THE VON NEUMANN-JORDAN CONSTANT OF $\pi / 2$-ROTATION INVARIANT NORMS ON \mathbb{R}^{2}

YUKINO TOMIZAWA

Abstract

In this paper, we study the von Neumann-Jordan constant of $\pi / 2$ rotation invariant norms on \mathbb{R}^{2}. We give some estimations of the constant and have a relationship between the constant and a ratio of two certain functions. These results are an extension of existing results of a unitary version of the von Neumann-Jordan constant.

1. Introduction and preliminaries

This paper is concerned with the von Neumann Jordan constant of Banach spaces. For a Banach space X, let B_{X} and S_{X} be the unit ball and unit sphere, respectively. In connection with the famous work [4] of Jordan and von Neumann concerning inner products, the von Neumann Jordan constant $C_{N J}(X)$ of X was introduced by Clarkson in [3] as follows:

$$
C_{N J}(X):=\sup \left\{\frac{\|x+y\|^{2}+\|x-y\|^{2}}{2\left(\|x\|^{2}+\|y\|^{2}\right)}: x, y \in X,(x, y) \neq(0,0)\right\} .
$$

The constant $C_{N J}(X)$ can be viewed as a measure of the distortion of B_{X} from the viewpoint of the parallelogram law. An estimation $1 \leq C_{N J}(X) \leq 2$ holds for any X. It is known that $C_{N J}(X)=1$ if and only if X is a Hilbert space ([4]), and $C_{N J}(X)<2$ if and only if X is uniformly nonsquare ([7]). So far many papers were devoted to studying von Neumann-Jordan constant of Banach spaces; see, e.g., [1, 3, 6, 8, 10].

A norm $\|\cdot\|$ on \mathbb{R}^{2} is said to be absolute if $\|(a, b)\|=\|(|a|,|b|)\|$ for each $(a, b) \in \mathbb{R}^{2}$, and normalized if $\|(1,0)\|=\|(0,1)\|=1$. Typical examples of such norms are the ℓ_{p}-norms $\|\cdot\|_{p}$ given by

$$
\|(a, b)\|_{p}:= \begin{cases}\left(|a|^{p}+|b|^{p}\right)^{1 / p} & (1 \leq p<\infty) \\ \max \{|a|,|b|\} & (p=\infty)\end{cases}
$$

[^0]Let $A N_{2}$ be a collection of all absolute normalized norms on \mathbb{R}^{2}. Let Ψ_{2} be a family of all convex functions ψ on $[0,1]$ satisfying $\max \{1-t, t\} \leq \psi(t) \leq 1$ for each $t \in[0,1]$. As was shown in [2] and [6], $A N_{2}$ is in a one-to-one correspondence with Ψ_{2} under an equation $\psi(t)=\|(1-t, t)\|$ for each $t \in[0,1]$. An absolute normalized norm corresponding to $\psi \in \Psi_{2}$ is denoted by $\|\cdot\|_{\psi}$; and it satisfies the following equation:

$$
\|(a, b)\|_{\psi}:= \begin{cases}(|a|+|b|) \psi\left(\frac{|b|}{|a|+|b|}\right) & ((a, b) \neq(0,0)) \\ 0 & ((a, b)=(0,0))\end{cases}
$$

Moreover, a convex function ψ_{2} corresponding to the Euclidean norm $\|\cdot\|_{2}$ is given by

$$
\psi_{2}(t):=\left((1-t)^{2}+t^{2}\right)^{1 / 2}
$$

It should be noted that $\psi_{2}(t)=\psi_{2}(1-t)$ for each $t \in[0,1]$. Furthermore, a norm $\|\cdot\|$ on \mathbb{R}^{2} is said to be $\pi / 2$-rotation invariant if the $\pi / 2$-rotation matrix

$$
R(\pi / 2):=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

is an isometry on $\left(\mathbb{R}^{2},\|\cdot\|\right)$, or equivalently, $\|(a, b)\|=\|(-b, a)\|$ for each $(a, b) \in \mathbb{R}^{2}$.
The purpose of this paper is to study the von Neumann-Jordan constant of $\pi / 2$ rotation invariant norms on \mathbb{R}^{2}. Let $\widetilde{\psi}$ be an element of Ψ_{2} defined by $\widetilde{\psi}(t)=\psi(1-t)$ for each $\psi \in \Psi_{2}$, and $\ell_{\psi, \tilde{\psi}}^{2}$ the space \mathbb{R}^{2} endowed with the norm

$$
\|(a, b)\|_{\psi, \tilde{\psi}}:= \begin{cases}(|a|+|b|) \psi\left(\frac{|b|}{|a|+|b|}\right) & (a b \geq 0) \\ (|a|+|b|) \tilde{\psi}\left(\frac{|b|}{|a|+|b|}\right) & (a b \leq 0)\end{cases}
$$

In [5, Theorem 3.2], it was shown that any $\pi / 2$-rotation invariant normed space is isometrically isomorphic to some Day-James space of the form $\ell_{\psi, \tilde{\psi}}^{2}$. The norm $\|\cdot\|_{\psi, \tilde{\psi}}$ is also $\pi / 2$-rotation invariant for each $\psi \in \Psi_{2}$ ([5, Proposition 3.4]). Moreover, the von Neumann-Jordan constant is invariant under isometric isomorphisms. Hence for our purpose, it is enough to consider Day-James spaces of the form $\ell_{\psi, \widetilde{\psi}}^{2}$; and throughout this paper, $\pi / 2$-rotation invariant normed spaces are assumed to be $\ell_{\psi, \tilde{\psi}}^{2}$ for some $\psi \in \Psi_{2}$. Henceforth, fix an element ψ in Ψ_{2} with $\psi \neq \psi_{2}$, put the norm $\|\cdot\|=\|\cdot\|_{\psi, \tilde{\psi}}$ for short, and the space $\ell_{\psi, \tilde{\psi}}^{2}$ will be simply denoted by Y_{ψ}. Under this hypothesis, we obtain some estimations of the von Neumann-Jordan constant.

In the second section, we present keys to the proofs of the von Neumann-Jordan constant in Day-James spaces having relation to $\pi / 2$-rotation invariant norms. In the third section, using the keys to the proofs, we get a relationship between the
constant and the ratio of two certain functions. These results are an extension of existing results of the unitary version of the von Neumann-Jordan constant ([9]).

