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AN L1-THEORY FOR SCALAR CONSERVATION
LAWS WITH MULTIPLICATIVE NOISE ON A

PERIODIC DOMAIN

DAI NOBORIGUCHI

Abstract. We study the Cauchy problem for a multi-dimensional scalar conser-

vation law with a multiplicative noise. Our aim is to give the well-posedness of an

L1-solution characterized by a kinetic formulation under appropriate assumptions.

In particular, we focus on the existence of such a solution.

1. Introduction

In this paper we study a scalar conservation law with a stochastic forcing of the

following type

du+ div(A(u))dt = Φ(u)dW (t) in TN × (0, T ), (1.1)

with the initial condition

u(·, 0) = u0(·) in TN , (1.2)

where TN is the N -dimensional torus and W is a cylindrical Wiener process de-

fined on a stochastic basis (Ω,F , (Ft), P ). More precisely, (Ft) is a complete

right-continuous filtration and W (t) =
∑∞

k=1 βk(t)ek with (βk)k≥1 being mutually

independent real-valued standard Wiener processes relative to (Ft) and (ek)k≥1 a

complete orthonormal system in a separable Hilbert space H (cf. [3] for example).

In the deterministic case (i.e. Φ ≡ 0), the problem (1.1), (1.2) has been extensively

studied by many authors [15], [16], [17], [19]. It is well known that a smooth solution

is constant along characteristic curves, which can intersect each other and shocks

can occur. Consequently classical solutions do not exist in general on the whole

interval [0, T ] and distributional solutions are not unique. In order to obtain the

well posedness of deterministic scalar conservation laws, Kružkov [15] introduced
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the notion of entropy solution. On the other hand, Lions, Perthame and Tadmor

[16] introduced the notion of kinetic formulation and kinetic solution. There are

several papers concerning kinetic or entropy solutions for deterministic degenerate

parabolic equations, see [1], [2], [12], [13].

To perturb a stochastic term is natural for applications, which appears in wide

variety of fields as physics, engineering and others. The Cauchy problem for the

stochastic equation has been studied in [5], [6], [9], [11]. On the other hand, Kobayasi

and the author [14] proved the uniqueness and the existence of kinetic solution,

and the author [18] proved the equivalence between kinetic solutions and entropy

solutions to the Cauchy-Dirichlet problem for stochastic scalar conservation laws.

It seems that the L1-setting is the most suitable to scalar conservation laws,

but not Lp or L∞. The reason is that solutions to scalar conservation laws have

L1-contraction property. Besides that, using averaging lemmas for example, we

may get the W r,1-regularity of a solution for sufficiently small r > 0. If we get

this regularity, then by the compactness argument we would obtain the long time

behavior or invariant measure of such a solution as in [7] which studied the case of

an additive noise (i.e. Φ independent of u). For the above reasons, we develop in

this paper the L1-framework.

Our purpose of this paper is to give a proof of existence of L1-kinetic solutions to

the initial value problem (1.1), (1.2) under appropriate assumptions. The assump-

tion of stochastic term

G2(x, ξ) =
∞∑
k=1

|gk(x, ξ)|2 ≤ C(1 + |ξ|2) (1.3)

is used by many authors [4], [5], [6], [7], [10], [14], [18]. To deal with the stochastic

term in the L1(TN)-framework, we use a slightly strong assumption (1.4) below

instead of (1.3). Even if we use the assumption (1.4) instead of the assumption

(1.3), the equation (1.1), (1.2) includes many important cases such as the finite

stochastic integral case, the case of the fuction G2 with compact support, and so on.

Moreover, the assumption (1.4) gives a better result as a stochastic process, that is,

a solution u belongs to L2(Ω× [0, T );L1(TN)) (see Proposition 3.1).

We now give the precise assumptions in this paper:

(A1) The flux function A : R → RN is of class C1 and its derivatives denoted by

a = (a1, . . . , aN) have at most polynomial growth.

(A2) For each z ∈ L2(TN), Φ(z) : H → L2(TN) is defined by Φ(z)ek = gk(·, z(·)),
where gk ∈ C(TN × R) satisfies the following conditions:

|gk(x, ξ)| ≤ Ck(1 + |ξ|), (1.4)
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∞∑
k=1

|gk(x, ξ)− gk(y, ζ)|2 ≤ C
(
|x− y|2 + |ξ − ζ|r(|ξ − ζ|)

)
(1.5)

for every x, y ∈ TN , ξ, ζ ∈ R. Here, {Ck} is a sequence satisfying
∑∞

k=1C
2
k <

+∞ and r is a continuous non-decreasing function on R+ with r(0) = 0.

