannot exist. Since ψ(s) = aψ2(s)

and ψ(t) = aψ2(t), we have

s

ψ(s)
− t

ψ(t)
=

1

a

(
s

ψ2(s)
− t

ψ2(t)

)
and

1− s

ψ(s)
− 1− t

ψ(t)
=

1

a

(
1− s

ψ2(s)
− 1− t

ψ2(t)

)
=

1

a

(
1− s

ψ2(1− s)
− 1− t

ψ2(1− t)

)
.

— 132 —



These imply that if s < t, then sψ(s)−1 < tψ(t)−1 and (1−s)ψ(s)−1 > (1− t)ψ(t)−1.

Similarly, if s > t, then sψ(s)−1 > tψ(t)−1 and (1 − s)ψ(s)−1 < (1 − t)ψ(t)−1.

Thus conditions (1) and (2) in Theorem 2.2(II)(a2) if and only if s ̸= t. Hence, by

Lemma 2.3, Theorems 2.1(II)(a) and 2.2(II)(a2) are reduced to Theorem 2.7(II)(a).
Cases (b) and (c): We have

s

ψ(s)
− 1− t

ψ(t)
=

1

a

(
s

ψ2(s)
− 1− t

ψ2(1− t)

)
and

1− s

ψ(s)
− t

ψ(t)
=

1

a

(
1− s

ψ2(1− s)
− t

ψ2(t)

)
.

These imply that if s + t ≥ 1, then sψ(s)−1 ≥ (1 − t)ψ(t)−1 and (1 − s)ψ(s)−1 ≤
tψ(t)−1. Thus, by Lemma 2.4, Theorems 2.1(II)(b) and 2.2(II)(b) are reduced to

Theorem 2.7(II)(b). Moreover, if s + t ≤ 1, then sψ(s)−1 ≤ (1 − t)ψ(t)−1 and

(1 − s)ψ(s)−1 ≥ tψ(t)−1. Thus, by Lemma 2.5, Theorems 2.1(II)(c) and 2.2(II)(c)

are reduced to Theorem 2.7(II)(c). □

3. Geometric constants of Yψ

In this section, we consider the von Neumann-Jordan constant CNJ(Yψ). In relation

to the norm ∥ ·∥ψ,ψ̃, it is known that the following lemmas. In what follows we write

φ ≤ ψ if φ(t) ≤ ψ(t) for all t ∈ [0, 1].

Lemma 3.1 ([6], Lemma 3). Let φ, ψ ∈ Ψ2 and let ψ ≤ φ. Then

∥ · ∥ψ ≤ ∥ · ∥φ ≤ max
0≤t≤1

φ(t)

ψ(t)
∥ · ∥ψ.

Lemma 3.2 ([9], Lemma 2.1). Let φ, ψ ∈ Ψ2. Then

∥ · ∥φ,φ̃ ≤ max
0≤t≤1

φ(t)

ψ(t)
∥ · ∥ψ,ψ̃.

We note that ∥ · ∥2 = ∥ · ∥ψ2 = ∥ · ∥ψ2,ψ̃2
. This, together with the preceding lemma,

shows that M−1
2 ∥ · ∥2 ≤ ∥ · ∥ ≤M1∥ · ∥2, where

M1 := max
0≤t≤1

ψ(t)

ψ2(t)
and M2 := max

0≤t≤1

ψ2(t)

ψ(t)
.

Now we consider von Neumann-Jordan constant CNJ(Yψ) when ψ ≤ ψ2. As an

application of Theorems 2.1 and 2.2, we have the following results.

Theorem 3.3. Suppose that ψ ̸= ψ2 and ψ ≤ ψ2. Then

CNJ(Yψ) ≤ max
0≤t≤1

ψ2(t)
2

ψ(t)2
(=M2

2 ).

Moreover, CNJ(Yψ) = M2
2 if and only if there exist r1, s1, t1, r2, s2, t2 ∈ [0, 1] such

that ψ2(si)/ψ(si) = ψ2(ti)/ψ(ti) =M2 and ψ(ri) = ψ2(ri) for i = 1, 2, where r1, s1, t1
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satisfy one of the following conditions (A1), (B1), and (C1), and r2, s2, t2 satisfy one

of the following conditions (A2), (A3), (B2), and (C2) for some c ∈ (0, 1]:

(A1) r1 =
s1ψ(t1) + ct1ψ(s1)

ψ(t1) + cψ(s1)
.

(B1)
s1

ψ(s1)
>
c(1− t1)

ψ(t1)
and r1 =

s1ψ(t1) + c(t1 − 1)ψ(s1)

ψ(t1) + c(2t1 − 1)ψ(s1)
.