2. Auxiliary results on Y_{ψ}

In this section, we present keys to the proofs of our results in the next section.
Theorem 2.1. Let $a, b>0$ and $c \in(0,1]$. Then the following two statements are equivalent:
(I) There exists a pair $x, y \in S_{Y_{\psi}}$ with $x+c y \neq 0$ satisfying $\|x\|_{2}=\|y\|_{2}=1 / a$ and $\|x+c y\|=b\|x+c y\|_{2}$.
(II) There exist $r, s, t \in[0,1]$ such that $\psi(s)=a \psi_{2}(s), \psi(t)=a \psi_{2}(t)$, and $\psi(r)=$ $b \psi_{2}(r)$, where r, s, t satisfy one of the following conditions:
(a) $r=\frac{s \psi(t)+c t \psi(s)}{\psi(t)+c \psi(s)}$.
(b) $\frac{s}{\psi(s)}>\frac{c(1-t)}{\psi(t)} \quad$ and $\quad r=\frac{s \psi(t)+c(t-1) \psi(s)}{\psi(t)+c(2 t-1) \psi(s)}$.
(c) $\frac{s}{\psi(s)} \leq \frac{c(1-t)}{\psi(t)} \quad$ and $\quad r=\frac{(1-s) \psi(t)+c t \psi(s)}{(1-2 s) \psi(t)+c \psi(s)}$.

Proof. Suppose that (I) holds. Let x, y be elements of $S_{Y_{\psi}}$ having the properties set out in (I). Since $R(\pi / 2)$ is an isometric isomorphism on Y_{ψ}, by the definition of the norm of Y_{ψ}, we have only to consider two kinds of pairs x, y : one pair which x and y use the same norm while another which x and y both use different norms. Thus, we may assume that x is in the first quadrant. The argument separates into two parts according to the position of y.

Case 1: Suppose that both x, y are in the first quadrant. Thus

$$
\begin{equation*}
x=\frac{1}{\psi(s)}(1-s, s) \quad \text { and } \quad y=\frac{1}{\psi(t)}(1-t, t) \tag{2.1}
\end{equation*}
$$

for some $s, t \in[0,1]$. By (I) and the definition of $\|\cdot\|_{2}$, we obtain $1 / a=\|x\|_{2}=$ $\psi_{2}(s) / \psi(s)$ and $1 / a=\|y\|_{2}=\psi_{2}(t) / \psi(t)$. Thus we have $\psi(s)=a \psi_{2}(s)$ and $\psi(t)=$ $a \psi_{2}(t)$. Next we obtain

$$
x+c y=\left(\frac{1-s}{\psi(s)}+c \frac{1-t}{\psi(t)}, \frac{s}{\psi(s)}+c \frac{t}{\psi(t)}\right) .
$$

It is clear that $x+c y \neq 0$ for all $s, t \in[0,1]$ and $c \in(0,1]$. We have

$$
\begin{aligned}
\frac{\psi(t)+c \psi(s)}{\psi(s) \psi(t)} \psi(r) & =\left(\left|\frac{1-s}{\psi(s)}+c \frac{1-t}{\psi(t)}\right|+\left|\frac{s}{\psi(s)}+c \frac{t}{\psi(t)}\right|\right) \psi(r) \\
& =\|x+c y\|=b\|x+c y\|_{2}=b \frac{\psi(t)+c \psi(s)}{\psi(s) \psi(t)} \psi_{2}(r),
\end{aligned}
$$

where r is given by the equation set out in (a). Hence $\psi(r)=b \psi_{2}(r)$.
Case 2: Suppose that y is in the fourth quadrant. Thus

$$
\begin{equation*}
y=\frac{1}{\psi(t)}(t,-(1-t)) \tag{2.2}
\end{equation*}
$$

for some $t \in[0,1]$ (and x has the same form as (2.1) in Case 1). As in the preceding paragraph, it follows that $\psi(t)=a \psi_{2}(t)$ since $1 / a=\|y\|_{2}=\psi_{2}(1-t) / \psi(t)=$ $\psi_{2}(t) / \psi(t)$. We obtain

$$
x+c y=\left(\frac{1-s}{\psi(s)}+c \frac{t}{\psi(t)}, \frac{s}{\psi(s)}-c \frac{1-t}{\psi(t)}\right) .
$$

We note that $x+c y \neq 0$. Now, we put

$$
\begin{align*}
& \left|\frac{s}{\psi(s)}-c \frac{1-t}{\psi(t)}\right|\left(\frac{1-s}{\psi(s)}+c \frac{t}{\psi(t)}+\left|\frac{s}{\psi(s)}-c \frac{1-t}{\psi(t)}\right|\right)^{-1} \\
& = \begin{cases}\frac{s \psi(t)+c(t-1) \psi(s)}{\psi(t)+c(2 t-1) \psi(s)}=: r_{1} & \left(\frac{s}{\psi(s)}>\frac{c(1-t)}{\psi(t)}\right) \\
\frac{-s \psi(t)+c(1-t) \psi(s)}{(1-2 s) \psi(t)+c \psi(s)}=: r_{2} & \left(\frac{s}{\psi(s)} \leq \frac{c(1-t)}{\psi(t)}\right) .\end{cases} \tag{2.3}
\end{align*}
$$

In the case of $c=1$, it must be $(s, t) \neq(1,0)$, but it can be $(s, t)=(0,1)$. Thus the magnitude correlation of s and t is divided into two cases in (2.3).

In the case of (2.3)(i), $x+c y$ is in the first quadrant. We have

$$
\begin{aligned}
\frac{\psi(t)+c(2 t-1) \psi(s)}{\psi(s) \psi(t)} \psi\left(r_{1}\right) & =\left(\left|\frac{1-s}{\psi(s)}+c \frac{t}{\psi(t)}\right|+\left|\frac{s}{\psi(s)}-c \frac{1-t}{\psi(t)}\right|\right) \psi\left(r_{1}\right) \\
& =\|x+c y\|=b\|x+c y\|_{2}=b \frac{\psi(t)+c(2 t-1) \psi(s)}{\psi(s) \psi(t)} \psi_{2}\left(r_{1}\right) .
\end{aligned}
$$

Hence $\psi(r)=b \psi_{2}(r)$, where r is given by the equation set out in (b). In the case of (2.3)(ii), $x+c y$ is in the fourth quadrant. We put

$$
1-r_{2}=1-\frac{-s \psi(t)+c(1-t) \psi(s)}{(1-2 s) \psi(t)+c \psi(s)}=\frac{(1-s) \psi(t)+c t \psi(s)}{(1-2 s) \psi(t)+c \psi(s)}=: r_{2}^{\prime} .
$$

