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REAL HYPERSUFRACES OF NON-FLAT COMPLEX
HYPERBOLIC PLANES WHOSE JACOBI
STRUCTURE OPERATOR SATISFIES A

GENERALIZED COMMUTATIVE CONDITION

THEOHARIS THEOFANIDIS

Abstract. Real hypersurfaces satisfying the condition ϕl = lϕ, (l = R(., ξ)ξ),

have been studied by many authors under at least one more condition, since the

class of these hypersurfaces is quite tough to be classified. The aim of the present

paper is the classification of real hypersurfaces in complex hyperbolic plane CH2

satisfying a generalization of ϕl = lϕ under an additional restriction on a specific

function.

0. Introduction

An n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature

c is called complex space form, which is denoted by Mn(c). A complete and simply

connected complex space form is a projective space CP n if c > 0, a hyperbolic space

CHn if c < 0, or a Euclidean space Cn if c = 0. The induced almost contact metric

structure of a real hypersurface M of Mn(c) will be denoted by (ϕ, ξ, η, g).

Real hypersurfaces in CP n which are homogeneous, were classified by R. Takagi

[17]. The same author classified real hypersurfaces in CP n, with constant prinicipal

curvatures in [18], but only when the number g of distinct principal curvatures

satisfies g = 3. M. Kimura showed in [12] that if a Hopf real hypersurfaceM in CP n

has constant principal curvatures, then the number of distinct principal curvatures

of M is 2, 3 or 5. J. Berndt gave the equivalent result for Hopf hypersurfaces in

CHn ([1]) where he divided real hypersurfaces into four model spaces, named A0,

A1, A2 and B. Real hypersurfaces of type A1 and A2 in CP n and of type A0, A1

and A2 in CHn are said to be hypersurfaces of type A for simplicity. Another class

of real hypersurfaces that appears quite often is the Hopf hypersurfaces where the

structure vector field is a principal vector field. For more details and examples on

real hypersurfaces of type A and Hopf, we refer to [14].
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A Jacobi field along geodesics of a given Riemannian manifold (M , g) plays an

important role in the study of differential geometry. It satisfies a well known differ-

ential equation which inspires Jacobi operators. For any vector field X, the Jacobi

operator is defined by RX : RX(Y ) = R(Y,X))X, where R denotes the curvature

tensor and Y is a vector field on M . RX is a self-adjoint endomorphism in the

tangent space ofM , and is related to the Jacobi differential equation, which is given

by ∇γ́(∇γ́Y ) +R(Y, γ́)γ́ = 0 along a geodesic γ on M , where γ́ denotes the velocity

vector along γ on M .

In a real hypersurface M of a complex space form Mn(c), c ̸= 0, the Jacobi

operator on M with respect to the structure vector field ξ, is called the structure

Jacobi operator and is denoted by Rξ(X) = R(X, ξ)ξ = lX.

Real hypersurfaces have been studied from many points of view. Certain authors

have studied real hypersurfaces under conditions which include the operator l ([4],

[6], [11], [16], [19]). Other authors have studied real hypersurfaces under the condi-

tion ϕl = lϕ, equipped with one or two additional conditions ([3], [7], [8], [9] [10],

[20]), proving that these hypersurfaces are Hopf and classifying them as type A.

In the present paper we classify real hypersurfaces of complex hyperbolic planes,

satisfying

(ϕl − lϕ)X = ψ(X)lX, (0.1)

restricted in the subspace D = ker(η) of TpM for every point p ∈ M , where ker(η)

consists of all vector fields orthogonal to the Reeb flow vector field ξ and the form ψ

is assumed non-linear with respect to scalar product. If ψ is linear, then by replacing

X with 2X, we obtain (ϕl− lϕ)X = 2ψ(X)lX which implies ψ(X)lX = 0. So (0.1)

takes the simpler form ϕl = lϕ.

Since this class is rather difficult to classify, a second condition is imposed. How-

ever it is not a condition acting in vector fields, but only in the function α = g(Aξ, ξ):

∇ξξ ·α = 0, where A is the shape operator. Geometrically speaking, we demand the

function α to be constant in the direction of the integral curves of ξ (from now on

we will write (∇ξξα) instead of ∇ξξ · α). Namely we prove:

Main Theorem. A real hypersurface M of a complex hyperbolic plane CH2, sat-

isfying (ϕl − lϕ)X = ψ(X)lX, ∀X ∈ D (ψ is non linear) and ∇ξξ · α = 0 is Hopf.