In this paper, we denote by C a constant. Its value may change from one line to

another. We sometimes precise its dependence on some parameters.

This paper is organized as follows. In Section 2, we first introduce the notion of

kinetic solutions to the problem (1.1), (1.2) by using the kinetic formulation and

then state the main result. We also give some property of kinetic measure which

is used to prove the uniqueness. In Section 3, we prove the existence of kinetic

solutions and the equi-integrability condition (3.9) below. The condition (3.9) is

used to prove the continuity of trajectories in L1(TN).

2. Preliminaries and the main result

We will give the definition of kinetic solutions and mention the main result in this

section. Define

f+(u, ξ) =

{
1 if ξ < u,

0 if ξ ≥ u,
and f−(u, ξ) =

{
−1 if ξ > u,

0 if ξ ≤ u.

And also, we will use the notations

a ∨ b := max{a, b}, a ∧ b := min{a, b}, a+ := a ∨ 0, a− := a ∧ 0,

for a, b ∈ R.

Definition 2.1 (Kinetic measure). A map m from Ω to the set of non-negative

Radon measures over TN × [0, T )× R is said to be a kinetic measure if

(i) m is weakly measurable, i.e., for each ϕ ∈ Cc(TN × [0, T ) × R) the map

m(ϕ) : Ω → R is measurable,

(ii) m vanishes for large ξ in the following sense:

lim
R→∞

1

R
Em(TN × [0, T )× {ξ ∈ R;R ≤ |ξ| ≤ 2R}) = 0, (2.1)

(iii) for all ϕ ∈ Cc(TN × R), the process

t 7→
∫
TN×[0,t]×R

ϕ(x, ξ) dm(x, s, ξ) (2.2)

is predictable,

where EX denotes the expectation of a random variable X i.e. EX =
∫
Ω
X dP .
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Definition 2.2 (Kinetic solution). Let u0 ∈ L2(Ω,F0, dP ;L
1(TN)) and u ∈ L2(Ω×

[0, T ),P , dP ⊗ dt;L1(TN)) ∩ L2(Ω;L∞(0, T ;L1(TN))), where P is the predictable

σ-algebra on Ω × [0, T ) associated to (Ft). Then u is said to be a kinetic solution

to (1.1), (1.2) with initial datum u0 if there exists a kinetic measure m such that

the pair (u,m) satisfies a kinetic formulation: for all φ ∈ C∞
c (TN × R), P -a.s., a.e.

t ∈ [0, T ),

−
∫
TN

∫
R
f+(u(x, t), ξ)φ(x, ξ) dξdx+

∫
TN

∫
R
f+(u0(x), ξ)φ(x, ξ) dξdx

+

∫ t

0

∫
TN

∫
R
f+(u(x, s), ξ)a(ξ) · ∇φ(x, ξ) dξdxds

= −
∞∑
k=1

∫ t

0

∫
TN

gk(x, u)φ(x, u) dxdβk(s)

− 1

2

∫ t

0

∫
TN

G2(x, u)∂ξφ(x, u) dxds+

∫
TN×[0,t]×R

∂ξφ(x, ξ) dm. (2.3)

The above definition concerning the notion of kinetic solution has been introduced

in [4]. For the advantage of kinetic solutions as well as kinetic formulations in the

stochastic case, we refer to [4], [5], [6], [10]. And also, in the same fashion as in

[6, Section 3.3], we can see that the kinetic solution in the sense of Defintion 2.2 is

equivalent to the entropy solution which satisfies the inequality (38) in [6]. We are

now in a position to state our main result.

Theorem 2.1. Let u0 ∈ L2(Ω,F0, dP ;L
1(TN)). Under the assumptions (A1), (A2),

there exists a unique kinetic solution to (1.1), (1.2), which has almost surely con-

tinuous orbits in L1(Td). Moreover,

E∥u1(t)− u2(t)∥L1(Td) ≤ E∥u1,0 − u2,0∥L1(Td) (2.4)

for all kinetic solutions u1, u2 to (1.1), (1.2) with initial data u1,0 and u2,0, respec-

tively.

To prove the uniqueness of solutions, we need the following lemma:

Lemma 2.1. Let ψ be a smooth function from R to R+ whose support is a subset

of (−1, 1) and such that
∫
R ψ = 1. We set ψδ(ξ) =

1
δ
ψ( ξ

δ
) for δ > 0 and define the

nondecreasing function µ on R by

µ(ξ) =

{
Em(TN × [0, T )× [0, ξ)) if ξ ≥ 0

−Em(TN × [0, T )× (ξ, 0)) if ξ < 0.