Since $\widetilde{\psi}(t)=\psi(1-t)$ for all $t \in[0,1]$, we have

$$
\begin{aligned}
\frac{(1-2 s) \psi(t)+c \psi(s)}{\psi(s) \psi(t)} \psi\left(r_{2}^{\prime}\right) & =\left(\left|\frac{1-s}{\psi(s)}+c \frac{t}{\psi(t)}\right|+\left|\frac{s}{\psi(s)}-c \frac{1-t}{\psi(t)}\right|\right) \widetilde{\psi}\left(r_{2}\right) \\
& =\|x+c y\|=b\|x+c y\|_{2}=b \frac{(1-2 s) \psi(t)+c \psi(s)}{\psi(s) \psi(t)} \psi_{2}\left(r_{2}^{\prime}\right) .
\end{aligned}
$$

Hence $\psi(r)=b \psi_{2}(r)$, where r is given by the equation set out in (c). This completes the proof of (I) \Rightarrow (II).

For the converse, let r, s, t be elements of $[0,1]$ satisfying one of the three conditions set out in (II). If r, s, t satisfy (a), then the elements $x=\psi(s)^{-1}(1-s, s)$ and $y=\psi(t)^{-1}(1-t, t)$ have the desired properties. Similarly, in the cases of (b) and (c), it is enough to consider $x=\psi(s)^{-1}(1-s, s)$ and $y=\psi(t)^{-1}(t,-(1-t))$. The proof is complete.

Theorem 2.2. Let $a, b>0$ and $c \in(0,1]$. Then the following two statements are equivalent:
(I) There exists a pair $x, y \in S_{Y_{\psi}}$ with $x-c y \neq 0$ satisfying $\|x\|_{2}=\|y\|_{2}=1 / a$ and $\|x-c y\|=b\|x-c y\|_{2}$.
(II) There exist $r, s, t \in[0,1]$ such that $\psi(s)=a \psi_{2}(s), \psi(t)=a \psi_{2}(t)$, and $\psi(r)=$ $b \psi_{2}(r)$, where r, s, t satisfy one of the following conditions:
(a1) $\frac{1-s}{\psi(s)} \geq \frac{c(1-t)}{\psi(t)}, \frac{s}{\psi(s)} \geq \frac{c t}{\psi(t)}, \quad$ and $\quad r=\frac{s \psi(t)-c t \psi(s)}{\psi(t)-c \psi(s)}$.
(a2) $r=\frac{(1-s) \psi(t)+c(t-1) \psi(s)}{(1-2 s) \psi(t)+c(2 t-1) \psi(s)}$ satisfying one of the following conditions:
(1) $\frac{1-s}{\psi(s)}>\frac{c(1-t)}{\psi(t)}$ and $\frac{s}{\psi(s)}<\frac{c t}{\psi(t)}$.
(2) $\frac{1-s}{\psi(s)}<\frac{c(1-t)}{\psi(t)}$ and $\frac{s}{\psi(s)}>\frac{c t}{\psi(t)}$.
(b) $\frac{1-s}{\psi(s)} \leq \frac{c t}{\psi(t)} \quad$ and $\quad r=\frac{(s-1) \psi(t)+c t \psi(s)}{(2 s-1) \psi(t)+c \psi(s)}$.
(c) $\frac{1-s}{\psi(s)}>\frac{c t}{\psi(t)} \quad$ and $\quad r=\frac{s \psi(t)+c(1-t) \psi(s)}{\psi(t)+c(1-2 t) \psi(s)}$.

Proof. Suppose that (I) holds. Let x, y be elements of $S_{Y_{\psi}}$ having the properties set out in (I). Suppose that x is in the first quadrant.

Case 1: Suppose that both x, y are in the first quadrant. Thus we have (2.1) for some $s, t \in[0,1]$. By (I), we obtain $1 / a=\|x\|_{2}=\psi_{2}(s) / \psi(s)$ and $1 / a=\|y\|_{2}=$ $\psi_{2}(t) / \psi(t)$. Thus we have $\psi(s)=a \psi_{2}(s)$ and $\psi(t)=a \psi_{2}(t)$. Next we obtain

$$
x-c y=\left(\frac{1-s}{\psi(s)}-c \frac{1-t}{\psi(t)}, \frac{s}{\psi(s)}-c \frac{t}{\psi(t)}\right) .
$$

We note that $x-c y \neq 0$. Now, we put

$$
\begin{align*}
& \left|\frac{s}{\psi(s)}-c \frac{t}{\psi(t)}\right|\left(\left|\frac{1-s}{\psi(s)}-c \frac{1-t}{\psi(t)}\right|+\left|\frac{s}{\psi(s)}-c \frac{t}{\psi(t)}\right|\right)^{-1} \\
& = \begin{cases}\frac{s \psi(t)-c t \psi(s)}{\psi(t)-c \psi(s)}=: r_{1} & \left(\frac{1-s}{\psi(s)} \geq \frac{c(1-t)}{\psi(t)} \text { and } \frac{s}{\psi(s)} \geq \frac{c t}{\psi(t)}\right) \cdots(\mathrm{i}) \\
\frac{-s \psi(t)+c t \psi(s)}{(1-2 s) \psi(t)+c(2 t-1) \psi(s)}=: r_{2} & \left(\frac{1-s}{\psi(s)}>\frac{c(1-t)}{\psi(t)} \text { and } \frac{s}{\psi(s)}<\frac{c t}{\psi(t)}\right) \cdots(\text { ii }) \\
\frac{s \psi(t)-c t \psi(s)}{(2 s-1) \psi(t)+c(1-2 t) \psi(s)}=: r_{3} & \left(\frac{1-s}{\psi(s)}<\frac{c(1-t)}{\psi(t)} \text { and } \frac{s}{\psi(s)}>\frac{c t}{\psi(t)}\right) \cdots(\text { iiii) }\end{cases} \tag{2.4}
\end{align*}
$$

We note that if $c=1$, then we cannot get r_{1}. Moreover, we must have $s \neq t$ in the case of $c=1$, but we can choose $s=t$ in the case of $c<1$.