Furtermore, if α = g(Aξ, ξ) ̸= 0 then M locally congruent to a model space of type

A and ψ(X)lX = 0 for any vector fields X on M .

We mention that for a Hopf hypersurface in CHn (n > 2), it is known that the

associated principal curvature of ξ never vanishes [1]. However, in CH2 there exists

a Hopf hypersurface with Aξ = 0 [5].
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1. Preliminaries

Let Mn be a Kaehlerian manifold of real dimension 2n, equipped with an almost

complex structure J and a Hermitian metric tensor G. Then for any vector fields

X and Y on Mn(c), the following relations hold:

J2X = −X, G(JX, JY ) = G(X, Y ), ∇̃J = 0,

where ∇̃ denotes the Riemannian connection of G of Mn.

Now, let M2n−1 be a real (2n− 1)-dimensional hypersurface of Mn(c), and denote

by N a unit normal vector field on a neighborhood of a point in M2n−1 (from now

on we shall write M instead of M2n−1). For any vector field X tangent to M we

have JX = ϕX + η(X)N , where ϕX is the tangent component of JX, η(X)N is

the normal component, and

ξ = −JN , η(X) = g(X, ξ), g = G|M .

By properties of the almost complex structure J , and the definitions of η and g,

the following relations hold ([2]):

ϕ2 = −I + η ⊗ ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1. (1.1)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = −g(ϕX, Y ). (1.2)

The above relations define an almost contact metric structure on M which is

denoted by (ϕ, ξ, g, η). By virtue of this structure, we can define a local orthonormal

basis {e1, e2, ...en−1, ϕe1, ϕe2, ...ϕen−1, ξ}, called a ϕ-basis. Furthermore, let A be the

shape operator in the direction of N , and denote by ∇ the Riemannian connection

of g on M . Then A is symmetric and the following equations are satisfied:

∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ. (1.3)

As the ambient space Mn(c) is of constant holomorphic sectional curvature c, the

equations of Gauss and Codazzi are respectively given by:

R(X, Y )Z = (1.4)
c

4
[g(Y, Z)X − g(X,Z)Y + g(ϕY, Z)ϕX − g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ]+

g(AY,Z)AX − g(AX,Z)AY,

(∇XA)Y − (∇YA)X =
c

4
[η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ]. (1.5)

The tangent space TpM , for every point p ∈M , is decomposed as following:

TpM = ker(η)⊥ ⊕ ker(η),

where ker(η)⊥ = span{ξ} and ker(η) is defined as following:
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ker(η) = {X ∈ TpM : η(X) = 0}.
Based on the above decomposition, by virtue of (1.3), we decompose the vector

field Aξ in the following way:

Aξ = αξ + βU, (1.6)

where β = |ϕ∇ξξ| and U = − 1
β
ϕ∇ξξ ∈ ker(η), provided that β ̸= 0.

As stated before, if the vector field ξ is a principal vector field, the real hypersur-

face is called a Hopf hypersurface. In this case the vector field Aξ is expressed as

Aξ = αξ, α = g(Aξ, ξ).

Finally, differentiation of a function f along a vector field X will be denoted by

(Xf). All manifolds of this paper are assumed to be connected and of class C∞.

2. Auxiliary relations

In the study of real hypersurfaces of a complex space form Mn(c), c ̸= 0, it is a

crucial condition that the structure vector field ξ is principal. The purpose of this

paragraph is to establish relations that will help us prove this condition.

Let N = {p ∈ M : β ̸= 0 in a neighborhood of p}. If we had at least one

point of N where α = 0, then from (1.4) we would obtain lU = ( c
4
− β2)U , lϕU =

c
4
ϕU . Combining the last two equations with (0.1) we would take β = 0 which is a

contradiction. Therefore α ̸= 0 in N.

Lemma 2.1. Let M be a real hypersurface of a complex hyperbolic plane CH2,

satisfying (0.1). Then the following relations hold in N.