(C1)
s1

ψ(s1)
≤ c(1− t1)

ψ(t1)
and r1 =

(1− s1)ψ(t1) + ct1ψ(s1)

(1− 2s1)ψ(t1) + cψ(s1)
.

(A2)
1− s2
ψ(s2)

≥ c(1− t2)

ψ(t2)
,

s2
ψ(s2)

≥ ct2
ψ(t2)

, and r2 =
s2ψ(t2)− ct2ψ(s2)

ψ(t2)− cψ(s2)
.

(A3) r2 =
(1− s2)ψ(t2) + c(t2 − 1)ψ(s2)

(1− 2s2)ψ(t2) + c(2t2 − 1)ψ(s2)
satisfying one of the following conditions:

(1)
1− s2
ψ(s2)

>
c(1− t2)

ψ(t2)
and

s2
ψ(s2)

<
ct2
ψ(t2)

.

(2)
1− s2
ψ(s2)

<
c(1− t2)

ψ(t2)
and

s2
ψ(s2)

>
ct2
ψ(t2)

.

(B2)
1− s2
ψ(s2)

≤ ct2
ψ(t2)

and r2 =
(s2 − 1)ψ(t2) + ct2ψ(s2)

(2s2 − 1)ψ(t2) + cψ(s2)
.

(C2)
1− s2
ψ(s2)

>
ct2
ψ(t2)

and r2 =
s2ψ(t2) + c(1− t2)ψ(s2)

ψ(t2) + c(1− 2t2)ψ(s2)
.

Proof. For each x, z ∈ Yψ with (x, z) ̸= (0, 0), we have

∥x+ z∥2 + ∥x− z∥2 ≤ ∥x+ z∥22 + ∥x− z∥22
= 2(∥x∥22 + ∥z∥22)
≤ 2M2

2 (∥x∥2 + ∥z∥2) (3.1)

by Lemmas 3.1 and 3.2. This implies that CNJ(Yψ) ≤M2
2 .

Next we consider restatements of CNJ(Yψ) =M2
2 . We note that

CNJ(Yψ) = sup

{
∥x+ cy∥2 + ∥x− cy∥2

2(∥x∥2 + ∥cy∥2)
: x, y ∈ SYψ , 0 < c ≤ 1

}
.

The set SYψ × SYψ with the product topology is compact and the function

SYψ × SYψ ∋ (x, y) 7→ ∥x+ cy∥2 + ∥x− cy∥2

2(∥x∥2 + ∥cy∥2)
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is continuous for all c ∈ (0, 1]. Thus CNJ(Yψ) =M2
2 if and only if there exists a pair

(x, y) ∈ SYψ × SYψ with x± cy ̸= 0 satisfying

∥x+ cy∥2 + ∥x− cy∥2

2(∥x∥2 + ∥cy∥2)
=M2

2 ;

for this, we note that if x + cy = 0 or x − cy = 0 then M2 = 1, which contradicts

ψ ̸= ψ2. Moreover, by (3.1) with z = cy for c ∈ (0, 1], CNJ(Yψ) = M2
2 if and only if

there exists a pair (x, y) ∈ SYψ×SYψ with x±cy ̸= 0 satisfying ∥x+cy∥ = ∥x+cy∥2,
∥x − cy∥ = ∥x − cy∥2, ∥x∥2 = M2∥x∥ = M2, and ∥y∥2 = M2∥y∥ = M2. By adding

Theorems 2.1 and 2.2 with a =M−1
2 and b = 1, we have that CNJ(Yψ) =M2

2 if and

only if there exist r1, s1, t1, r2, s2, t2 ∈ [0, 1] such that ψ(si) = M−1
2 ψ2(si), ψ(ti) =

M−1
2 ψ2(ti), and ψ(ri) = ψ2(ri) for i = 1, 2, where r = r1, s = s1, t = t1 satisfy one

of the conditions (a), (b), and (c) in Theorem 2.1, and r = r2, s = s2, t = t2 satisfy

one of the conditions (a1), (a2), (b), and (c) in Theorem 2.2. This completes the

proof. □

Moreover, the case of ψ ≥ ψ2 is as follows.

Theorem 3.4. Suppose that ψ ̸= ψ2 and ψ ≥ ψ2. Then

CNJ(Yψ) ≤ max
0≤t≤1

ψ(t)2

ψ2(t)2
(=M2

1 ).

In particular, CNJ(Yψ) = M2
1 if and only if there exist r1, s1, t1, r2, s2, t2 ∈ [0, 1]

such that ψ(si)/ψ2(si) = ψ(ti)/ψ2(ti) = 1 and ψ(ri) = M1ψ2(ri) for i = 1, 2, where

r1, s1, t1 satisfy one of the following conditions (A1), (B1), and (C1), and r2, s2, t2
satisfy one of the following conditions (A2), (A3), (B2), and (C2) for some c ∈ (0, 1]

in Theorem 3.3.