In the case of (2.4)(i), $x-c y$ is in the first quadrant. For r_{1}, an argument similar to that in Case 1 of Theorem 2.1, we have $\psi(r)=b \psi_{2}(r)$, where r is given by the equation set out in (a1). In the cases of (2.4)(ii) and (iii), $x-c y$ is in the fourth and second quadrant, respectively. We note that $r_{2}=r_{3}$. We have

$$
1-r_{2}=1-\frac{-s \psi(t)+c t \psi(s)}{(1-2 s) \psi(t)+c(2 t-1) \psi(s)}=\frac{(1-s) \psi(t)+c(t-1) \psi(s)}{(1-2 s) \psi(t)+c(2 t-1) \psi(s)}=: r_{2}^{\prime} .
$$

For r_{2}^{\prime}, an argument similar to that in Case 2 of Theorem 2.1 shows that $\psi(r)=$ $b \psi_{2}(r)$, where r is given by the equation set out in (a2).

Case 2: Suppose that y is in the fourth quadrant. Then we have (2.2) for some $t \in[0,1]$ (and x has the same form as in Case 1). As in the preceding paragraph, it follows that $\psi(t)=a \psi_{2}(t)$ since $1 / a=\|y\|_{2}=\psi_{2}(1-t) / \psi(t)=\psi_{2}(t) / \psi(t)$. We obtain

$$
x-c y=\left(\frac{1-s}{\psi(s)}-c \frac{t}{\psi(t)}, \frac{s}{\psi(s)}+c \frac{1-t}{\psi(t)}\right) .
$$

We note that $x-c y \neq 0$. Now, we put

$$
\begin{align*}
& \left(\frac{s}{\psi(s)}+c \frac{1-t}{\psi(t)}\right)\left(\left|\frac{1-s}{\psi(s)}-c \frac{t}{\psi(t)}\right|+\frac{s}{\psi(s)}+c \frac{1-t}{\psi(t)}\right)^{-1} \\
& =\left\{\begin{array}{lll}
\frac{s \psi(t)+c(1-t) \psi(s)}{(2 s-1) \psi(t)+c \psi(s)}=: r_{4} & \left(\frac{1-s}{\psi(s)} \leq \frac{c t}{\psi(t)}\right) & \cdots(\mathrm{i} \\
\frac{s \psi(t)+c(1-t) \psi(s)}{\psi(t)+c(1-2 t) \psi(s)}=: r_{5} & \left(\frac{1-s}{\psi(s)}>\frac{c t}{\psi(t)}\right) . & \cdots(\mathrm{i}
\end{array}\right. \tag{2.5}
\end{align*}
$$

In the case of $c=1$, it must be $(s, t) \neq(0,1)$, but it can be $(s, t)=(1,0)$. Thus the magnitude correlation of s and t is divided into two cases of (2.5)(i) and (ii).

In the case of (2.5)(i), $x-c y$ is in the second quadrant. We note that

$$
1-r_{4}=1-\frac{s \psi(t)+c(1-t) \psi(s)}{(2 s-1) \psi(t)+c \psi(s)}=\frac{(s-1) \psi(t)+c t \psi(s)}{(2 s-1) \psi(t)+c \psi(s)}=: r_{4}^{\prime} .
$$

For r_{4}^{\prime}, an argument similar to that in Case 2 of Theorem 2.1 shows that $\psi(r)=$ $b \psi_{2}(r)$, where r is given by the equation set out in (b). In the case of (2.5)(ii), $x-c y$ is in the first quadrant. For r_{5}, an argument similar to that in Case 1 of Theorem 2.1 shows that $\psi(r)=b \psi_{2}(r)$, where r is given by the equation set out in (c). This completes the proof of (I) \Rightarrow (II).

For the converse, let r, s, t be elements of $[0,1]$ satisfying one of the three conditions set out in (II). If r, s, t satisfy (a1) or (a2), then the elements $x=\psi(s)^{-1}(1-s, s)$ and $y=\psi(t)^{-1}(1-t, t)$ have the desired properties. Similarly, in the cases of (b) and (c), it is enough to consider $x=\psi(s)^{-1}(1-s, s)$ and $y=\psi(t)^{-1}(t,-(1-t))$. The proof is complete.

In this context, we have the following lemmas.
Lemma 2.3. Let $b>0, \psi(s)=b \psi_{2}(s)$ and $\psi(t)=b \psi_{2}(t)$ for $s, t \in[0,1]$. Then

$$
\frac{s \psi(t)+t \psi(s)}{\psi(t)+\psi(s)}=\frac{(1-s) \psi(t)+(t-1) \psi(s)}{(1-2 s) \psi(t)+(2 t-1) \psi(s)} .
$$

Proof. We have

$$
\begin{aligned}
& \{s \psi(t)+t \psi(s)\}\{(1-2 s) \psi(t)+(2 t-1) \psi(s)\}-\{\psi(t)+\psi(s)\}\{(1-s) \psi(t)+(t-1) \psi(s)\} \\
& =\{t(2 t-1)-(t-1)\} \psi(s)^{2}+\{s(1-2 s)-(1-s)\} \psi(t)^{2} \\
& =\left\{t^{2}+(t-1)^{2}\right\} \psi(s)^{2}-\left\{s^{2}+(s-1)^{2}\right\} \psi(t)^{2} \\
& =\psi_{2}(t)^{2} \psi(s)^{2}-\psi_{2}(s)^{2} \psi(t)^{2} \\
& =\left(\frac{\psi(t)}{b}\right)^{2} \psi(s)^{2}-\left(\frac{\psi(s)}{b}\right)^{2} \psi(t)^{2}=0 .
\end{aligned}
$$

Lemma 2.4. Let $b>0, \psi(s)=b \psi_{2}(s)$ and $\psi(t)=b \psi_{2}(t)$ for $s, t \in[0,1]$. Then

$$
\frac{s \psi(t)+(t-1) \psi(s)}{\psi(t)+(2 t-1) \psi(s)}=\frac{(s-1) \psi(t)+t \psi(s)}{(2 s-1) \psi(t)+\psi(s)}
$$

Proof. We have

$$
\begin{aligned}
& \{s \psi(t)+(t-1) \psi(s)\}\{(2 s-1) \psi(t)+\psi(s)\}-\{\psi(t)+(2 t-1) \psi(s)\}\{(s-1) \psi(t)+t \psi(s)\} \\
& =\{s(2 s-1)-(s-1)\} \psi(t)^{2}+\{(t-1)-t(2 t-1)\} \psi(s)^{2} \\
& =\left\{s^{2}+(s-1)^{2}\right\} \psi(t)^{2}-\left\{t^{2}+(t-1)^{2}\right\} \psi(s)^{2} \\
& =\psi_{2}(s)^{2} \psi(t)^{2}-\psi_{2}(t)^{2} \psi(s)^{2} \\
& =\left(\frac{\psi(s)}{b}\right)^{2} \psi(t)^{2}-\left(\frac{\psi(t)}{b}\right)^{2} \psi(s)^{2}=0 .
\end{aligned}
$$