AU =
(γ
α
− c

4α
+
β2

α

)
U + βξ, AϕU =

(γ
α
− c

4α

)
ϕU, (2.1)

∇ξξ = βϕU, ∇Uξ =
(γ
α
− c

4α
+
β2

α

)
ϕU, ∇ϕUξ =

( c

4α
− γ

α

)
U, (2.2)

∇ξU = κ1ϕU, ∇UU = κ2ϕU, ∇ϕUU = κ3ϕU +
(γ
α
− c

4α

)
ξ, (2.3)

∇ξϕU = −κ1U − βξ, ∇UϕU = −κ2U −
(γ
α
− c

4α
+
β2

α

)
ξ, (2.4)

∇ϕUϕU = −κ3U,
where κ1, κ2, κ3 are smooth functions in N.

Proof. From (1.4) we get

lX =
c

4
[X − η(X)ξ] + αAX − g(AX, ξ)Aξ (2.5)
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which, for X = U and X = ϕU yields

(i) lU =
c

4
U + αAU − βAξ, (ii) lϕU =

c

4
ϕU + αAϕU. (2.6)

The scalar products of (2.6.i) with U and ϕU yield respectively

g(AU,U) =
γ

α
− c

4α
+
β2

α
, (2.7)

g(AU, ϕU) = g(AϕU,U) =
δ

α
, (2.8)

where γ = g(lU, U), δ = g(lU, ϕU). From (2.7), (2.8) and g(AU, ξ) = g(Aξ, U) = β

we obtain AU = ( γ
α
+ β2

α
− c

4α
)U+βξ+ δ

α
ϕU . From (2.8), g(AϕU, ξ) = g(Aξ, ϕU) = 0,

if we put ϵ = g(lϕU, ϕU), then we obtain AϕU = ( ϵ
α
− c

4α
)ϕU + δ

α
U . In order to

prove (2.1) we need to show that γ = ϵ, δ = 0. Combining the analysis of AU , AϕU

with (1.6) and (2.6) we obtain lU = γU + δϕU , lϕU = δU + ϵϕU . The last two

equations and ϕlU − lϕU = ψ(U)lU , which holds due to (0.1), yield

(i) γ − ϵ = ψ(U)δ, (ii) − 2δ = ψ(U)γ. (2.9)

Moreover, the decompositions of lU , lϕU combined with ϕlϕU + lU = ψ(ϕU)lϕU ,

which holds due to (0.1), (1.1), yield

(i) γ − ϵ = ψ(ϕU)δ, (ii) 2δ = ψ(ϕU)ϵ. (2.10)

Let’s assume that δ ̸= 0 in a neighborhood of a point in N. Then (2.9.i) and

(2.10.i) give ψ(U) = ψ(ϕU). Apparently ψ(U)γ ̸= 0 otherwise (2.9.ii) would yield

δ = 0. As a result, (2.9) and (2.10) lead respectively to −γ(γ − ϵ) = 2δ2, ϵ(γ − ϵ) =

2δ2. The last two relations are added and result to (γ − ϵ)2 = −4δ2 which is a

contradiction. This means δ = 0 holds, and (2.9), (2.10) imply γ = ϵ.

(2.2) is obtained from equation (2.1) and relation (1.3) for X = ξ, X = U ,

X = ϕU . Next we recall the rule

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ). (2.11)

By virtue of (2.11) for X = Z = ξ, Y = U and for X = ξ, Y = Z = U , it is shown

respectively ∇ξU⊥ξ and ∇ξU⊥U , which means ∇ξU = κ1ϕU . In a similar way,

equation (2.11) for X = Y = Z = U and X = Z = U , Y = ξ yields respectively

∇UU⊥U and ∇UU⊥ξ. So ∇UU = κ2ϕU holds. Finally, (2.11) for X = ϕU , Y =

Z = U and X = ϕU , Y = U , Z = ξ (with the aid of (2.2)) yields respectively

∇ϕUU⊥U and g(∇ϕUU, ξ) =
γ
α
− c

4α
. Therefore we have ∇ϕUU = κ3ϕU + ( γ

α
− c

4α
)ξ

and (2.3) has been proved. In order to prove (2.4) we use the second of (1.3) with

the following combinations: i) X = ξ, Y = U , ii) X = Y = U , iii) X = ϕU , Y = U ,

and make use of (1.6), (2.1), (2.3). �
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Lemma 2.2. Let M be a real hypersurface of a complex hyperbolic plane CH2,

satisfying (0.1). Then in N we have
(
ϕU( γ

α
− c

4α
)
)
= 3β

α

[
( γ
α
− c

4α
)2 − c

4

]
.