Let D be the set of ξ ∈ (0,∞) such that µ is differentiable at −ξ and ξ. Then it

holds that
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(i) If R ∈ D, then
∫
R
ψδ(ξ ±R) dµ(ξ) → µ′(∓R) as δ ↓ 0.

(ii) lim inf
R→∞,R∈D

µ′(±R) = 0.

Proof. Since µ(ξ ∓R) = µ(∓R) + µ′(∓R)ξ + o(ξ), it follows that∫
R
ψδ(ξ ±R) dµ(ξ) = −

∫ δ

−δ

µ(ξ ∓R) dψδ(ξ) = µ′(∓R)−
∫ δ

−δ

o(ξ)ψ′
δ(ξ) dξ.

The last term of the right hand side on the above equality tends to 0 as δ → 0.

To see this take an arbitrary ε > 0. There exists δ0 > 0 such that if |ξ| < δ0 then

|o(ξ)| ≤ ε|ξ|. Therefore if 0 < δ < δ0, then∣∣∣∣∫ δ

−δ

o(ξ)ψ′
δ(ξ) dξ

∣∣∣∣ ≤ ε

∫ δ

−δ

|ξψ′
δ(ξ)| dξ = ε.

Thus we obtain the claim of (i).

Next, let us assume that

lim inf
R→∞,R∈D

µ′(R) = α > 0.

Then there exists R0 > 0 such that µ′(R) > α/2 whenever R ∈ D ∩ (R0,∞). Since

the function µ is nondecreasing, we have

1

R
Em(TN × [0, T )× [R, 2R)) =

1

R
(µ(2R)− µ(R))

≥ 1

R

∫ 2R

R

µ′(ξ) dξ >
α

2
.

This contradicts the limit (2.1). □

An L1-contraction property (2.4) is proved in the similar method as in [14], since

a kinetic measure in the sense of Definition 2.1 satisfies the limits (i), (ii) in Lemma

2.1. In particular, the kinetic solution to the problem (1.1), (1.2) is unique.

3. Existence

Let u0 ∈ L2(Ω,F0, dP ;L
1(TN)). For each n ∈ N, define

u0,n(x) = max{−n,min{u0, n}}.

Then by the result of [5] there exist kinetic solutions un with initial data u0,n such

that un ∈ Lp(Ω;C([0, T );Lp(TN))) for any p ∈ [1,∞). Moreover, since un satisfy

the L1-contraction property (2.4), {un} is a Cauchy sequence in L1(Ω×(0, T )×TN).

Now we define u as the limit of {un} in the sense of L1(Ω× (0, T )×TN)-norm. We

will show in this section that u is a kinetic solution.
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Proposition 3.1. Let u be the limit function defined as above. Then it satisfies the

inequality

E ess sup
t∈[0,T )

∥u(t)∥2L1(TN ) ≤ C(1 + E∥u0∥2L1(TN )), (3.1)

where C is a constant depending on T . Besides, there exists a mapping m from

Ω to the set of non-negative Radon measures over TN × [0, T ) × R such that m

satisfies the conditions (i), (iii) in Definition 2.1 and a pair (u,m) satisfies the

kinetic formulation (2.3).

Proof. Let θ, Θ be functions on R defined by

θ(ξ) = 1−1≤ξ≤0, Θ(ξ) =

∫ ξ

−1

∫ ζ

−1

θ(r) drdζ,

and let {χi}i∈N ⊂ C∞
c (R) be a sequence of functions such that χi(ξ) = 1 if |ξ| ≤ i,

χi(ξ) = 0 if |ξ| ≥ 2i, |χ′
i(ξ)| ≤ C/i with some constant C. We take Θ′(ξ)χi(ξ) as a

test function in the kinetic formulation (2.3) which approximate solutions un satisfy.