Lemma 2.5. Let $b>0, \psi(s)=b \psi_{2}(s)$ and $\psi(t)=b \psi_{2}(t)$ for $s, t \in[0,1]$. Then

$$
\frac{(1-s) \psi(t)+t \psi(s)}{(1-2 s) \psi(t)+\psi(s)}=\frac{s \psi(t)+(1-t) \psi(s)}{\psi(t)+(1-2 t) \psi(s)}
$$

Proof. By the proof of Lemma 2.4, we have

$$
\begin{aligned}
& \{(1-s) \psi(t)+t \psi(s)\}\{\psi(t)+(1-2 t) \psi(s)\}-\{(1-2 s) \psi(t)+\psi(s)\}\{s \psi(t)+(1-t) \psi(s)\} \\
& =\left\{s^{2}+(s-1)^{2}\right\} \psi(t)^{2}-\left\{t^{2}+(t-1)^{2}\right\} \psi(s)^{2}=0
\end{aligned}
$$

Lemma 2.6 ([9], Lemma 2.2). If $x, y \in Y_{\psi}$ are such that $x \pm y \neq 0$ and $\|x\|_{2}=\|y\|_{2}$, then

$$
\frac{\|x+y\|_{2}}{\|x+y\|}=\frac{\|x-y\|_{2}}{\|x-y\|} .
$$

By Lemmas 2.3, 2.4, 2.5, and 2.6, Theorems 2.1 and 2.2 are reduced to the following theorem in the case of $c=1$.

Theorem 2.7 ([9], Theorem 2.3). Let $a, b>0$. Then the following two statements are equivalent:
(I) There exists a pair $x, y \in S_{Y_{\psi}}$ with $x \pm y \neq 0$ satisfying $\|x\|_{2}=\|y\|_{2}=1 / a$, $\|x+y\|=b\|x+y\|_{2} \quad$ (and $\|x-y\|=b\|x-y\|_{2}$).
(II) There exist $r, s, t \in[0,1]$ such that $\psi(s)=a \psi_{2}(s), \psi(t)=a \psi_{2}(t)$, and $\psi(r)=$ $b \psi_{2}(r)$, where r, s, t satisfy one of the following conditions:
(a) $s \neq t \quad$ and $\quad r=\frac{s \psi(t)+t \psi(s)}{\psi(t)+\psi(s)}$.
(b) $(s, t) \neq(1,0), s+t \geq 1, \quad$ and $\quad r=\frac{s \psi(t)+(t-1) \psi(s)}{\psi(t)+(2 t-1) \psi(s)}$.
(c) $(s, t) \neq(0,1), s+t \leq 1, \quad$ and $\quad r=\frac{(1-s) \psi(t)+t \psi(s)}{(1-2 s) \psi(t)+\psi(s)}$.

Proof. By Lemma 2.6, if $\|x+y\|=b\|x+y\|_{2}$, then $\|x-y\|=b\|x-y\|_{2}$. We note that the function $t \mapsto t / \psi_{2}(t)$ is strictly increasing. Now we consider Theorems 2.1 and 2.2 in the case of $c=1$.

Case (a): It is clear that Theorem 2.2(II)(a1) cannot exist. Since $\psi(s)=a \psi_{2}(s)$ and $\psi(t)=a \psi_{2}(t)$, we have

$$
\frac{s}{\psi(s)}-\frac{t}{\psi(t)}=\frac{1}{a}\left(\frac{s}{\psi_{2}(s)}-\frac{t}{\psi_{2}(t)}\right)
$$

and

$$
\frac{1-s}{\psi(s)}-\frac{1-t}{\psi(t)}=\frac{1}{a}\left(\frac{1-s}{\psi_{2}(s)}-\frac{1-t}{\psi_{2}(t)}\right)=\frac{1}{a}\left(\frac{1-s}{\psi_{2}(1-s)}-\frac{1-t}{\psi_{2}(1-t)}\right) .
$$

These imply that if $s<t$, then $s \psi(s)^{-1}<t \psi(t)^{-1}$ and $(1-s) \psi(s)^{-1}>(1-t) \psi(t)^{-1}$. Similarly, if $s>t$, then $s \psi(s)^{-1}>t \psi(t)^{-1}$ and $(1-s) \psi(s)^{-1}<(1-t) \psi(t)^{-1}$. Thus conditions (1) and (2) in Theorem 2.2(II)(a2) if and only if $s \neq t$. Hence, by Lemma 2.3, Theorems 2.1(II)(a) and 2.2(II)(a2) are reduced to Theorem 2.7(II)(a).

Cases (b) and (c): We have
$\frac{s}{\psi(s)}-\frac{1-t}{\psi(t)}=\frac{1}{a}\left(\frac{s}{\psi_{2}(s)}-\frac{1-t}{\psi_{2}(1-t)}\right) \quad$ and $\quad \frac{1-s}{\psi(s)}-\frac{t}{\psi(t)}=\frac{1}{a}\left(\frac{1-s}{\psi_{2}(1-s)}-\frac{t}{\psi_{2}(t)}\right)$.
These imply that if $s+t \geq 1$, then $s \psi(s)^{-1} \geq(1-t) \psi(t)^{-1}$ and $(1-s) \psi(s)^{-1} \leq$ $t \psi(t)^{-1}$. Thus, by Lemma 2.4, Theorems 2.1(II)(b) and 2.2(II)(b) are reduced to Theorem 2.7(II)(b). Moreover, if $s+t \leq 1$, then $s \psi(s)^{-1} \leq(1-t) \psi(t)^{-1}$ and $(1-s) \psi(s)^{-1} \geq t \psi(t)^{-1}$. Thus, by Lemma 2.5, Theorems 2.1(II)(c) and 2.2(II)(c) are reduced to Theorem 2.7(II)(c).

3. Geometric constants of Y_{ψ}

In this section, we consider the von Neumann-Jordan constant $C_{N J}\left(Y_{\psi}\right)$. In relation to the norm $\|\cdot\|_{\psi, \widetilde{\psi}}$, it is known that the following lemmas. In what follows we write $\varphi \leq \psi$ if $\varphi(t) \leq \psi(t)$ for all $t \in[0,1]$.

