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A NOTE ON THE EXTENSIONS OF THE INVERSION
MAP TO THE ABSORBING ELEMENTS OF A

SEMIGROUP

MATTEO DALLA RIVA AND SIN-EI TAKAHASI

Abstract. Given a non-trivial automorphism (resp. anti-automorphism) of a

semigroup, we study its homomorphic (resp. anti-homomorphic) extensions to a

larger semigroup by considering the images of the absorbing elements. Then we

exhibit some examples to show the application of the results obtained.

1. Introduction

We are interested in homomorphic extensions of the inversion map to the “ab-

sorbing elements” of a semigroup. There is an easy result on this subject which can

be described as follows.

Let K be the set of real numbers or the set of complex numbers. Then K is

a semigroup with the ordinary multiplication. In this case, the inversion map ϕ

defined by ϕ(t) = 1/t (t ̸= 0) has a unique homomorphic extension to K. In fact,

the map ϕ̃ defined by

ϕ̃(t) =

{
1/t (t ̸= 0)

0 (t = 0)

is an automorphism of K which extends ϕ. Let ψ be any homomorphic extension of

ϕ to K. Then ψ(0) must be an idempotent of K, and hence ψ(0) = 0 or ψ(0) = 1.

If ψ(0) = 1, then 2 = ψ(1/2)ψ(0) = ψ(0) = 1, a contradiction. Therefore ψ(0) = 0

holds, so that ψ = ϕ̃ as required.

In this note, we wish to extend such a result to a more general setting in order to

characterize the homomorphic (resp. anti-homomorphic) extensions of a non-trivial

automorphism (resp. anti-automorphism) of a semigroup to a larger semigroup in

terms of the images of the absorbing elements (see Theorem 1 and Propositions 1
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and 2). Moreover, some illustrative examples (see Examples 1, 2 and 3) are given

as application.

2. Results

Let S be a semigroup with binary operation ∗ and T a sub-semigroup of S. An

automorphism (or anti-automorphism) φ of T is said to be trivial if φ(x) = e for

all x ∈ T and for some idempotent e ∈ T . We denote by Zl(T, S) the set of the

elements s ∈ S such that s ∗ t = s for all t ∈ T . Similarly we denote by Zr(T, S) the

set of the elements s ∈ S such that t ∗ s = s for all t ∈ T . We also define

Z(T, S) = Zl(T, S) ∪ Zr(T, S).

Then we have the following

Theorem 1. Let ϕ be a non-trivial automorphism (resp. anti-automorphism) of T

and ψ be any homomorphic (resp. anti-homomorphic) extension of ϕ to S. If T is

cancellative and unital, then ψ(z) /∈ T for all z ∈ Z(T, S).

Proof. Suppose that T is cancellative and unital. If Z(T, S) is empty, then the

statement is clearly verified. So let Z(T, S) be non-empty and assume that there

exists z0 ∈ Zl(T, S) such that ψ(z0) ∈ T (the proof for z0 ∈ Zr(T, S) is similar and

is accordingly omitted). We also assume that ψ is an homomorphic extension of ϕ

(the proof for ψ anti-homomorphic is similar and accordingly omitted). Then we

take x ∈ T arbitrarily. Since

ψ(z0) ∗ ϕ(x) = ψ(z0) ∗ ψ(x) = ψ(z0 ∗ x) = ψ(z0),

it follows that

ψ(z0) ∗ {ϕ(x) ∗ y} = {ψ(z0) ∗ ϕ(x)} ∗ y = ψ(z0) ∗ y

holds for all y ∈ T . Since T is cancellative, we deduce that ϕ(x)∗y = y for all y ∈ T .

Accordingly ϕ(x) is a left identity element for T . Then ϕ(x) must be the identity

element of T because T is unital. Consequently ϕ must be trivial. This contradicts

the fact that ϕ is non-trivial, and the theorem is proved. □

We may want to relax the conditions on T and take T to be only right-cancellative

(or left-cancellative), then we have to be more specific in the assumption of the

theorem and we can prove the following.

Proposition 1. (i) Let ϕ be a non-trivial automorphism of T and ψ be any homo-

morphic extension of ϕ to S. If T is left (resp. right)-cancellative and has a unique

left (resp. right) identity element, then ψ(z) /∈ T for all z ∈ Zl(T, S) (resp. Zr(T, S)).
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(ii) Let ϕ be a non-trivial anti-automorphism of T and ψ be any anti-homomorphic

extension of ϕ to S. If T is left (resp. right)-cancellative and has a unique left

(resp. right) identity element, then ψ(z) /∈ T for all z ∈ Zr(T, S) (resp. Zl(T, S)).