Note that ∫
TN

∫
R
f+(un(x, t), ξ)Θ

′(ξ)χi(ξ) dξdx ≥ 1

2

∫
TN

u+n (x, t) ∧ 2i dx

and that by the assumption (A2)

1

2

∫ t

0

∫
TN

G2(x, un)(θ(un)χi(un) + Θ′(un)χ
′
i(un)) dxds

≤ C +
C

i

∫ t

0

∫
TN

|un(x, s)|21|un|≤2i dxds

≤ C + C

∫ t

0

∫
TN

|un(x, s)| ∧ 2i dxds,

where C is a constant depending on T . Then since we know that kinetic measures

µn corresponding to the kinetic solutions un satisfy

E
∫
TN×[0,T )×R

|ξ|p dµn(x, t, ξ) ≤ Cp,n, (3.2)

for any p ≥ 1 (see [5, Section 4.1.2]), by letting i→ +∞, we obtain∫
TN

u+n (x, t) dx+

∫
TN×[0,t]×R

θ(ξ) dµn

≤ C + ∥u0∥L1(TN ) + C

∫ t

0

∫
TN

|un(x, s)| dxds

+
∞∑
k=1

∫ t

0

∫
TN

gk(x, un)Θ
′(un) dxdβk(s), (3.3)
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for a.e. t ∈ [0, T ). Since µn is a positive measure, we can drop
∫
θ dµn. Taking the

square and expectation, for a.e. t ∈ [0, T )

E
∣∣∣∣∫

TN

u+n (x, t) dx

∣∣∣∣2
≤ C + CE∥u0∥2L1(T) + CE

∫ T

0

(∫
TN

|un(x, s)| dx
)2

ds. (3.4)

To get the above inequality, we calculated the stochastic integral term as following:

by the Burkholder - Davis - Gundy inequality and the assumption (1.4),

E

∣∣∣∣∣
∞∑
k=1

∫ t

0

∫
TN

gk(x, un)Θ
′(un) dxdβk(s)

∣∣∣∣∣
2

≤ CE
∫ T

0

∞∑
k=1

∣∣∣∣∫
TN

gk(x, un)Θ
′(un) dx

∣∣∣∣2 ds
≤ CE

∫ T

0

∣∣∣∣∫
TN

(1 + |un(x, s)|)Θ′(un) dx

∣∣∣∣2 ds
≤ C + CE

∫ T

0

(∫
TN

|un(x, s)| dx
)2

ds. (3.5)

Note that if we replace f+ with f− in (2.3), it also holds. Therefore, in a similar

manner, we obtain the inequality (3.4) for u−. Thus using the Gronwall inequality,

we get

E∥un(t)∥2L1(TN ) ≤ C(1 + E∥u0∥2L1(TN )). (3.6)

Then from Lebesgue’s convergence theorem, u also satisfies (3.6).

Next, we show that there exists a mapping m which satisfies the conditions (i),

(iii) in Definition 2.1. Fix R ∈ N. Since un ∈ Lp(Ω;C([0, T );Lp(TN))) for p ∈ [1,∞)

and µn satisfies (3.2), we can take φR(ξ) = ξ+∧R (resp. φR(ξ) = ξ−∨(−R)) as a test
function in the kinetic formulation (2.3) (resp. (2.3) for f−). Note that

∫
TN

∫
R f+φR

is positive. Taking the square and expectation, for a.e. t ∈ [0, T ),

E|µn(TN × [0, t)× [0, R))|2

≤ C

(
E
∣∣∣∣∫

TN

∫
R
f+(u0,n(x), ξ)φR(ξ)dξdx

∣∣∣∣2

+ E

∣∣∣∣∣
∞∑
k=1

∫ t

0

∫
TN

gk(x, un(x, s))φR(un(x, s)) dxdβk(s)

∣∣∣∣∣
2

+E
∣∣∣∣∫ t

0

∫
TN

G2(x, un(x, s))∂ξφR(un(x, s)) dxds

∣∣∣∣2
)

— 49 —



≤ C

(
R2E∥u+0,n∥2L1(TN ) + E

∫ T

0

∣∣∣∣∫
TN

G2(x, un(x, s))φR(un(x, s)) dx

∣∣∣∣2 ds
+E

∣∣∣∣∫ T

0

∫
TN

(1 + |un(x, s)|2)∂ξφR(un(x, s)) dxds

∣∣∣∣2
)

≤ C

(
R2E∥u+0,n∥2L1(TN ) + 1 + E

∫ T

0

∥un(s)∥2L1(TN )ds

)
≤ CR(1 + E∥u0∥2L1(TN )) (3.7)

(
resp. E|µn(TN × [0, t)× (−R, 0])|2 ≤ CR(1 + E∥u0∥2L1(TN ))

)
.