Lemma 3.1 ([6], Lemma 3). Let $\varphi, \psi \in \Psi_{2}$ and let $\psi \leq \varphi$. Then

$$
\|\cdot\|_{\psi} \leq\|\cdot\|_{\varphi} \leq \max _{0 \leq t \leq 1} \frac{\varphi(t)}{\psi(t)}\|\cdot\|_{\psi}
$$

Lemma 3.2 ([9], Lemma 2.1). Let $\varphi, \psi \in \Psi_{2}$. Then

$$
\|\cdot\|_{\varphi, \tilde{\varphi}} \leq \max _{0 \leq t \leq 1} \frac{\varphi(t)}{\psi(t)}\|\cdot\|_{\psi, \tilde{\psi}}
$$

We note that $\|\cdot\|_{2}=\|\cdot\|_{\psi_{2}}=\|\cdot\|_{\psi_{2}, \widetilde{\psi_{2}}}$. This, together with the preceding lemma, shows that $M_{2}^{-1}\|\cdot\|_{2} \leq\|\cdot\| \leq M_{1}\|\cdot\|_{2}$, where

$$
M_{1}:=\max _{0 \leq t \leq 1} \frac{\psi(t)}{\psi_{2}(t)} \quad \text { and } \quad M_{2}:=\max _{0 \leq t \leq 1} \frac{\psi_{2}(t)}{\psi(t)} .
$$

Now we consider von Neumann-Jordan constant $C_{N J}\left(Y_{\psi}\right)$ when $\psi \leq \psi_{2}$. As an application of Theorems 2.1 and 2.2, we have the following results.

Theorem 3.3. Suppose that $\psi \neq \psi_{2}$ and $\psi \leq \psi_{2}$. Then

$$
C_{N J}\left(Y_{\psi}\right) \leq \max _{0 \leq t \leq 1} \frac{\psi_{2}(t)^{2}}{\psi(t)^{2}}\left(=M_{2}^{2}\right)
$$

Moreover, $C_{N J}\left(Y_{\psi}\right)=M_{2}^{2}$ if and only if there exist $r_{1}, s_{1}, t_{1}, r_{2}, s_{2}, t_{2} \in[0,1]$ such that $\psi_{2}\left(s_{i}\right) / \psi\left(s_{i}\right)=\psi_{2}\left(t_{i}\right) / \psi\left(t_{i}\right)=M_{2}$ and $\psi\left(r_{i}\right)=\psi_{2}\left(r_{i}\right)$ for $i=1,2$, where r_{1}, s_{1}, t_{1}
satisfy one of the following conditions (A1), (B1), and (C1), and r_{2}, s_{2}, t_{2} satisfy one of the following conditions (A2), (A3), (B2), and (C2) for some $c \in(0,1]$:
(A1) $r_{1}=\frac{s_{1} \psi\left(t_{1}\right)+c t_{1} \psi\left(s_{1}\right)}{\psi\left(t_{1}\right)+c \psi\left(s_{1}\right)}$.
(B1) $\frac{s_{1}}{\psi\left(s_{1}\right)}>\frac{c\left(1-t_{1}\right)}{\psi\left(t_{1}\right)} \quad$ and $\quad r_{1}=\frac{s_{1} \psi\left(t_{1}\right)+c\left(t_{1}-1\right) \psi\left(s_{1}\right)}{\psi\left(t_{1}\right)+c\left(2 t_{1}-1\right) \psi\left(s_{1}\right)}$.
(C1) $\frac{s_{1}}{\psi\left(s_{1}\right)} \leq \frac{c\left(1-t_{1}\right)}{\psi\left(t_{1}\right)} \quad$ and $\quad r_{1}=\frac{\left(1-s_{1}\right) \psi\left(t_{1}\right)+c t_{1} \psi\left(s_{1}\right)}{\left(1-2 s_{1}\right) \psi\left(t_{1}\right)+c \psi\left(s_{1}\right)}$.
(A2) $\frac{1-s_{2}}{\psi\left(s_{2}\right)} \geq \frac{c\left(1-t_{2}\right)}{\psi\left(t_{2}\right)}, \frac{s_{2}}{\psi\left(s_{2}\right)} \geq \frac{c t_{2}}{\psi\left(t_{2}\right)}, \quad$ and $\quad r_{2}=\frac{s_{2} \psi\left(t_{2}\right)-c t_{2} \psi\left(s_{2}\right)}{\psi\left(t_{2}\right)-c \psi\left(s_{2}\right)}$.
(A3) $r_{2}=\frac{\left(1-s_{2}\right) \psi\left(t_{2}\right)+c\left(t_{2}-1\right) \psi\left(s_{2}\right)}{\left(1-2 s_{2}\right) \psi\left(t_{2}\right)+c\left(2 t_{2}-1\right) \psi\left(s_{2}\right)}$ satisfying one of the following conditions:
(1) $\frac{1-s_{2}}{\psi\left(s_{2}\right)}>\frac{c\left(1-t_{2}\right)}{\psi\left(t_{2}\right)} \quad$ and $\frac{s_{2}}{\psi\left(s_{2}\right)}<\frac{c t_{2}}{\psi\left(t_{2}\right)}$.
(2) $\frac{1-s_{2}}{\psi\left(s_{2}\right)}<\frac{c\left(1-t_{2}\right)}{\psi\left(t_{2}\right)}$ and $\frac{s_{2}}{\psi\left(s_{2}\right)}>\frac{c t_{2}}{\psi\left(t_{2}\right)}$.
(B2) $\frac{1-s_{2}}{\psi\left(s_{2}\right)} \leq \frac{c t_{2}}{\psi\left(t_{2}\right)} \quad$ and $\quad r_{2}=\frac{\left(s_{2}-1\right) \psi\left(t_{2}\right)+c t_{2} \psi\left(s_{2}\right)}{\left(2 s_{2}-1\right) \psi\left(t_{2}\right)+c \psi\left(s_{2}\right)}$.
(C2) $\frac{1-s_{2}}{\psi\left(s_{2}\right)}>\frac{c t_{2}}{\psi\left(t_{2}\right)} \quad$ and $\quad r_{2}=\frac{s_{2} \psi\left(t_{2}\right)+c\left(1-t_{2}\right) \psi\left(s_{2}\right)}{\psi\left(t_{2}\right)+c\left(1-2 t_{2}\right) \psi\left(s_{2}\right)}$.
Proof. For each $x, z \in Y_{\psi}$ with $(x, z) \neq(0,0)$, we have

$$
\begin{align*}
\|x+z\|^{2}+\|x-z\|^{2} & \leq\|x+z\|_{2}^{2}+\|x-z\|_{2}^{2} \\
& =2\left(\|x\|_{2}^{2}+\|z\|_{2}^{2}\right) \\
& \leq 2 M_{2}^{2}\left(\|x\|^{2}+\|z\|^{2}\right) \tag{3.1}
\end{align*}
$$

by Lemmas 3.1 and 3.2. This implies that $C_{N J}\left(Y_{\psi}\right) \leq M_{2}^{2}$.
Next we consider restatements of $C_{N J}\left(Y_{\psi}\right)=M_{2}^{2}$. We note that

$$
C_{N J}\left(Y_{\psi}\right)=\sup \left\{\frac{\|x+c y\|^{2}+\|x-c y\|^{2}}{2\left(\|x\|^{2}+\|c y\|^{2}\right)}: x, y \in S_{Y_{\psi}}, 0<c \leq 1\right\} .
$$