Proof. The proof is a straightforward adaptation of the argument used in the proof

of Theorem 1 and it is accordingly omitted. □

In particular, under the assumptions of Proposition 1 we have S ̸= T whenever

either Zl(T, S) or Zr(T, S) are non-empty (note that we may have Zl(T, S) ⊆ T

or Zr(T, S) ⊆ T ). A consequence of Proposition 1 is presented in Proposition 2

here below. In the sequel we will denote by Zl(S) (resp. Zr(S)) the set of the left

(resp. right) absorbing elements of S.

Proposition 2. (i) Let ϕ be a non-trivial automorphism of T and ψ be any homo-

morphic extension of ϕ to S. Assume that S = T ∪ Zr(S) (resp. = T ∪ Zl(S)) and

that Zl(T, S) = Zl(S) (resp. Zr(T, S) = Zr(S)). If T is left (resp. right)-cancellative

and has a unique left (resp. right) identity element, then there exists z0 ∈ Zr(S)

(resp. Zl(S)) such that ψ(z) = z0 for all z ∈ Zl(S) (resp. Zr(S)).

(ii) Let ϕ be a non-trivial anti-automorphism of T and ψ be any anti-homomorphic

extension of ϕ to S. Assume that S = T ∪ Zr(S) (resp. = T ∪ Zl(S)) and that

Zr(T, S) = Zr(S) (resp. Zl(T, S) = Zl(S)). If T is left (resp. right)-cancellative

and has a unique left (resp. right) identity element, then there exists z0 ∈ Zr(S)

(resp. Zl(S)) such that

(ii-1) ψ(z) = z0 for all z ∈ Zr(S) (resp. Zl(S));

(ii-2) z0 ∗ ψ(s) = z0 (resp. ψ(s) ∗ z0 = z0) for all s ∈ S.

Proof. (i) Assume that S = T ∪ Zr(S) and Zl(T, S) = Zl(S) and that T is left-

cancellative and has a unique left identity element. We show that ψ(z1) = ψ(z2)

for all z1, z2 ∈ Zl(S). Indeed, take z1, z2 ∈ Zl(S) arbitrarily. By Proposition 1-(i)

and our assumptions we must have ψ(z1) ∈ Zr(S). Then ψ(z1) = ψ(z2) ∗ ψ(z1) =
ψ(z2 ∗ z1) = ψ(z2) as required. Accordingly, there exists z0 ∈ Zr(S) such that

ψ(z) = z0 for all z ∈ Zl(S). The proof of the other case is similar and accordingly

omitted.

(ii) Assume that S = T ∪ Zr(S) and Zr(T, S) = Zr(S) and that T is left-

cancellative and has a unique left identity element. To prove (ii-1) we show that

ψ(z1) = ψ(z2) for all z1, z2 ∈ Zr(S). Indeed, take z1, z2 ∈ Zr(S) arbitrarily.

By Proposition 1-(ii) and our assumptions we must have ψ(z1) ∈ Zr(S). Then

ψ(z1) = ψ(z2) ∗ ψ(z1) = ψ(z1 ∗ z2) = ψ(z2) as required. Accordingly, there exists

z0 ∈ Zr(S) such that ψ(z) = z0 for all z ∈ Zr(S). The proof of the other case is

similar and accordingly omitted.
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To show (ii-2), let s ∈ S. Since z0 ∈ Zr(S) and ψ(z0) = z0, it follows that

z0 ∗ ψ(s) = ψ(z0) ∗ ψ(s) = ψ(s ∗ z0) = ψ(z0) = z0, as required. The proof of the

other case is similar and accordingly omitted. □

3. Examples

The first example is obtained with the help of Theorem 1. In this example, we

give a complete description of every homomorphic extension of the inversion map

of the ordinary multiplicative group of positive numbers to the semigroup obtained

by adding three points to it.

The second example is obtained with the help of Proposition 1. In this example

we give a complete description of every homomorphic extension of an automorphism

of the injection semigroup on a given set to the semigroup obtained by adding the

constant maps to it.

The third example is obtained with the help of Proposition 2. In this example

we provide a complete description of every anti-homomorphic extension of an anti-

automorphism of the surjection semigroup on a given set to the semigroup obtained

by adding the constant maps to it.

Finally, we have included a remark, based of the third example, where we show

that there exist no anti-homomorphic extension of an anti-isomorphism of the bijec-

tion group on a given set to the semigroup obtained by adding the constant maps

to it. In particular, there exist no anti-homomorphic extension of the inversion map

of the bijection group to the semigroup obtained by adding the constant maps to it.

Example 1. Let T = (0,+∞) be the ordinary multiplicative group of positive

numbers and put S = (0,+∞) ∪ {0,+∞, ω}, where +∞ and ω are symbols. We

equip S with a semigroup structure by means of the binary operation ∗ which

coincides with the usual product of real numbers on [0,+∞) × [0,+∞) and such

that

s ∗+∞ = +∞∗ s = +∞ (0 < ∀s < +∞),

+∞∗+∞ = +∞, 0 ∗+∞ = +∞∗ 0 = ω,

and

s ∗ ω = ω ∗ s = ω (∀s ∈ S).