Thus for each R ∈ N, {µn}n∈N is bounded in L2
w(Ω;Mb(AR)), where AR = TN ×

[0, T )× (−R,R), Mb(AR) is the space of finite Borel measures on AR with the total

variational norm and L2
w(Ω;Mb(AR)) is the space of weakly measurable mappings µ

such that E∥µ∥2Mb(AR). Since Mb(AR) is the topological dual space of Cc(AR) and is

separable, the space L2
w(Ω;Mb(AR)) is the topological dual space of L2(Ω;Cc(AR))

(see [8, Theorem 8.20.3]). Thus, for any R ∈ N there exists a mapping mR ∈
L2

w(Ω;Mb(AR)) such that up to subsequence, µn ⇀ mR in L2
w(Ω;Mb(AR))-weak.

By a diagonal argument, we obtain for R ∈ N mR = mR+1 in L2
w(Ω;Mb(AR)) and

the convergence in all the spaces L2
w(Ω;Mb(AR))-weak of a single subsequence still

denoted (µn). Let us then set m = mR on AR, a.s. The conditions (i), (iii) in

Definition 2.1 and kinetic formulation (2.3) are stable by weak convergence, hence

they are satisfied by m.

Finally, letting n → ∞ in (3.3) and taking square, supremum w.r.t. t on [0, T )

and expectation, we obtain

E ess sup
t∈[0,T )

∥u(t)∥2L1(TN )

≤ C + CE∥u0∥2L1(TN ) + C

∫ T

0

∥u(s)∥2L1(TN ) ds

+ CE ess sup
t∈[0,T )

∣∣∣∣∣
∞∑
k=1

∫ T

0

∫
TN

gk(x, u)Θ
′(u) dxdβk(s)

∣∣∣∣∣ . (3.8)

With (3.6) for u in hand, in a same spirit as (3.5), we get the inequality (3.1). □

Proposition 3.2. Let u be the limit function defined in the beginning of this section

and let m be defined in the proof of Proposition 3.1. Then m satisfies the condition

(ii) in Definition 2.1. Therefore together with the result of Proposition 3.1, m is a

kinetic measure and u is a kinetic solution to (1.1), (1.2). Moreover, u satisfies the
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following equi-integrability condition:

lim
R→∞

E ess sup
t∈[0,T )

(∫
TN

(u(x, t)∓R)± dx

)2

= 0. (3.9)

In particular, P -a.s., u ∈ C([0, T );L1(TN)).

Proof. For R > 0, let θR, ΘR be functions on R defined by

θR(u) =
1

R
1R<u<2R, ΘR(u) =

∫ u

0

∫ r

0

θR(s) dsdr. (3.10)

Take Θ′
R(ξ) as a test function in (2.3). Note that

(ξ − 2R)+ ≤ ΘR(ξ) ≤ (ξ −R)+ (3.11)

and that by the assumption (A2)∫ T

0

∫
TN

G2(x, u)θR(u) dxds ≤ C

∫ T

0

∫
TN

(1 + |u|)1R≤u dxds. (3.12)

Then we have for a.e. t ∈ [0, T )∫
TN

(u(x, t)− 2R)+ dx+
1

R
m(TN × [0, t]× [R, 2R])

≤
∫
TN

(u0(x)−R)+ dx+
∞∑
k=1

∫ t

0

∫
TN

gk(x, u)Θ
′
R(u) dxdβk(s)

+ C

∫ t

0

∫
TN

(1 + |u|)1R≤u dxds (3.13)

Then dropping the first term in the left hand side, taking expectation and letting

t ↑ T , we obtain

1

R
Em(TN × [0, T )× [R, 2R])

≤ E
∫
TN

(u0(x)−R)+ dx+ CE
∫ T

0

∫
TN

(1 + |u|)1R≤u dxds. (3.14)

Since the right hand side apparently goes to 0 as R → ∞, m is a kinetic measure.

On the other hand, dropping the second term in the left hand side in (3.13) and

taking square, supremum w.r.t. t on [0, T ) and expectation, we have

E ess sup
t∈[0,T )

(∫
TN

(u(x, t)− 2R)+ dx

)2

≤ CE
(∫

TN

(u0(x)−R)+ dx

)2

+ CE
∫ T

0

(∫
TN

(1 + |u|)1R≤u dx

)2

ds (3.15)

Here we calculated the stochastic integral term in a same spirit as (3.5). Since by

Proposition 3.1, in particular, u ∈ L2(Ω× [0, T );L1(TN)).
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Finally, the equi-integrability condition (3.9) yields the pathwise continuity of

kinetic solutions as in [7, Appendix, A.3]. Thus we obtain the conclusion. □
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