The set $S_{Y_{\psi}} \times S_{Y_{\psi}}$ with the product topology is compact and the function

$$
S_{Y_{\psi}} \times S_{Y_{\psi}} \ni(x, y) \mapsto \frac{\|x+c y\|^{2}+\|x-c y\|^{2}}{2\left(\|x\|^{2}+\|c y\|^{2}\right)}
$$

is continuous for all $c \in(0,1]$. Thus $C_{N J}\left(Y_{\psi}\right)=M_{2}^{2}$ if and only if there exists a pair $(x, y) \in S_{Y_{\psi}} \times S_{Y_{\psi}}$ with $x \pm c y \neq 0$ satisfying

$$
\frac{\|x+c y\|^{2}+\|x-c y\|^{2}}{2\left(\|x\|^{2}+\|c y\|^{2}\right)}=M_{2}^{2}
$$

for this, we note that if $x+c y=0$ or $x-c y=0$ then $M_{2}=1$, which contradicts $\psi \neq \psi_{2}$. Moreover, by (3.1) with $z=c y$ for $c \in(0,1], C_{N J}\left(Y_{\psi}\right)=M_{2}^{2}$ if and only if there exists a pair $(x, y) \in S_{Y_{\psi}} \times S_{Y_{\psi}}$ with $x \pm c y \neq 0$ satisfying $\|x+c y\|=\|x+c y\|_{2}$, $\|x-c y\|=\|x-c y\|_{2},\|x\|_{2}=M_{2}\|x\|=M_{2}$, and $\|y\|_{2}=M_{2}\|y\|=M_{2}$. By adding Theorems 2.1 and 2.2 with $a=M_{2}^{-1}$ and $b=1$, we have that $C_{N J}\left(Y_{\psi}\right)=M_{2}^{2}$ if and only if there exist $r_{1}, s_{1}, t_{1}, r_{2}, s_{2}, t_{2} \in[0,1]$ such that $\psi\left(s_{i}\right)=M_{2}^{-1} \psi_{2}\left(s_{i}\right), \psi\left(t_{i}\right)=$ $M_{2}^{-1} \psi_{2}\left(t_{i}\right)$, and $\psi\left(r_{i}\right)=\psi_{2}\left(r_{i}\right)$ for $i=1,2$, where $r=r_{1}, s=s_{1}, t=t_{1}$ satisfy one of the conditions (a), (b), and (c) in Theorem 2.1, and $r=r_{2}, s=s_{2}, t=t_{2}$ satisfy one of the conditions (a1), (a2), (b), and (c) in Theorem 2.2. This completes the proof.

Moreover, the case of $\psi \geq \psi_{2}$ is as follows.
Theorem 3.4. Suppose that $\psi \neq \psi_{2}$ and $\psi \geq \psi_{2}$. Then

$$
C_{N J}\left(Y_{\psi}\right) \leq \max _{0 \leq t \leq 1} \frac{\psi(t)^{2}}{\psi_{2}(t)^{2}}\left(=M_{1}^{2}\right) .
$$

In particular, $C_{N J}\left(Y_{\psi}\right)=M_{1}^{2}$ if and only if there exist $r_{1}, s_{1}, t_{1}, r_{2}, s_{2}, t_{2} \in[0,1]$ such that $\psi\left(s_{i}\right) / \psi_{2}\left(s_{i}\right)=\psi\left(t_{i}\right) / \psi_{2}\left(t_{i}\right)=1$ and $\psi\left(r_{i}\right)=M_{1} \psi_{2}\left(r_{i}\right)$ for $i=1,2$, where r_{1}, s_{1}, t_{1} satisfy one of the following conditions (A1), (B1), and (C1), and r_{2}, s_{2}, t_{2} satisfy one of the following conditions (A2), (A3), (B2), and (C2) for some $c \in(0,1]$ in Theorem 3.3.

Proof. For each $x, z \in Y_{\psi}$ with $(x, z) \neq(0,0)$, we have

$$
\begin{aligned}
\|x+z\|^{2}+\|x-z\|^{2} & \leq M_{1}^{2}\left(\|x+z\|_{2}^{2}+\|x-z\|_{2}^{2}\right) \\
& =2 M_{1}^{2}\left(\|x\|_{2}^{2}+\|z\|_{2}^{2}\right) \\
& \leq 2 M_{1}^{2}\left(\|x\|^{2}+\|z\|^{2}\right)
\end{aligned}
$$

by Lemmas 3.1 and 3.2. This implies that $C_{N J}\left(Y_{\psi}\right) \leq M_{1}^{2}$.
Now, an argument similar to that in the proof of Theorem 3.3 shows that $C_{N J}\left(Y_{\psi}\right)=$ M_{1}^{2} if and only if there exists a pair $(x, y) \in S_{Y_{\psi}} \times S_{Y_{\psi}}$ with $x \pm c y \neq 0$ for $c \in(0,1]$ satisfying $\|x+c y\|=M_{1}\|x+c y\|_{2},\|x-c y\|=M_{1}\|x-c y\|_{2},\|x\|_{2}=\|x\|=1$, and $\|y\|_{2}=\|y\|=1$. Hence Theorems 2.1 and $2.2\left(\right.$ applied for $a=1$ and $\left.b=M_{1}\right)$ complete the proof.