Proof. For each x, z ∈ Yψ with (x, z) ̸= (0, 0), we have

∥x+ z∥2 + ∥x− z∥2 ≤M2
1 (∥x+ z∥22 + ∥x− z∥22)

= 2M2
1 (∥x∥22 + ∥z∥22)

≤ 2M2
1 (∥x∥2 + ∥z∥2)

by Lemmas 3.1 and 3.2. This implies that CNJ(Yψ) ≤M2
1 .

Now, an argument similar to that in the proof of Theorem 3.3 shows that CNJ(Yψ) =

M2
1 if and only if there exists a pair (x, y) ∈ SYψ ×SYψ with x± cy ̸= 0 for c ∈ (0, 1]

satisfying ∥x + cy∥ = M1∥x + cy∥2, ∥x − cy∥ = M1∥x − cy∥2, ∥x∥2 = ∥x∥ = 1,

and ∥y∥2 = ∥y∥ = 1. Hence Theorems 2.1 and 2.2 (applied for a = 1 and b = M1)

complete the proof. □
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If c = 1, then Theorems 3.3 and 3.4 are reduced to the following theorems of the

modified von Neumann-Jordan constant C ′
NJ(Yψ) defined by

C ′
NJ(Yψ) := sup

{
∥x+ y∥2 + ∥x− y∥2

4
: x, y ∈ SYψ

}(
≤ CNJ(Yψ)

)
.

Theorem 3.5 ([9], Theorem 3.1). Suppose that ψ ̸= ψ2 and ψ ≤ ψ2. Then

C ′
NJ(Yψ) ≤ CNJ(Yψ) ≤ max

0≤t≤1

ψ2(t)
2

ψ(t)2
(=M2

2 ).

In particular, C ′
NJ(Yψ) = M2

2 if and only if there exist r, s, t ∈ [0, 1] such that

ψ2(s)/ψ(s) = ψ2(t)/ψ(t) = M2 and ψ(r) = ψ2(r), where r, s, t satisfy one of the

following conditions:

(a) s ̸= t and r =
sψ(t) + tψ(s)

ψ(t) + ψ(s)
.

(b) (s, t) ̸= (1, 0), s+ t ≥ 1, and r =
sψ(t) + (t− 1)ψ(s)

ψ(t) + (2t− 1)ψ(s)
.

(c) (s, t) ̸= (0, 1), s+ t ≤ 1, and r =
(1− s)ψ(t) + tψ(s)

(1− 2s)ψ(t) + ψ(s)
.

Proof. By the definition of C ′
NJ(Yψ) and Theorem 3.3, we have C ′

NJ(Yψ) ≤ CNJ(Yψ) ≤
M2

2 . Moreover, an argument similar to that in the proof of Theorem 3.3 shows that

C ′
NJ(Yψ) = M2

2 if and only if there exists a pair (x, y) ∈ SYψ × SYψ with x ± y ̸= 0

satisfying ∥x ± y∥ = ∥x ± y∥2, ∥x∥2 = M2∥x∥ = M2, and ∥y∥2 = M2∥y∥ = M2.

Hence Theorem 2.7 (applied for a =M−1
2 and b = 1) completes the proof. □

Theorem 3.6 ([9], Theorem 3.4). Suppose that ψ ̸= ψ2 and ψ ≥ ψ2. Then

C ′
NJ(Yψ) ≤ CNJ(Yψ) ≤ max

0≤t≤1

ψ(t)2

ψ2(t)2
(=M2

1 ).

In particular, C ′
NJ(Yψ) = M2

1 if and only if there exist r, s, t ∈ [0, 1] such that

ψ(s)/ψ2(s) = ψ(t)/ψ2(t) = 1 and ψ(r) = M1ψ2(r), where r, s, t satisfy one of the

following three conditions (a)–(c) in Theorem 3.5.

Proof. By the definition of C ′
NJ(Yψ) and Theorem 3.4, we have C ′

NJ(Yψ) ≤ CNJ(Yψ) ≤
M2

1 . Moreover, an argument similar to that in the proof of Theorem 3.4 shows that

C ′
NJ(Yψ) = M2

1 if and only if there exists a pair (x, y) ∈ SYψ × SYψ with x ± y ̸= 0

satisfying ∥x ± y∥ = M1∥x ± y∥2, ∥x∥2 = ∥x∥ = 1, and ∥y∥2 = ∥y∥ = 1. Hence

Theorem 2.7 (applied for a = 1 and b =M1) completes the proof. □
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