Proof. Putting X = U , Y = ξ in (1.5), we obtain (∇UA)ξ − (∇ξA)U = − c
4
ϕU.

Combining the last equation with (1.6) and Lemma 2.1, it follows:[
(Uα)− (ξβ)

]
ξ +

[
(Uβ)−

(
ξ
(γ
α
− c

4α
+
β2

α

))]
U+

[
γ − c

4
+ κ2β −

(γ
α
− c

4α

)(γ
α
− c

4α
+
β2

α

)
− κ1

β2

α

]
ϕU = − c

4
ϕU.

The last equation because of the linear independency of U , ϕU and ξ, yields

(Uα) = (ξβ), (2.12)

(Uβ) =

(
ξ
(γ
α
− c

4α
+
β2

α

))
, (2.13)

γ + κ2β −
(γ
α
− c

4α

)(γ
α
− c

4α
+
β2

α

)
− κ1

β2

α
= 0. (2.14)

In the same way, putting X = ϕU , Y = ξ in (1.5) we obtain (∇ϕUA)ξ −
(∇ξA)ϕU = c

4
U. Combining the last equation with (1.6) and Lemma 2.1, we have

(ϕUβ) +
(γ
α
− c

4α

)(γ
α
− c

4α
+
β2

α

)
− κ1

β2

α
− β2 − γ = 0, (2.15)

κ3β = ξ
(γ
α
− c

4α

)
, (2.16)

(ϕUα) + 3β
(γ
α
− c

4α

)
− κ1β − αβ = 0. (2.17)

Similarly, putting X = U , Y = ϕU in (1.5), we get (∇UA)ϕU − (∇ϕUA)U = − c
2
ξ,

which, by use of (1.6) and Lemma 2.1, implies:

−κ2
β2

α
− 3β

(γ
α
− c

4α

)
− β3

α
+

(
ϕU

(γ
α
− c

4α
+
β2

α

))
= 0, (2.18)

U
(γ
α
− c

4α

)
= κ3

β2

α
. (2.19)

We expand (2.18) and then replace the terms κ2, (ϕUβ), (ϕUα) from (2.14), (2.15)

and (2.17) respectively. The final equation is(
ϕU

(γ
α
− c

4α

))
=

3β

α

[(γ
α
− c

4α

)2

− c

4

]
. (2.20)

�

Lemma 2.3. Let M be a real hypersurface of a complex hyperbolic plane CH2,

satisfying (0.1). Then, κ3 = 0 holds in N.
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Proof. Because of (2.3), (2.4), (2.16), (2.19) and Lemma 2.2, the well known relation

[U, ϕU ] = ∇UϕU −∇ϕUU takes the form

[U, ϕU ]
(γ
α
− c

4α

)
=

−κ2κ3β
2

α
− κ3β

(γ
α
− c

4α
+
β2

α

)
− 3βκ3

α

[(γ
α
− c

4α

)2

− c

4

]
− κ3β

(γ
α
− c

4α

)
.

On the other hand (2.15), (2.17), (2.19) and Lemma 2.2 yield

[U, ϕU ]
(γ
α
− c

4α

)
= U

(
ϕU

(γ
α
− c

4α

))
− ϕU

(
U
(γ
α
− c

4α

))
=

3(Uβ)

α

[(γ
α
− c

4α

)2

− c

4

]
− 3β(Uα)

α2

[(γ
α
− c

4α

)2

− c

4

]

+
6κ3β

3

α2

(γ
α
− c

4α

)
− β2

α
(ϕU(κ3)) +

2κ3β

α

(γ
α
− c

4α

)(γ
α
− c

4α
+
β2

α

)
−2κ3βγ

α
− κ1κ3β

3

α2
− κ3β

3

α
− 3κ3β

3γ

α3
+

3κ3cβ
3

4α3
.

The last equations using (2.12), (2.13) and (2.16) yield

3

α

[(γ
α
− c

4α

)2

− c

4

]
(ξβ)− 3β

α2

[(γ
α
− c

4α

)2

− c

4

]
(ξα)− β(ϕUκ3) = (2.21)

[
2c− βκ2 +

β2

α
κ1 − 8

(γ
α
− c

4α

)2

− 5β2

α

(γ
α
− c

4α

)]
κ3.