If $c=1$, then Theorems 3.3 and 3.4 are reduced to the following theorems of the modified von Neumann-Jordan constant $C_{N J}^{\prime}\left(Y_{\psi}\right)$ defined by

$$
C_{N J}^{\prime}\left(Y_{\psi}\right):=\sup \left\{\frac{\|x+y\|^{2}+\|x-y\|^{2}}{4}: x, y \in S_{Y_{\psi}}\right\}\left(\leq C_{N J}\left(Y_{\psi}\right)\right) .
$$

Theorem 3.5 ([9], Theorem 3.1). Suppose that $\psi \neq \psi_{2}$ and $\psi \leq \psi_{2}$. Then

$$
C_{N J}^{\prime}\left(Y_{\psi}\right) \leq C_{N J}\left(Y_{\psi}\right) \leq \max _{0 \leq t \leq 1} \frac{\psi_{2}(t)^{2}}{\psi(t)^{2}}\left(=M_{2}^{2}\right)
$$

In particular, $C_{N J}^{\prime}\left(Y_{\psi}\right)=M_{2}^{2}$ if and only if there exist $r, s, t \in[0,1]$ such that $\psi_{2}(s) / \psi(s)=\psi_{2}(t) / \psi(t)=M_{2}$ and $\psi(r)=\psi_{2}(r)$, where r, s, t satisfy one of the following conditions:
(a) $s \neq t \quad$ and $\quad r=\frac{s \psi(t)+t \psi(s)}{\psi(t)+\psi(s)}$.
(b) $(s, t) \neq(1,0), s+t \geq 1, \quad$ and $\quad r=\frac{s \psi(t)+(t-1) \psi(s)}{\psi(t)+(2 t-1) \psi(s)}$.
(c) $(s, t) \neq(0,1), s+t \leq 1, \quad$ and $\quad r=\frac{(1-s) \psi(t)+t \psi(s)}{(1-2 s) \psi(t)+\psi(s)}$.

Proof. By the definition of $C_{N J}^{\prime}\left(Y_{\psi}\right)$ and Theorem 3.3, we have $C_{N J}^{\prime}\left(Y_{\psi}\right) \leq C_{N J}\left(Y_{\psi}\right) \leq$ M_{2}^{2}. Moreover, an argument similar to that in the proof of Theorem 3.3 shows that $C_{N J}^{\prime}\left(Y_{\psi}\right)=M_{2}^{2}$ if and only if there exists a pair $(x, y) \in S_{Y_{\psi}} \times S_{Y_{\psi}}$ with $x \pm y \neq 0$ satisfying $\|x \pm y\|=\|x \pm y\|_{2},\|x\|_{2}=M_{2}\|x\|=M_{2}$, and $\|y\|_{2}=M_{2}\|y\|=M_{2}$. Hence Theorem 2.7 (applied for $a=M_{2}^{-1}$ and $b=1$) completes the proof.

Theorem 3.6 ([9], Theorem 3.4). Suppose that $\psi \neq \psi_{2}$ and $\psi \geq \psi_{2}$. Then

$$
C_{N J}^{\prime}\left(Y_{\psi}\right) \leq C_{N J}\left(Y_{\psi}\right) \leq \max _{0 \leq t \leq 1} \frac{\psi(t)^{2}}{\psi_{2}(t)^{2}}\left(=M_{1}^{2}\right)
$$

In particular, $C_{N J}^{\prime}\left(Y_{\psi}\right)=M_{1}^{2}$ if and only if there exist $r, s, t \in[0,1]$ such that $\psi(s) / \psi_{2}(s)=\psi(t) / \psi_{2}(t)=1$ and $\psi(r)=M_{1} \psi_{2}(r)$, where r, s, t satisfy one of the following three conditions (a)-(c) in Theorem 3.5.

Proof. By the definition of $C_{N J}^{\prime}\left(Y_{\psi}\right)$ and Theorem 3.4, we have $C_{N J}^{\prime}\left(Y_{\psi}\right) \leq C_{N J}\left(Y_{\psi}\right) \leq$ M_{1}^{2}. Moreover, an argument similar to that in the proof of Theorem 3.4 shows that $C_{N J}^{\prime}\left(Y_{\psi}\right)=M_{1}^{2}$ if and only if there exists a pair $(x, y) \in S_{Y_{\psi}} \times S_{Y_{\psi}}$ with $x \pm y \neq 0$ satisfying $\|x \pm y\|=M_{1}\|x \pm y\|_{2},\|x\|_{2}=\|x\|=1$, and $\|y\|_{2}=\|y\|=1$. Hence Theorem 2.7 (applied for $a=1$ and $b=M_{1}$) completes the proof.

Acknowledgements. The author wishes to express her gratitude to Professor Kichi-suke Saito for his helpful comments.

References

[1] J. Alonso, P. Martín and P. L. Papini, Wheeling around von Neumann-Jordan constant in Banach spaces, Studia Math. 188 (2008), 135-150.
[2] F. F. Bonsall and J. Duncan, Numerical ranges II, Cambridge University Press, Cambridge, 1973.
[3] J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue spaces, Ann. of Math. 38 (1937), 114-115.
[4] P. Jordan and J. von Neumann, On inner products in linear, metric spaces, Ann. of Math. 36 (1935), 719-723.
[5] N. Komuro, K.-S. Saito and R. Tanaka, On the class of Banach spaces with James constant $\sqrt{2}$: Part II, Mediterr. J. Math. 13 (2016), 4039-4061.
[6] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^{2}, J. Math. Anal. Appl. 244 (2000), 515-532.
[7] Y. Takahashi and M. Kato, von Neumann-Jordan constant and uniformly nonsquare Banach spaces, Nihonkai Math. J. 9 (1988), 155-169.
[8] Y. Takahashi and M. Kato, A simple inequality for the von Neumann-Jordan and James constants of a Banach space, J. Math. Anal. Appl. 359 (2009), 602-609.
[9] Y. Tomizawa, K.-I. Mitani, K.-S. Saito and R. Tanaka, Geometric constants of $\pi / 2$-rotation invariant norms on \mathbb{R}^{2}, Ann. Funct. Anal. 8 (2017), 215-230.
[10] C. Yang and H. Li, An inequality between Jordan-von Neumann constant and James constant, Appl. Math. Lett. 23 (2010), 277-281.
(Y. Tomizawa) Department of Engineering, Faculty of Engineering, Niigata Institute of Technology, Niigata 945-1195, Japan
E-mail address: yukino-t@ca2.so-net.ne.jp

Received June 1, 2017
Revised August 8, 2017

[^0]: 2010 Mathematics Subject Classification. Primary 46B20.
 Key words and phrases. von Neumann-Jordan constant, $\pi / 2$-rotation invariant norm.