Then T is a sub-semigroup of S. We denote by ϕ the inversion map from T to itself

which takes t to ϕ(t) = 1/t. We wish to characterize homomorphic extension of ϕ

to S.

As a first step we observe that Z(T, S) = {0,+∞, ω}. Then, by Theorem 1, we

deduce that every extension ψ of ϕ maps {0,+∞, ω} to itself. In addition, it must
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be

ψ(0) ∗ ψ(+∞) = ψ(+∞) ∗ ψ(0) = ψ(ω) ,

ψ(0) ∗ ψ(ω) = ψ(ω) ∗ ψ(0) = ψ(ω) ,

ψ(ω) ∗ ψ(+∞) = ψ(+∞) ∗ ψ(ω) = ψ(ω) .

Accordingly, we find that every extension ψ coincides with one of the maps ψ1, . . . ,

ψ9 defined by the following conditions: ψi|T = ϕ for all i ∈ {1, . . . , 9}, and

ψ1(0) = 0 , ψ1(+∞) = 0 , ψ1(ω) = 0 ,

ψ2(0) = 0 , ψ2(+∞) = +∞ , ψ2(ω) = ω ,

ψ3(0) = 0 , ψ3(+∞) = ω , ψ3(ω) = ω ,

ψ4(0) = +∞ , ψ4(+∞) = 0 , ψ4(ω) = ω ,

ψ5(0) = +∞ , ψ5(+∞) = +∞ , ψ5(ω) = +∞ ,

ψ6(0) = +∞ , ψ6(+∞) = ω , ψ6(ω) = ω ,

ψ7(0) = ω , ψ7(+∞) = 0 , ψ7(ω) = ω ,

ψ8(0) = ω , ψ8(+∞) = +∞ , ψ8(ω) = ω ,

ψ9(0) = ω , ψ9(+∞) = ω , ψ9(ω) = ω .

Example 2. Let X be an arbitrary set with ♯X ≥ 2. Let T denote the set of the

injective maps from X to itself. For all x ∈ X let zx denote the map from X to

itself defined by zx(y) = x for all y ∈ X. Let Z = {zx : x ∈ X} be the set of

such maps zx. Then T ∩ Z = ∅ because ♯X ≥ 2. Put S = T ∪ Z. We endow S

with a semigroup structure by means of the binary operation ◦ which takes a pair of

functions (h, g) to the functional composition h ◦ g (defined by (h ◦ g)(x) = h(g(x))

for all x ∈ X). Then (T, ◦) is a left-cancellative unital semigroup. Also we have

Z = Zl(S) = Zl(T, S) .

In fact, Z ⊆ Zl(S) ⊆ Zl(T, S) will be evident. If f ∈ Zl(T, S) ∩ T , then f ◦ f = f ,

so f is the identity map of X (because T is left-cancellative). Hence T is composed

only by the identity map, which contradicts ♯X ≥ 2. As consequence, Zl(T, S) ∩ T
is empty and Zl(T, S) ⊆ Z. Then we obtain the desired equalities.

Let now ϕ be an automorphism from T to itself and put

Cϕ = {f : X → X | f ◦ h = ϕ(h) ◦ f (∀h ∈ T )}.

We first assume that ϕ is non-trivial. By Proposition 1-(i) we can verify that if Cϕ

is empty, then there exist no homomorphic extension of ϕ to S, and that if Cϕ is

non-empty, then any homomorphic extension ψ of ϕ to S can be expressed as

ψ(h) =

{
ϕ(h) (h ∈ T )

zf(x) (h = zx ∈ Z)
(1)
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for a unique element f ∈ Cϕ. Indeed, let ψ be a homomorphic extension of ϕ to S.

By Proposition 1-(i), we have ψ(Z) ⊆ Z, and then for an arbitrary element x ∈ X,

we can find a unique element f(x) in X such that ψ(zx) = zf(x). Therefore we have

zf(h(x)) = ψ(zh(x)) = ψ(h ◦ zx) = ψ(h) ◦ ψ(zx) = ϕ(h) ◦ zf(x) = zϕ(h)(f(x)),

hence f(h(x)) = ϕ(h)(f(x)) for all x ∈ X and h ∈ T . In other words, f ∈ Cϕ.

Moreover, we can easily see that the map from S to itself defined by (1) is a ho-

momorphic extension of ϕ to S when f ∈ Cϕ. Therefore the desired result follows

immediately from the above observation.