Following a similar way, we calculate [ξ, ϕU ]( γ
α
− c

4α
) = (∇ξϕU −∇ϕUξ)(

γ
α
− c

4α
)

and then [ξ, ϕU ]( γ
α
− c

4α
) = ξ

(
ϕU( γ

α
− c

4α
)
)
− ϕU

(
ξ( γ

α
− c

4α
)
)
. By equalizing the

results we obtain

3

α

[(γ
α
− c

4α

)2

− c

4

]
(ξβ)− 3β

α2

[(γ
α
− c

4α

)2

− c

4

]
(ξα)− β(ϕUκ3) = (2.22)

[
γ −

(γ
α
− c

4α

)2

− 6β2

α

(γ
α
− c

4α

)]
κ3.

Comparing (2.21) with (2.22) and by making use of (2.14) we obtain

κ3

[(γ
α
− c

4α

)2

− c

4

]
= 0.

The last equation and c < 0 give κ3 = 0 in N. �
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3. Proof of Main Theorem

We first prove the following proposition.

Proposition 3.1. Let M be a real hypersurface of a complex hyperbolic plane CH2

(c ̸= 0), satisfying (0.1) and (∇ξξα) = 0. Then M is Hopf.

Proof. We keep working in N. By virtue of Lemma 2.3 and equations (1.6), (2.16),

(2.19), we obtain [Aξ, ξ]( γ
α
− c

4α
) = Aξ

(
ξ( γ

α
− c

4α
)
)
−ξ

(
Aξ( γ

α
− c

4α
)
)
= 0. However, from

Lemmas 2.1, 2.2, 2.3 and (1.6) we calculate [Aξ, ξ]( γ
α
− c

4α
) = 3β

α
(∇Aξξ−∇ξAξ)(

γ
α
−

c
4α
) = ( γ

α
− c

4α
+ β2

α
−κ1)((

γ
α
− c

4α
)2− c

4
). The two expressions of [Aξ, ξ]( γ

α
− c

4α
) yield(γ

α
− c

4α
+
β2

α
− κ1

)((γ
α
− c

4α

)2

− c

4

)
= 0.

Since the curvature is negative, the above relation gives

κ1 =
γ

α
− c

4α
+
β2

α
. (3.1)

The condition (∇ξξα) = 0 is equivalent to (ϕUα) = 0. The last relation, (3.1)

and (2.17) yield

γ − c

4
=
α2 + β2

2
. (3.2)

By virtue of (3.1) and (3.2) we simplify (2.15) and obtain

ϕUβ =
3β4

4α2
+
β2

2
− α2

4
+ γ. (3.3)

Next, we differentiate (3.2) along ϕU , with the aid of Lemma 2.2, (3.2), (3.3) and

(ϕUα) = 0 to acquire γ + 3c
4
= α2 + β2. The last relation and (3.2) imply γ = 5c

4

which violates (2.20). Therefore we have a contradiction in N, hence N = ∅ and M

is Hopf. �

From Proposition 3.1 we have on M :

Aξ = αξ, α = g(Aξ, ξ) (3.4)

and α is a constant ([14]). We consider a ϕ-basis
{
e, ϕe, ξ

}
which satisfies

Ae = λ1e, Aϕe = λ2ϕe, Aξ = αξ. (3.5)

From (1.4) and (3.5) we obtain

le =
c

4
e+ αλ1e, lϕe =

c

4
ϕe+ αλ2ϕe. (3.6)

By making use of (0.1) with X = e, in combination with (3.6), we result to

α(λ1 − λ2) = 0.

If α ̸= 0 then λ1 = λ2 = λ and λ is the root of the quadratic t2 − αt − c
4

([14]) and consequently a constant. The classification follows from [1]. By (3.6),
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(ϕl− lϕ)e = (ϕl− lϕ)ϕe = (ϕl− lϕ)ξ = 0. Thus, by virtue of (0.1), ψ(X)lX = 0 for

any vector fields X on M .

Concerning the case α = 0 we state the following. For a Hopf hypersurface in

CHn (n > 2), it is known that the associated principal curvature of ξ never vanishes

([1]). However, in CH2 there exists a Hopf hypersurface with Aξ = 0, which was

constructed using moving frames by T. Ivey and P. Ryan. For more details in the

construction of this hypersurface, we refer to their work in [5].
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