We next assume that ϕ is trivial. Then we can verify that any homomorphic

extension ψ of ϕ to S can be expressed as either

ψ(h) = idX (h ∈ S), (2)

where idX is the identity map from X to itself, or

ψ(h) =

{
idX (h ∈ T )

za (h ∈ Z)
(3)

for a unique element a ∈ X. Indeed, ϕ(h) = idX holds for all h ∈ T because idX is a

unique idempotent of T . We first consider the case of ψ(Z) ⊈ Z. We can choose an

element za ∈ Z with ψ(za) ∈ T . Then ψ(za)◦ψ(za) = ψ(za) and hence ψ(za) = idX .

Now take zx ∈ Z arbitrarily and choose an element h ∈ T with h(a) = x. If there

exists y ∈ X with ψ(zx) = zy, then

idX = ϕ(h) = ψ(h) ◦ ψ(za) = ψ(h ◦ za) = ψ(zh(a)) = ψ(zx) = zy,

a contradiction because ♯X ≥ 2. Therefore we conclude that ψ(Z) ⊆ T . Conse-

quently ψ(z) = idX for all z ∈ Z as observed above. In other words, ψ is expressed

as (2). We next consider the case when ψ(Z) ⊆ Z. In this case, there exists a map

f : X → X such that ψ(zx) = zf(x) for all x ∈ X. Then

z(f◦h)(x) = ψ(zh(x)) = ψ(h ◦ zx) = ψ(h) ◦ ψ(zx)
= idX ◦ ψ(zx) = ψ(zx) = zf(x)

holds for all x ∈ X and h ∈ T . This implies that f ◦ h = f for all h ∈ T , hence

f ∈ Cϕ. Note that Cϕ = Z. In fact, it is evident that Z ⊆ Cϕ. To show the

converse inclusion, let f ∈ Cϕ. For any x, y ∈ X, choose h ∈ T with h(x) = y.

Then f(x) = f ◦h(x) = f(h(x)) = f(y). In other words, f is a constant function, so

f ∈ Z as required. These observations imply that ψ is expressed as (3). Of course,

it is clear that ψ expressed by (3) is a homomorphic extension of ϕ to S.

Example 3. Let X be an arbitrary set with ♯X ≥ 2. Let T be the set of the

surjective maps from X to itself. Let Z = {zx : x ∈ X} be as in Example 2 and

let S = T ∪ Z. We endow S with a semigroup structure by means of the binary
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operation ◦ as in Example 2. Then (T, ◦) is a right-cancellative unital semigroup

such that S = T ∪Zl(S) and Z = Zl(T, S) = Zl(S) as observed in Example 2. Now

let ϕ be an anti-automorphism from T to itself and put

Fix(ϕ(T )) = {a ∈ X : ϕ(h)(a) = a (∀h ∈ T )}.

We first assume that ϕ is non-trivial. By Proposition 2-(ii) we can verify that if

Fix(ϕ(T )) is empty, then there exist no anti-homomorphic extension of ϕ to S, and

that if Fix(ϕ(T )) is non-empty, then any anti-homomorphic extension ψ of ϕ to S

can be expressed as

ψ(h) =

{
ϕ(h) (h ∈ T )

za (h ∈ Z)
(4)

for a unique element a ∈ Fix(ϕ(T )). Indeed, let ψ be an anti-homomorphic extension

of ϕ to S. By Proposition 2-(ii) and by the definition of Z, there exists a ∈ X such

that ψ(z) = za for all z ∈ Z and ψ(h) ◦ za = za for all h ∈ S. It follows that

ϕ(h)(a) = a for all h ∈ T and thus Fix(ϕ(T)) is not empty. Moreover, we can easily

see that the map from S to itself defined by (4) is an anti-homomorphic extension of

ϕ to S when a ∈ Fix(ϕ(T )). Therefore the desired result follows immediately from

the above observation.

We next assume that ϕ is trivial. Then ϕ(h) = idX holds for all h ∈ T because

idX is a unique idempotent of T . In addition, any anti-homomorphic extension ψ of

ϕ to S can be expressed either as (2) or as (3) (the proof follows the footprints of

the argument used in Example 2 and it is accordingly omitted). We also note that

in this case Fix(ϕ(T)) = X and thus (3) can be seen as a special case of (4).

Remark. We observe that the statement proved in Example 3 remains valid if we

replace the set T of all the surjective maps from X to itself by another set, which we

still denote by T and which is closed under the composition operator ◦ and consists

of some (but not necessarily all) surjective maps from X to itself. In particular,

if we denote by T the set of all the bijective maps from X to itself and we take

an anti-isomorphism ϕ from T to itself, then we can see that the corresponding set

Fix(ϕ(T )) is empty (since ϕ(T ) = T and X contains at least two elements a and b we

can always find a bijection h from X to X such that ϕ(h)(a) = b ̸= a). Accordingly

there exist no anti-homomorphic extension of ϕ to S.

In particular, there exist no anti-homomorphic extension to S of the inversion

map from T to itself which takes a function h to its inverse function h−1.
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